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The spectral theorem for a unitary operator on a quaternionic Hilbert space is established and 
a number of related results are proved. 

I. INTRODUCTION 

From some very reasonable physical assumptions it is 
possible to conclude l

•
2 that the mathematical model of non

relativistic quantum mechanics should be based on a u-com
plete orthomodular lattice. The most familiar example of 
such a lattice is provided by the lattice of subspaces of a 
Hilbert space and traditionally quantum mechanics has been 
done in a Hilbert space on the complex field. Though the 
model is not bad, its shortcomings are becoming increasingly 
obvious. Two questions naturally arise: (i) can we find a 
better model by using an orthomodular lattice which is not 
isomorphic with the lattice of subs paces of a complex and 
separable Hilbert space, and (ii) can we find a better model 
by using a separable Hilbert space on a field other than the 
complex field? This work is motivated by a desire to find a 
definitive answer to the second question. In the present pa
per we sharpen many of the results proved in Ref. 3 and 
present a simpler and yet a more rigorous account of the 
spectral theory of unitary operators on a quaternionic Hil
bert space. It should be noted that since observables are 1-
valued functions (cf. Ref. 1) on the Borel algebra of the 
reals, the field on which the Hilbert space is defined must 
include the reals as a subfield. Quaternions, strictly speak
ing, do not form a field but are an associative division algebra 
and according to a very old theorem of Frobenius there are 
only three associative division algebras on the reals: namely 
that of the real numbers, the complex numbers, and the qua
ternions.4 The only additional division algebra over the real 
numbers is a Cayley algebra, which is nonassociative.4 Non
associativity makes it difficult to define something corre
sponding to the positive definite Hermitian product on a 
linear space over a Cayley algebra and it is the Hermitian 
product that provides a Hilbert space with its distinctive 
structure. 

After some early work on quaternionic quantum me
chanics by Jauch and co-workers,3.5 there was a considerable 
revival of interest in the subject following in particular two 
notable papers by Horwitz and Biedenharn6 and by Adler.7 

Thus the subject of our paper is of considerable topical inter
est. 

II. QUATERNIONS 

Quaternions, hereafter to be denoted by lffi, form a 
normed associative algebra over R and are best defined with 
the help of three distinct linearly independent abstract 
square roots of - 1, which are denoted by symbols i,j, and k, 
whose products are defined by 

P = l = k 2 = - 1, ij = - ji = k, 

jk - kj i, ki = - ik 

It is easy to verify that H is a four-dimensional vector space 
over R. A conjugation is defined on lffi by 

1 * = 1, i* = - t, j* = - j, k * = - k. 

It is easy to verify that lffi is a normed algebra with the 
norm defined by 

Ilqll = (q*q) 1/2. 

In addition to the axioms of the norm, the norm satisfies, as 
in the complex case, 

IIqlq211 = IIqlll IIq211· 
One of the easiest concrete realizations of lffi is the alge

bra of (2X2) complex matrices of the form 

with matrix addition and multiplication. The zero in lffi cor
responds to the zero matrix and that the matrix is nonzero 
implies that its determinant lal 2 + Ib 12 is nonzero also and 
its inverse is another matrix of the same form. Now C (that 
is, the complex numbers), and therefore also R, can be re
garded as a subfield of lffi with the canonical embedding 
e: C -+ lffi given by 

C~(~ ~). (2.1) 

In this realization 1, i,j, and k are given by 

(~ ~), i= (~ O_J 
(2.2) 

. (0 1) (0 t) 
J= -1 0' k=i 0' 

We can now define a norm-preserving isomorphism of 
R4 with lffiby 

(a,b,c,d)~ + hi + cj + dk. 

In our realization unit quaternions constitute the symplectic 
group Sp( 1), that is, we have the matrices 

(a b !). a,bEC, lal 2 + Ib 12 = 1, (2.3) 

and thus Sp(1) is the same as SU(2). Note that Sp(1) is 
isomorphic with S 3 and is the universal covering of the rota
tion group SO(3). 

We now need the following basic lemma. 
Lemma 2.1: Let q be a unit quaternion. There exists a 

unit quaternionp such thatp-Iqp = r + si with r,sER, s;;;,O, 
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and r + S2 = 1. Furthermore, r is the real part of q. 
Proof We use the representation of q by a unitary 

(2X2) matrix of the form 

(a_ b !), a,bEe, lal 2 + Ib 12 = 1. 

Hence there exists a unitary matrix u = (!J) such that 
u-1qu is diagonal. We can normalize u and write it as 
exp (i(})p, where (} is real and p is a unit quaternion, that is, a 
(2 X 2) unitary matrix with unit determinant. Hence p-Iqp 
is diagonal and has the form (~~) with c = r + si. If s;;;.O we 
are done, if s < 0 then it is easy to see that with k as in (2.2) 
k -Ip-Iqpk = (~~), which corresponds tocby (2.1) and has 
the imaginary part positive, which is what we want. 

To see that r is the real part of q, we write 

r + si = P - 1 qp or r = q - spip - I. 

Now 

(pip - 1 ) 2 = pip - Ipip - 1 = pPp - 1 = _ 1. 

Hence pip - 1 and so also spip - 1 are pure imaginary. This 
proves that r is the real part of q. Weare now finished with 
the proof. 

Note that in quaternions we have three different linearly 
independent square roots of - 1 and any linear combination 
of these with real coefficients is pure imaginary also. Note 
further that for any nonzero pElflI, qt---+p -Iqp is an automor
phism of lflI: it is not difficult to prove that every automor
phism of lflI is of this form. Since R is the center of lflI, R is 
invariant under every automorphism of lflI. An automor
phism of lflI is thus a rotation of R4 with the real axis invari
ant, that is, a rotation of R3 where R3 correponds to the 
purely imaginary part of lflI. 

If two quaternions q and t are related by t = pqp - 1 for 
some pElflI, then we write t=q. It is evident that = is an 
equivalence relation on lflI. 

III. HILBERT SPACE OVER lI:lI 

Let H be a vector space over lflI. We can define a positive 
definite Hermitian form on H by 

(,): H XH-lflI, 

(pu,qv) = p(u,v)q*, p,qElflI, u,vEH, 

(u + v,w) = (u,w) + (v,w), 

(u,v)* = (v,u), 

(u,u) = 0 only ifu = O. 

A vector space Hover lflI which is complete in the metric 
topology induced by the positive definite Hermitian form on 
H is called a Hilbert space over lflI. 

Let H be a Hilbert space over lflI. We say that a map 

L:H-H 

is linear if and only if for all u,vEH and for all pElflI 

L (u + v) = Lu + Lv 

and 

L(pu) = pLu. 

It is easy to prove a Riesz representation theorem for a 
complex Hilbert space and thus H is naturally isomorphic to 
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its dualH as a complex space. It is then easy to define the 
adjoint L * of a linear map L whose essential properties are 

(u,Lv) = (L *u,v) 

and for its product LM with another linear map M 

(LM)* =M*L *. 
A linear map Non H is said to be normal if NN * = N * N. A 
linear map A on H is said to be self-adjoint if A * = A. A 
linear map U on His said to be unitary if U - 1 = U *. A linear 
map from H to itself is called an operator on H. 

IV. SOME BASIC PROPERTIES OF OPERATORS ON A 
QUATERNIONIC HILBERT SPACE 

We prove a number of properties, some of which are 
true for operators on a Hilbert space on any field: when that 
is so we refer to a Hilbert space rather than a quaternionic 
Hilbert space in our propositions. 

Proposition 4.1: Let L be a linear operator on a quater
nionic Hilbert space. 

(i) Let q be an eigenvalue of L, then so also is pqp -I for 
each nonzero pElflI. 

(ii) Let t/J be an eigenvector of L, then so also is pt/J, 
where p is as in (i) above. 

Proof' Lt/J = qt/J implies that Lpt/J = pLt/J = pqt/J 
=pqp-Ipt/J. 

Proposition 4.2: Let Ube a unitary operator on a Hilbert 
space. Let q be an eigenvalue of U, then q* is an eigenvalue of 
U * and U and U * have a common eigenvector with these 
eigenvalues. 

Proof Since Ut/J = qt/J we have t/J = U * Ut/J = U *qt/J 
= qU*t/J, that is, U*t/J = (1/q)t/J. But (t/J,t/J) = (Ut/J,Ut/J) 
= q(t/J,t/J)q*, therefore q*q = 1 or (1/q) = q*. Hence 
U*t/J =q*t/J. 

Proposition 4.3: Let t/J and ¢ be two eigenvectors of the 
same unitary operator U on a quaternionic Hilbert space. 
Then either t/J and ¢ are orthogonal or t/J and p¢ have the 
same eigenvalue for some pElflI. 

Proof Let Ut/J = qt/J and U¢ = t¢. Then (t/J,¢) 
= (Ut/J,U¢) = q(t/J,t/J)t *, which implies that either 
(t/J,¢) =Oorq(t/J,¢) = (t/J,¢)tort= (t/J,¢)-Iq(t/J,¢). Take 
p = (t/J,¢) then Up¢ = pU¢ = pp-Iqp¢ = qp¢. 

Proposition 4.4: Let t/J and ¢ be two eigenvectors of the 
same unitary operator U on a quaternionic Hilbert space 
belonging to the same eigenvalue q. Then (t/J,¢) commutes 
with q. 

Proof (t/J,t/J) = (Ut/J,U¢) = q(t/J,¢)q* or q(t/J,¢) 
= (t/J,¢)q. 

Proposition 4.5: Eigenvectors of a unitary operator U on 
a quaternionic Hilbert space belonging to the eigenvalue q 
and to the eigenvalue pqp-I for any nonzero pElflI span the 
same subspace. 

Proof' If t/J is an eigenvector of Ubelonging to q, thenpt/J 
belongs to pqp -I. Similarly a particular linear multiple of an 
eigenvector of U belonging to pqp - 1 is an eigenvector of U 
belonging to q. Hence eigenvectors belonging to q and those 
belonging to pqp - 1 span the same subspace. 

Proposition 4. 6: Let Mbe the subspace spanned by eigen
vectors of a unitary operator U on a quaternionic Hilbert 
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space belonging to the eigenvalue q. Then M has an ortho
normal basis in which each member is an eigenvector of V 
belonging to the same eigenvalue. 

Proof Let ¢>1'¢>2"",¢>n be a basis of eigenvectors in M 
belonging to the same eigenvalue q. Construct an orthonor
mal set t/J1,t/J2, ... ,t/Jn by the Gram-Schmidt process. Since all 
the coefficients used in the process are either real or real 
multiples of <¢>i ,¢>j) which by Proposition 4.4 commutes 
with q, all vectors obtained by the process are eigenvectors of 
V belonging to the same eigenvalue q. 

Remark: We have seen that q = ptp - I defines an equiv
alence relation r=t. If we partition H into equivalence 
classes then we can use any member of a class to represent 
that class. By Lemma 2.1 the equivalence classes can be rep
resented by points in the upper half of the complex plane. If q 
is an eigenvalue of a linear operator then linear multiples of 
the corresponding eigenvectors are also eigenvectors belong
ing to eigenvalues in the same equivalence class but not nec
essarily to the same eigenvalue and each member of an equiv
alence class is the eigenvalue for some linear multiple of an 
eigenvector belonging to some eigenvalue in the same class. 
Thus eigenspaces in a quaternionic Hilbert space do not cor
respond to a single eigenvalue but to an eigenc/ass of eigen
values. 

Proposition 4. 7: Let Vbe a unitary operator on a Hilbert 
space H. Let Mbe the subspace of H spanned by eigenvectors 
of V belonging to the eigenvalues + 1 and - 1. Then a non
zero vector t/J in H satisfies (V* - V)t/J = 0 if and only if 
t/JEM. 

Proof' Vt/J = V*t/J implies that V 2t/J = t/J. Let 
¢> = t/J + Vt/J and X = t/J - Vt/J. 

Since t/J=I=O, both ¢> and X cannot be simultaneously zero. 
Hence there are three possibilities: (i) ¢> = 0, (ii) X = 0, and 
(iii) ¢> =1=0, x=I=O. Incases (i) and (ii) t/Jisitselfaneigenvec
tor belonging to the eigenvalues - 1 and + 1, respectively, 
in either case t/JEM. For case (iii) 

V¢> = Vt/J + V 2t/J = t/J + Vt/J = ¢> 

and 

Vx= Vt/J- V 2t/J= - (t/J- Vt/J) = -X· 
Hence ¢> and X are eigenvectors of V belonging to the eigen
values + 1 and - 1, respectively. But t/J = ~ (¢> + X). Hence 
t/JEM. Conversely if t/JEM, t/J = '2.iqi¢>i + '2.j tj Xj, where the 
¢>;'s are eigenvectors of V belonging to + 1 and X/s to - 1. 
By Proposition 4.2, these are also eigenvectors of V * belong
ing to the same eigenvalues which implies that the restriction 
to M of Vand V * are identical. Hence Vt/J = V *t/J. 

Corollary 4.7.1: With V and M as in Proposition 4.7, 
( V - V * ) t/J = 0 for 

t/JEMl ¢:It/J = O. 

Proof Follows immediately from Proposition 4.7. 

v. THE SPECTRAL THEOREM FOR UNITARY 
OPERATORS ON A QUATERNIONIC HILBERT SPACE 

A quaternionic Hilbert space H is also a Hilbert space 
He over C. If H is regarded as a Hilbert space He over C, then 
for any vector ¢> andj¢> are no longer linearly dependent but 
mutally perpendicular (in this context k has the representa-
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tion k = ij = - ji) and j, since it is neither a vector nor a 
member of the field C, must now be regarded as an antilinear 
operator from He to He that takes every vector into a vector 
perpendicular to itself and is such that j* = - j and 
l = - J, where J is the identity operator on He. With these 
remarks we prove a few propositions on a quaternionic Hil
bert space regarded as a complex Hilbert space. However, 
we first need a definition. 

Definition 5.1: Let ¢>Elie' Here ¢> is said to be an E-ap
proximate eigenvector belonging to the approximate eigen
value A of the operator V if and only if 

II(V -AI)¢>II <E. 

Proposition 5.1: Let He be a quaternionic Hilbert space 
regarded as a complex Hilbert space. Let Ebe the projection 
on a subspace M. Then - jEj is a projection on the subspace 
N = {j¢>:¢>EM}. 

Proof" Since ( - jEj) 2 = - jEj and ( - jEj) * = - jEj, 
- jEj is a projection. Let E¢> = ¢>. Then - jEjj¢> 
= jE¢> = j¢>. Conversely let - jEN = t/J. Now let ¢> = - N, 
then t/J = j¢> and E¢> = - EN = jjEN = - N = ¢>. We are 
done with the proof. 

Proposition 5.2: (a) LetEbe the projection on the eigen
space of a unitary operator Von He belonging to the eigen
value A, then - jEj is the projection on the eigenspace of V 
belonging to the eigenvalue X. 

(b) Let E be the projection on the E-approximate eigen
space of a unitary operator U on He belonging to the ap
proximate eigenvalue A, then - jEj is the projection on the 
E-approximate eigenspace belonging to the approximate 
eigenvalue X. 

Proof' (a) Let E¢> = ¢>. Then V¢> = A¢> and Uj¢> = ju¢> 
- jAjj¢> = X¢>. Hencej¢> belongs to the eigenvalue X of U. 
(b) Let E¢> = ¢>. Then Ilu¢> - A¢>I I <E and 

II Uj¢> - Xj¢>11 = II Uj~ + jAjj¢> I I 

= Ilj(U¢> -A¢»II = IljllllU¢> -A¢>II <E. 

We are finished with the proof. 
Corollary 5.2.1: The spectrum A ( V) of U regarded as an 

operator on He is such that AEA ( U)¢:IXEA ( U). 
Proof' Since the spectrum of a normal operator on a 

complex Hilbert space is identical with its approximate point 
spectrum,8 our corollary follows immediately from Proposi
tion 5.2. 

Let {E;.} be the spectral family for U regarded as an 
operator on He. Then by the spectral theorem for unitary 
operators on a complex Hilbert space we have 

t1T 
U =)0 exp(iA ) dE;. , (5.1 ) 

where 0 and 2rr are regarded as the same point and counted 
only once in the integration. As a consequence of Corollary 
5.2.1, E21T -E21T_;' = -jE;.j for A<rr and 
dE 21T _;. = jdE;.j. When H is regarded as a quaternionic 
Hilbert space, we drop the hats from the projection opera
tors and then image spaces of E;. and E 21T - E 21T _;. are the 
same and they must be regarded as the same projection oper
ator and we have 
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dE2fT _;. = - dE;.. (5.2) 

However, in formula (5.1) the multiplying factor for dE;. 
and dE2fT _;. are exp(iA.) and exp( - u), respectively, and 
account must be taken of this in finding the correct spectral 
representation of U as an operator on H rather than on He 
[note that A. throughout is real and exp(iA.) complex]. To 
this end we define an operator (exp(u)E;.) on Hby the fol
lowing device: this operator is well defined on He and its 
definition is extended H by requiring that if E;. ¢ = ¢, then 

(exp(u)E;.)q¢ = q exp(iA.)E;.¢ = q exp(iA.)¢ 

for any qED: thus our definition gives us a linear operator. A 
consequence of this definition is that if E;. ¢ = ¢, then 

but 

(exp (iA. ) E;. )q¢ = exp (iA. )( E;. q¢ ) if qEC, 

(exp(u)E;.)q¢ = q(exp(iA.)E;.)¢ 

#exp(iA.)(E;.q ¢) if qE1'C, 

and in particular 

(exp(iA.)E;.li ¢ 

= j exp(iA.)E;.¢ = - j exp(iA.)¢ = - j exp(iA.)jj¢ 

= exp( - u)j¢ = exp( - u)(E;.j ¢). (5.3) 

Proposition 5.3: Let Ube a unitary operator on H. Then 

U= ifT (exp(u)dE;.), (5.4 ) 

where {E;. } is the spectral family for U regarded as an opera
tor on He and (exp(iA. ) dE;. ) is an operator on H in the sense 
described in the preceding paragraph. [In this represen
tation for each A. between 0 and 1T, exp (iA.) is on the upper 
unit semicircle in the complex plane and represents a 
whole equivalence class of unit quaternions in the set 
{y- I exp(iA.)y; YED}.] 

Proof Any vector ¢ED can be written in the form 

tP = ¢I + j¢2' (5.5) 

where ¢1'¢2EEfT (He) andj ¢2E( (E2fT - EfT) (He»). 
By the spectral theorem for U regarded as an operator 

on He, we can write 

UtP= ffT exp(u)dE;. tP= ifT exp(u)dE;. ¢I + [ exp(i(21T-A.»)dE2fT_;.j¢2 

= ifT exp(u)dE;. ¢I- ifT exp( -u)dE2fT _;.j¢2 

= ifT exp(iA.)dE;. ¢I + ifT (exp(iA.)dE;.li¢2 = ifT (exp(iA.)dE;.)tP, 

where we have used (5.2) and (5.4). Since tP is any vector 
(5.4) follows. We are finished with the proof. 

Though the result looks neat, its actual application re
quires going back to He and writing every vector in the form 
(5.5). This is inevitable because linear multiples of eigenvec
tors of U in H do not belong to the same eigenvalue and 
exp (u) is only one member of a whole eigenclass; the spec
trum of U in H is not just a subset of the unit semicircle in the 
upper half of the complex plane but is a subset of the whole 
unit sphere in H (=R4

). These features are also present in 
Ref. 3 but are obscured by lack of precise definitions and 
some lengthy but unnecessary formulation of an operator J. 
Thus in order to use the theorem, the spectral decomposition 
of U in He' that is, all the eigenvalues and the eigenvectors, 
must be completely known, but for more abstract applica
tions it may be enough to know that such a decomposition 
always exists. 

The next proposition shows us how simple the calcula
tion of the relationship between a general eigenvector in an 
equivalence class and its representative belonging to an 
eigenvalue on the upper unit semicircle in the complex plane 
is. 

Proposition 5.4: Let Ube a unitary operator on H. Let ¢ 
be an eigenvector of U belonging to the eigenvalue 
q = qo + q Ii + q2j + q3k , which is not pure complex, that is, 
either q2 or q3 or both are nonzero. Then the eigenvalue be
longing to the same eigenclass and situated on the upper unit 
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semicircle of the complex plane is given by C = Co + cli with 
Co = qo and c l = (1 - q~) 112 and the corresponding eigen
vector is Y¢, where yED and is given by 

Y = Yo + Yl i + Y2j + Y3k 

with 

and 

Yo = (cl + ql)/2cdI/2 , YI = 0, 

Y2 = Y~3(CI - ql)/(q~ + q~), 

Y3 = - Y2q2/q3' 

Let tP be an eigenvector of U belonging to the purely 
complex eigenvalue c. Then each member of the set {ycy- I: 
yED} belongs to an equivalence class of eigenvalues whose 
representative is c. The corresponding equivalence class of 
eigenvectors of U is the set {ytP: YED:} with YtP belonging to 
the eigenvalue ycy-I. 

Proof From Proposition 4.5 we know that c must be of 
the form c = yqy- I and since real numbers commute with 
quaternions, y can be taken to be a unit quaternion. Lemma 
2.1 tells us that Co = qo and c being the eigenvalue of a uni
tary operator must have unit modulus. Hence 
C I = (1 - q~ ) 112 . Lemma 2.1 also tells us that y- I is repre
sented by the matrix whose columns are the normalized ei
genvectors of the matrix (a_ b:) representing q and belong
ing to the eigenvalues c and c, respectively. From (2.2) we 
know that a = qo + q I i and b = q2 + qi. Let the eigenvector 
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of q belonging to the eigenvalue c be G), where we have 
chosen the phase in such a way that x is positive real. Then 

is equivalent to 

bz= (c-a)x 

and 

(c - a)z = - 'Ex. 

(S.6) 

(S.7) 

Multiplying together (S.6) and the complex conjugate of 
(S.7) gives us 

x 2 = - [(c - a)/(c - a)] Iz12, (S.8) 

which together with the normalization condition 

x2 + Izl2 = 1 

gives 

x = (c1 + ql)/2cd 1l2
• 

Then (S.6) immediately gives us 

z = (c - a)x/b. 

(S.9) 

(S.lO) 

(S.ll ) 

Since Y- 1 is a unit quaternion and its first column is G) we 
know from (2.3) that y-l is represented by G -;) and 
therefore y is represented by ( _~ ~). Using (2.2) and (2.3) 
we immediately get the values of YO'Yl'Y2' and Y3 as stated 
above in the Proposition. [Note that neither Y nor ytfJ is 
unique-they both depend on a choice of phase. We can 
replace Y by y' given by y' = y exp(ir), where r is any real 
number. Now y'tfJ and ytfJ belong to the same eigenvalue but 
differ in phase.] 

The second part is an immediate corollary of Proposi
tion 4.S. 

VI. CONCLUDING REMARKS 

In this section we shall briefly discuss why we prefer to 
treat our quaternionic Hilbert space as a left module (multi
plication by scalars on the left) while most other authors 
dealing with applications of such a space to quantum me
chanics treat it as a right module (multiplication by scalars 
on the right), and what happens to the matrix representation 
in our formalism. We shall also briefly discuss the relation
ship between the Hilbert spaces H and He in order to remove 
any unease the reader might have felt when He was intro
duced in Sec. IV. 

Whether we treat a module over a ring as a right or a left 
module is purely a matter of convention or fashion. The two 
structures are isomorphic with each other and neither can 
have any inherent advantages or disadvantages. Vector 
spaces are very special cases of modules over a ring and there 
the convention that scalars are multiplied on the left is very 
firmly established. Having two different conventions for two 
very similar structures (one a particular case of the other) 
can be confusing. At the time the work on Refs. 3 and S was 
done, treating a module as a right module was very much in 
fashion among mathematicians and the authors were merely 
following the fashion current then. However, they put a lin
ear operator on the left of a module rather than on the right 
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as a mathematician working with a right module would have 
done. This had the advantage that in the matrix representa
tion there was no need of taking the scalar across the matrix; 
linearity merely became a kind of associativity. The disad
vantage of this approach is that one starts using notations 
and conventions different from those used by mathemati
cians and it becomes difficult for users of the two conven
tions to understand each other and have a meaningful dia
logue. The present convention among mathematicians is 
very much in favor of treating a module as a left module, 
which is fortunately consistent with the overwhelming ma
jority of papers on quantum mechanics where a Hilbert 
space is treated as a left vector space. A linear map on a 
quaternionic Hilbert space is a particular case of an R -mod
ule (R for ring) homomorphism and our approach follows 
the convention popular among mathematicians at the pres
ent time [see the highly authoritative texts by Jacobson9 (p. 
162) and by MacLane and BirkofflO (p. 193)]. It may, 
therefore, come as a surprise to the reader that even for com
mutative rings, while dealing with matrix representations, it 
is not unusual for mathematicians to put the matrix on the 
right of the vector [see Eq. (19) on p. 167 of Ref. 9 and Eq. 
( 1) on p. 2S6 of Ref. 10]. So in our treatment, if we had to 
deal with matrix representations, we would put the scalar on 
the left, then the vector as a row vector followed by the ma
trix representation of the linear map; this is merely a trans
pose of the representation used in Ref. 3. Having the abstract 
objects appearing in the same order as their matrix counter
parts as in Ref. 3 is, no doubt, an advantage but there is a 
small price to pay in that some obstruction is created in one's 
contact with the flow of the mainstream of mathematical 
literature. In conclusion one must say that conventions and 
fashions are merely a matter of personal preferences, in using 
the particular conventions in our work we are with the ma
jority of mathematicians and with all those who are familiar 
with quantum mechanics in complex Hilbert space but in the 
very specialized field of applications of quaternions to quan
tum theory we are in a minority. 

In trying to cope with different notations and conven
tions, one is liable to lose track of what is the crux of the 
problem in developing a spectral theory in a quaternionic 
Hilbert space and this is that the linear operators on an R
module do not themselves form an R-module unless the ring 
R over which the module is defined is commutative; thus 
linear multiples of linear operators are not in general linear 
operators and the primary concern of the spectral theory is 
to represent an operator as a sum or integral oflinear multi
ples of projection operators. This is precisely the reason why 
in order to get anything like a spectral theorem in the present 
case there is no alternative but to view H as a complex space 
where the lack of commutativity disappears. It ought to be 
pointed out once again that (exp(iA)E,d of Sec. V was de
fined in a very particular way to make it linear and sums of 
linear operators are, of course, linear in R-modules even 
though scalar multiples of linear operators are, in general, 
not linear. 

A little ingenuity went into our work to ensure that after 
the spectral decomposition of U had acted on j times an 
eigenvector belonging to the purely complex eigenvalue 
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(expUA)), the eigenvalue appears in the final expression 
between j and the eigenvector. Considerable ingenuity is 
used in Ref. 3 to ensure the same thing. It is interesting to 
note that the same effect is achieved with remarkable ease in 
the Dirac notation, where the spectral decomposition of U 
takes the form 

U= [ltPA)exP(iA)dA(tPAI, (6.1 ) 

where {ltPA)} is an orthonormal basis in the Dirac sense 
(that is, even points in the continuous spectrum have eigen
vectors with a-function normalizations) in H with eigenval
ues on the upper unit semicircle in the complex plane. Even 
mathematicians appreciate the magic in the Dirac formal
ism, but so far it has not been found possible to produce a 
rigorous justification of it particularly in the case of contin
uous spectrum. 

We now turn to the relation between H and He. Here He 
was defined by requiring that tP andj tP are mutually perpen
dicular for every tP in H and He is regarded as a complex 
Hilbert space-all the remaining structure is inherited from 
H with these conditions. If the inner product of two vectors 
in H is q which is a quaternion, then q has a unique decompo
sition in the form q = Co + cd. It is easy to see that as a 
result of perpendicularity between tP andj tP the inner prod
uct in He is simply Co. Because of the uniqueness of the de
composition of a quaternion as a complex number plus an
other complex number times j, this definition of inner 
product is unique and as all real numbers remain unchanged 
by the transformation which takes the inner product in H to 
the inner product in He, vectors continue to have the same 
norm in He and hence the topology of He is the same as that 
of H; and remembering that the underlying set of vectors for 
both H and He is the same and norms are preserved, unitary 
operators on H remain unitary when viewed as operators on 
He. A more interesting question is as follows: given a com
plex Hilbert space He, can we define a quaternionic Hilbert 
space H with the help of it? Even though the answer to this 
question has no relevance to the present work, we will give a 
brief answer. The answer is "yes" with the proviso that in the 
finite-dimensional case He must have even complex dimen
sion and in the infinite-dimensional case the dimension must 
be countable. We find an antiunitary transformation J on 
He satisfying (tP,JtP) = 0 for every tP in He and satisfying 
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J 2 = - I, where I is the identity operator on He. We define, 
for complex Co and C1 and the quaternionicj of Sec. II, 

cotP + cdtP = cotP + czJtP, (6.2) 

(tP,jtP) = (tP,tP)j*; (6.3) 
all other structures are inherited from He. Note that tP and 
j tP are now linearly dependent. This construction of a qua
ternionic space is very similar to the construction of a com
plex space from a real one and it is customary to call in that 
case the new structure a complex structure 1 I; we can similar
ly call the structure we have just defined a "symplectic struc
ture" on a complex Hilbert space. 

It should perhaps be pointed out that the operator J 
used in the construction is not unique-if the dimension of 
the space is even in the finite-dimensional case and countable 
in the infinite-dimensional case, J can be defined in infinite
ly many ways: it is merely a question of arranging an ortho
normal set in pairs and thus the definition of J in each case is 
necessarily coordinate dependent. It is easy to prove that a 
unitary operator on He continues to be unitary in H if and 
only if it commutes with J . For a given unitary operator U 
onHe an operator J of the kind defined above and commut
ing with U exists if and only if exp( - iA) belongs to the 
spectrum of Uwhenever exp(iA) does. 
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In the first two of this series of papers [R. Dirl et al., J. Math. Phys. 27,37 (1986); M. I. 
Aroyo et al., ibid. 27, 2236 (1986) ] a systematic method to calculate the elements of reducing 
matrices has been developed. In this paper this "auxiliary group approach" is adapted to 
multiple Kronecker products. Three examples are worked out to illustrate the efficiency of 
generating relations and the proposed reduction of the multiplicity problem. 

I. INTRODUCTION 

This is the third of a series of papers in which we discuss 
how to calculate matrices that transform reducible 
(co) representations into direct sums of irreducible constitu
ents in a systematic and efficient way. In the first two pa
pers,I,2 henceforth referred to as I and II, our "auxiliary 
group approach" has been introduced and discussed for ar
bitrary reducible (co) representations. In this paper we 
adapt the method to multiple Kronecker products. 

Our approach is described in detail in Sec. II where, for 
the reader's convenience, some basic material from papers I 
and II is briefly reviewed. Sections III-IV contain three ap
plications of our scheme. In the first example, where twofold 
Kronecker products of a space group are considered, the 
drastic reduction of the number of Clebsch-Gordan coeffi
cients that actually have to be computed is most noteworthy. 
The other two examples, where threefold Kronecker prod
ucts of magnetic point groups are discussed, serve mainly to 
illustrate the peculiar features arising from the algebraic 
structure of corepresentations. 

II. THE AUXILIARY GROUP APPROACH TO THE 
REDUCTION OF KRONECKER PRODUCTS 

A. Preliminaries 

Before specifying the auxiliary group approach to 
Kronecker products we briefly review our notation and 
some basic facts needed later on; for details the reader is 
referred to papers I and II. In these papers transformations 
of unitary matrix (co)representations, of a group G, were 
introduced. A typical transformation q of a representation 
(rep) is composed of three different kinds of operations: an 
association, i.e., multiplication with a one-dimensional rep; 
an automorphism of the group resulting in a permutation of 
the matrices representing different group elements; and
for one-half of the considered transformations-the com
plex conjugation of the matrix elements. Although these 
transformations, denoted by the symbols QI,q2"'" are de
fined for all (co ) reps it is sufficient to consider only irreduci
ble ones in the following. The set of all these transformations 
endowed with the natural multiplication law for bijective 

mappings forms the group Qrep (transformation for ordi
nary reps) or Q co (transformation of coreps), respectively. 
In the following we shall denote both these groups by the 
single symbol Q (thereby deviating from the notation ofpa
pers I and II) to avoid tedious repetitions in describing our 
approach. 

The ordinary one-dimensional reps are uniquely deter
mined by the multiplication law of the group G. However, if 
G = G(H) = {H,Hao} is a magnetic group, its one-dimen
sional coreps are unique only up to a phase factor common to 
all elements geHao' By means of a unitary transformation 
this phase can be varied in such a way that 

Dj(ao) = 1 (dim Dj = I), (2.1) 

where ao is a fixed element of G \H. The group ASS defined 
by the one-dimensional reps satisfying convention (2.1) is 
then uniquely determined by the reps Dj(h), heH. We fur
thermore assume that the same element ao, which is used to 
fix the phases of the one-dimensional coreps, is the one that is 
used to construct irreducible corepresentations (coirreps) of 
type III in Wigner canonical form. 3 For coirreps of type I 
and II it does not matter which element aEG \H is used to 
construct the Wigner canonical form. This can be seen from 
the following list where for all three types r k is assumed to be 
a unitary irreducible representation (irrep) of H, group ele
ments are denoted by heH and aEG \H, and M T is the trans
pose of the matrix M, 

type I: 

Dk(h) =rk(h), Dk(a) =Zk(a), 

Zk(a- I ) = Zk(a)T, 

Z k(a l )rk(h)*Z k(a2)* = rk(a1ha2)' 

type II: 

Dk(h) = (rko(h) 0) 
rk(h) , 

(2.2) 

(2.3) 
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Zk(a l )r
k(h)*Zk(a 2 )* = - r k(a 1ha2 )· 

type III: 

Dk(h) = (rko(h) 0 ) 
rk(ao-1hao)* ' 

(2.4 ) 

It is evident from (2.4) that for a coirrep Dk(g) of type III 
convention (2.1) entails that the submatrices occurring in 
the coirrep Dj(g)D keg) = D I(g), which is also of type III, 
are related in exactly the same way as in D k (g). These con
ventions, to which we adhere in the following, have already 
been used in the previous paper (cf. Sec. IV of II) but not 
stated explicitly. 

Convention (2.1) also influences the automorphisms 
which are included in the auxiliary group. As has been stated 
in paper II we only consider automorphisms of magnetic 
groups G(H) that leave the subgroup H invariant. To be 
consistent with (2.1) we furthermore only admit automor
phisms f3 for which 

DV3 -I(ao») = 1 (2.5) 

holds true for all one-dimensional coirreps. 
Transformation of an irrep D k with one of the mappings 

qEQyields a second one which is in general different from the 
first one and may even be inequivalent to it. This fact can be 
used to combine the irreps into disjoint subsets, called Q
classes, whose members are related by equations of the form 
D I = qD k (1-1- k). The same can be done for coirreps where 
the above mentioned conventions together with the restric
tion (2.5) ensure that qD k is in Wigner canonical form if D k 
is in that form. In the following we shall always assume that 
such a "standard set" of (co)irreps has already been con
structed (cf. Sec. II G of paper I). 

If an operation q transforms a (co) rep D k into an equiv
alent one then there exists a unitary matrix Uk(q) such that 

(qDk)(g) = Uk(q)tDk(g)Uk(q)(g). (2.6) 

The meaning of the superscript (g) is fixed by the following 
definitions: 

reps of G: M (g) = M, 

{
M for gEN, 

coreps ofG(H): M(g) = 
M * for gEG \H. 

(2.7) 

The transformation D k ...... qD k (-D k) determines the ma
trix Uk(q) only to a certain extent: If the unitary matrices 
M k and M ~ belong to the commuting algebras of D k and 
qD \ respectively, i.e., 

MkD keg) = D k(g)Mk(g>, 
(2.8) 

M~ (qD k)(g) = (qD k)(g)M~(g) 

for allgEG, then the matrix Uk(q) in (2.6) can be replaced 
by MktUk(q)M~. The whole freedom in the definition of 
Uk(q) is, however, already contained in one of the two com
muting algebras. This follows from the fact that, for a fixed 
matrix Uk (q), each left factor M k may be replaced by a right 
factor M ~ related to M k by 
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(2.9) 

and vice versa. From Schur's lemma and its generalization4 

the commuting algebras of (co)irreps are known to be iso
morphic to (skew) fields of characteristic 0 and their unitary 
elements form matrix groups isomorphic to well-known 
compact groups [cf. Eqs. (3.21) of paper II]. (See Table I.) 

In the following we shall assume that sufficiently many 
matrices Uk(q) have been fixed by some convention for the 
representative D k of each Q class. Here the number of q's has 
to be chosen in such a way that these transformations gener
ate the group Q k consisting of all transformations satisfying 
(2.6) (cf. Sec. II G of paper I), 

qEQk(CQ) iff qDk_Dk. (2.10) 

From now on we shall reserve the letter k for the Q
classes and the corresponding representative (co) irreps. An 
arbitrary (co) irrep is denoted by D I; it is generated from the 
representative D k by a relation of the form 

DI = q)k)D\ 

where 

Q = q),k)Q kUq),k)Q kU .. " 

R k = {q(k) q(k) } 
I. ' 12 , ••• 

= fixed set of coset representatives, 

q),k) = qo (identical transformation). 

(2.11) 

(2.12) 

For D l_qD k we write, in a shortened form, I = qk, and 
the Q-class with representative D k is denoted by 

[k] = {/ II = qk for some qEQ}. (2.13) 

It follows from (2.12) that for each qEQ and q)k)ER k 
there exist elements q)~)ER k and q'EQ k such that the follow
ing relation holds true: 

(2.14) 

Note that the transformations on the rhs are uniquely deter
mined by those on the Ihs, 

I'=ql, q'= [q)~)]-Iqq)k), 

k = representative of the Q-class containing I. 

(2.15 ) 

(2.16) 

Equation (2.14) allows us to express the transformation 
D I ...... qD I in terms of coset representatives and the matrices 
Uk(q) appearing in (2.6), 

(qD I)(g) = UI·,I(q)tD I' (g) U/',l(q) (g), 

U1"/(q) = q?)Uk(q') [cf. (2.12)]. 

In Eq. (2.18) we used the definition 

TABLE I. Commuting algebras for (co)irreps. 

(2.17 ) 

(2.18 ) 

coirrep of type 
Representation D k irrep III II 

Commuting algebra C R C Q 
Unitary elements U(1) S2 SO (2) SU(2) 

Freedom in Uk(q) 
one real one one real three real 

parameter sign parameter parameters 
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~ = {M *, if q . contains the complex conjugation, 

M, otherwise, 
(2.19) 

valid for all matrices that do not represent elements of G 
[M #D(g)]. 

B. The auxiliary group for Kronecker products 

In this paper the reducible (co) reps of papers I and II 
are specialized to Kronecker products of the form 

Dk(g) =Dk'(g)®···®Dkn(g). (2.20) 

The tensor product on the rhs of this equation means that the 
rows (columns) of Dk are labeled by s = (SI,S2,"') if the 
rows (columns) of the factors D k" D k" ••• are labeled by 
SI,S2"'" respectively, and that 

D k , (g) = D k, ,(g)'" D kn , (g) (2.21 ) 
S,S 5 1.S1 S",S" 

[cf. Eq. (2.49) of paper I]. 
If the (co)rep (2.20) were considered just as an ordi

nary reducible (co) representation nothing would emerge 
that has not yet been described in the preceding papers. 
However, the structure of D k allows us to proceed. To this 
end we introduce a new group with elements 

q = (ql, ... ,qn)' (2.22) 

the qj'S being transformations of the kind considered before. 
The action of q on D k is defined by 

(2.23 ) 

These transformations form the direct product group 

Q (n) = Q X ... X Q. (2.24) 

In view of the applications we have in mind we need also a 
group Q that is, in part, generated by the following transfor
mations qEQ: 

b = (b, ... ,b), bEAUT, 

c = (c, ... ,c), cECON. 

(2.25) 

(2.26) 

(2.27) 

Here the group ASS (associations), AUT (automor
phisms), and CON (complex conjugation), are those de
fined in the preceding papers. Besides the transformations 
(2.25)-(2.27) we consider one more kind of generating 
transformations, namely transformations D k -+ D k' related 
to permutations, 

i.e., 

pDk=Dk'; 

k = (kl, ... ,kn ), k' = (kl" ... ,kn,); 

(l', .... ,n') = permutation of (l, ... ,n), 

_ (l, ... ,n) p- . 
l', ... ,n' 

(2.28) 

It is easy to see that the structure of the group Q generated by 
the transformations (2.25)-(2.28) is 

Q~Ass(n)G«AUTXCONXSn)' (2.29) 

where 
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Ass(n) = ASSx'" X ASS (n-fold direct product), 
(2.30) 

and Sn is the symmetric group containing all permutations 
of n objects. 

There exists a natural homomorphism ,if'" from Q onto 
Q defined by 

a = (al, ... ,an ): ,if"'(a) = al, ... ,an (n-fold product)EASS; 

b = (b, ... ,b): ,if"'(b) = bEAUT; 

c = (c, ... ,c): ,if"'(c) = cECON; 
(2.31) 

,if"'(p) = qo (identical transformation). 

In the following the images of the elements q,q', ... ,EQ will be 
denoted by q,q', ... ,EQ. 

The transform qD I of a Kronecker product of irreps is 
obviously also a Kronecker product but contains in general 
nonstandard factors even if D I is composed of standard ir
reps only. The relation between D I and qD I is given by 
(2.28) for q = p; for qEQ (n) this relation follows from Eqs. 
(2.23) and (2.17). Using the definition 

1'1 1'1 1'1 
U '(q)=U "'(ql)®'''®U n'n(qn)' 

we can write this relation in the concise form 

(qDI)(g) = UI',I(q)tDI'(g) UI'·I(q) (g). 

(2.32) 

(2.33 ) 

Equation (2.33) is the natural generalization of relation 
(2.17) to n-fold Kronecker products. Both these relations 
are needed in the derivation of generating and symmetry 
relations of Clebsch-Gordan matrices. A relation similar to 
(2.33) exists also for q = p, namely, 

(pDI)(g) = UI',I(p)DI(g)UI"I(p)t(g) =DI'(g), (2.34) 

where UI'·I(p) is a permutation matrix depending only on 

the number of factors D I, and their dimensions. However, 
one should note the difference between (2.34) and (2.33): 
Equation (2.34) shows that the new rep D l' may be obtained 
from the original rep D I either by performing the substitu
tion (2,28) or by transforming D I with the permutation ma
trix UI,I' (p). Equation (2.33), on the other hand, implies 
that for qEQ (n) one obtains D l' from D I in two steps, namely, 
first substituting D I by qD I and afterwards transforming it 
with Ul,l' (q). 

Our ultimate goal is the systematic decomposition of all 

Kronecker products D \ each factor D k, ranging over a full 
set of standard irreps. The set of all these Kronecker prod
ucts can be decomposed into subsets whose members are 
related by the auxiliary group Q. To define this partition we 
use an equivalence relation between n-fold Kronecker prod
ucts ofthe form Dk;::;DI, where 

Dk;::;DI means Dk'_DI, for all i. (2.35) 

This equivalence relation is obviously more stringent than 
general unitary equivalence (D k _ D I) but at the same time 
weaker than complete equality (D k = D I). It is obvious 
from Eqs. (2.32), (2.33), and definition (2.35), that the 
equivalence relations defined by this relation are mapped 
onto each other under the transformations qEQ (n) n Q and 
q = p, i.e., qD k;::;qD I iff D k;::;D I. A typical subset defined 
by the equivalence relation considered here is 
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(2.36) 

Note that the reps D I appearing on the rhs are all products of 
standard irreps D I. As we did before for single irreps, we 
reserve the symbol h for the class representatives. The letter 
h has been chosen to indicate that the components hi cannot 
always be chosen to be representatives of Q classes; however, 
we shall set hi = k i whenever this is possible. 

For each of the representatives h we furthermore define 
a subgroup of Q by 

qEQh (CQ) iff qDh;:::;;Dh (2.37) 

[cf. definition (2.10)]. Finally we assume, in analogy to 
(2.12), that for each group Qh C Q a set of coset representa
tives has been fixed by some convention, 

Q = qlC.h)QhUql~h)QhU···, 

Rh {(h) (h) } = ql ,ql , ... , , , 

qt) = qo (identity transformation). 

(2.38) 

C. Transformation properties of Clebsch-Gordan 
matrices 

The decomposition of a Kronecker product D I into 
(co) irreps D I, obtained by means of a unitary matrix, reads 

DI(g)CI(g) = C I[ ~ E(li/) ®DI(g)] for all gEG. 

(2.39) 

In this equation C has been chosen for the reducing matrix to 
indicate that its elements are usually denoted as (general
ized) Clebsch-Gordan coefficients. The matrices E appear
ing on the rhs are unit matrices, 

E(d) = unit matrix of dimension d; (2.40) 

their dimensions are given by 

(III) = multiplicity of D 1 in D I. (2.41 ) 

In accordance with the definition of the Kronecker product, 
Eq. (2.21), the rows of C I are labeled by s = (SI, ... ,sn ), 

where Si is the row index of D \ 

(co)irrep label: I, 

row index: S = I, ... ,n l , (2.42) 

nl = dim D I. (2.43) 

As is evident from Eq. (2.39), the definition of the tensor 
product [paper I, Eq. (2.49)], and that of a direct sum of 
matrices, the columns of C I are labeled by the triple (/,m,s), 
the second index referring to multiple occurrence of D I, 

multiplicity index: m = m(l,/) = 1, ... ,(11/). (2.44) 

If corepresentations are chosen in Wigner canonical form it 
is often more convenient to replace the row index S by the 
pair a, z where a depends on the type of the coirrep and z 
labels the rows of the irreps r k of H contained in the coirrep 
Dk ofG(H), 

row index of coirreps: a,z( ~ s), 

type I: a = I; z = I, ... ,nk , (2.45) 

type II or III: a = 1,2; z = I, ... ,~nk' 

Just as the matrix Uk(q) is not uniquely determined by 
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relation (2.6) so the Clebsch-Gordan matrix C I is not 
uniquely fixed by (2.39). Reasoning as for Uk(q), one sees 
that any two Clebsch-Gordan matrices satisfying (2.39) are 
related by right multiplication with a unitary matrix M I 
which satisfies 

MI[ ~E(li/) ®DI(g)] = [ ~ E(lI/) ®DI(g) ]MI(g) (2.46) 

for all gEG. This matrix has the structure 

MI= Ea MI,I, 
1 

(2.47) 

where the submatrices MI,I depend on the multiplicity (III) 
and the type of the coirrep (cf. Sec. III of paper II), 

irreps: 

L unitary, dim L = (III). 

coirreps: 

L unitary, dim L = (l1/)'TI' 

type I: 'TI = I; a = a' = I, 

Lml.m'l = L :I,m'l (L orthogonal). 

type II: 'Tn = 2; a,a'E{1,2}, 

Lml,m'l = L :2.m'2' L ml .m'2 = - L :2.m'l . 

type III: 'Till = 2; a,a'E{I,2}, 

L m1.m'l = L :2,m'2' L ml ,m'2 = L m2.m'l = O. 

(2.48) 

(2.49) 

(2,50) 

(2.51 ) 

(2.52) 

As in the preceding papers we now transform Eq, (2.39) 
into equivalent ones by a sequence of steps consisting of the 
following operations: (i) Both sides ofEq. (2.39) are multi
plied with Dj(g) = Di'(g)' "Din(g), dim Di = I, Dj in 
standard form [see Eq. (2.1)]. (ii) The argument of the 
functions D 1 (g) and D 1 (g) is substituted by /3 - 1 (g), where 
g-/3(g) is an automorphism of the group G. (iii) Both sides 
of (2.39) are conjugated, i.e., M -M * for all matrices. Com
paring these operations with the generators ofQ n Q (n>, Eqs. 
(2.25)-(2.27), we see that for each qEQnQ (n) the set of 
Eqs. (2.39) is transformed into a similar set of equations that 
is, in general, different from the original one. Using the defi
nitions (2.23) and (2.19) and the homomorphism Q _ Q 
defined by (2.31) the equation obtained from (2.39) byap
plying the operation corresponding to qEQnQ (n) reads 

(qDI) (g)(qCI)(g) = (qC 1
)[ ~ E(lI/) ® (qD1)(g)], 

(2.53) 

By means of relations (2.33) and (2.17) this can be trans
formed into 

UI'·I(q)tD I' (g) UI'·I(q) (g) (qC I ) (g) 

= (qC 1) [ ~ E(lI/) ® U1'.I(q)tD I' (g) UI'.l(q) (g)]. 

(2.54) 

Multiplying with UI'·I(q) from the left and with the matrix 
Zl(q) (g)t from the right, where 

Zl(q) = Ea E(lI/) ® UI'·I(q) (2.55) 
1 
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and I ' = ql [cf. Eqs. (2.18) and (2.15)], we obtain finally 

D I' (g){UI'·I(q) (qCI)ZI(q)t}(g) 

= {UI·,I(q)(qCI)ZI(q)t} [ ~ EOI/) ®D1'(g)] . 

(2.56 ) 

This equation is also valid for q = p because 

DI'(g) = UI'.I(p)D I(g) UI'.I(p)t(g) 

[cf. Eqs. (2.28) and (2.34)] and p--+qo, qoC I = C I, ZI(q) 
= identity matrix. 

Comparison of (2.56) and (2.39) shows that the matrix 
in the curly brackets decomposes the Kronecker product 
D 1'. It also states implicitly that D I' contains D I' as often as 
D I contains D I, i.e., 

Oil) = (qllql) = 0'1/'); (2.57) 

this follows also directly from the relation between the char
acters of D k and qD k. Because of (2.57) the matrix E(ll/) 
appearing in (2.56) can be written as EO'I/'). However, it 
should be noted that the order in which the (co) irreps D I' 
appear in (2.56) is determined by the labell ( = q - II ') and 
not by I '. If we want the (co) irreps to appear in the direct 
sum in a certain standard order, i.e., a lexicographical order 
fixed by some convention once and for all, then the matrix in 
the curly bracket has to be multiplied from the right by a 
permutation matrix P(q) with elements 

P1ms,l'm's' (q) = 8I,qI'8m ,m,8s,s" (2.58) 

D I' (g){UI',I(q) (qCI)ZI(q)tp(q)}(q) 

= {UI',I(q) (qCI)ZI(q)tp(q)} 

x[ ~ E(I'I/')®D 1'(g)]. (2.59) 

Comparing (2.59) with (2.39) one might be tempted to 
set the matrix in the curly bracket equal to C I'. However, this 
would lead to contradictory results since two different trans
formations q. and q2 with q,l = q21 = l' would in general 
give rise to two different definitions of C 1'. Keeping in mind 
the freedom in the definition of the Clebsch-Gordan matri
ces we can only conclude that 

CI'M"(q) = UI'·I(q)(qCI)ZI(q)tp(q), (2.60) 

where the matrix MI'(q) has the structure given by Eqs. 
(2.47)-(2.52). In the following we shall use Eq. (2.60) to 
establish generating relations by fixing the matrix M I' (q) or 
parts of it for a carefully selected set of transformations q. 
We shall also use this equation to reduce the freedom in the 
definition of Clebsch-Gordan matrices by requiring M I' (q) 
to have a certain structure as q varies over various subgroups 
of Q (symmetry relations). 

The first kind of generating relations relate all matrices 
C I, where I belongs to the Q class [h], to one single Clebsch
Gordan matrix C h. 

q = q~b)ERh, YC"(q) = q = q~h): 

I=qh, 

M"/(q) = E(ll/) ®E(n l ) for all I with (III) #0, 

(2.61 ) 

Having exploited all relations obtained for the coset repre-
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sentatives ql(h)ERh we are left with a problem as already con
sidered in the previous papers. The only difference is that in 
the present case the matrix U h.h (q) relating D hand qD h 
need not be computed in addition to the matrices UI·./(q), 

but may be composed of a finite number of these matrices. 
For the mathematical formulation of the subsequent 

procedure we need a few definitions. First we introduce the 
image of Qh under the homomorphism Q --+ Q, 

Qh = YC"(Qh) (2.62) 

and use it to define a new partition of the (co)irreps, 
IkJh = {III = qkx , qEQh}, 

(2.63) 

For each representative kx of one of these classes there exists 
a subgroup Qh.kx C Q h defined by 

(2.64) 

We assume that sets of coset representatives with respect to 
these subgroups have been fixed by some convention, 

Qh = q},h,klQh.kUq},h,k)Qh,kU"" 

R h,k = {q(h,kl q(h,kl } 
I. '1

2 
, ••• , (2.65) 

q(h,k l _ q 
I, - o· 

Finally we split the square matrix C h into rectangular blocks 
that belong to the (co) irreps D 1 contained in D h, 

C ~ = rectangular matrix consisting of all columns of C h 
with fixed index I 
[m = I,oo.,(hl/); s = I,oo.,nd. (2.66) 

These definitions allow us to formulate the second kind 
of generating relations, namely those that relate the blocks 
C~ with IE/kxlh to the block CL k = k x. 

qEQh, (q) = q = q?,k)ER h,k, k = kx: 

I = l' = h, I = qk, 

Mh,/(q) = E(hl/) ® E(n l ), 

C~ = Uh,h(q) (qct )zt (q)t, 

zt (q) = E(hlk) ® U1,k(q). 

(2.67) 

In the last step we consider the transformations qEQh 
with YC"(q)EQh,k, k = kx • These transformations form a 
group, the inverse image of Q h,k with respect to the homo
morphism YC": Q --+ Q: 

Qb,k = YC"-l(Qh,k) CQ. (2.68) 

The effect of these transformations on the block C t can be 
seen from Eq. (2.60), 

CtMh.k(q) = Uh,h(q) (qC~) [E(hlk) ® Uk(q)t]. 

(2.69) 
To explain our strategy let us assume for the moment that 
the block ct is given and has been split into (hlk) subblocks 
ctm: 
C ~m = rectangular matrix consisting of all columns of 

C h with fixed indices km [s = I,oo.,n k ]. (2.70) 

Each of these subblocks satisfies the equation 

Dh(g)Ct~) = C~mDk(g) for all gEG. (2.71 ) 

Furthermore, if C h is unitary, 
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C~;:'C~m' = ~m,m,E(nk)' (2.72) 

It is easily verified that any linear combination 

C~a = L C~mL ~m.al' (2.73) 

where the matrices L ~m,a) belong to the commuting algebra 
ofD\ 

Dk(g)Lk(g) =LkDk(g) for all gEG, (2.74) 

is also a solution ofEq. (2.71). As can be seen from the form 
of the matrices L \ Eqs. (2.48)-(2.52) with m = m' = 1, 
the commuting algebra is isomorphic to a (skew) field: {L k} 
~R for coirreps of type I, {L k}~Q for coirreps of type II, 
and {L k}~C for coirreps of type III and for irreps. The set 
of solutions of (2.71) is therefore a linear space over the 
corresponding (skew) field, its dimension being always 
(h I k) because of (2.72). Accordingly the number offree real 
parameters appearing in the most general subblock of the 
form (2.73) is (hlk)Pk' wherepk is the number of real pa
rameters needed to specify an element of the (skew) field 
(p = 1 for R, P = 2 for C, and P = 4 for Q). That the most 
general solution of (2.71) has to be of the form (2.73) fol
lows from the fact that the projection matrix 

p~ = C h[ ~ ~/,kE(hll) ®E(n/) ]Cht 

C hcht '" C h cht = kk=£.. kmkm (2.75) 
m 

is uniquely determined by D h andD k and independent of the 
special choice of subblocks C ~m' 

p~ = p~t = (p~ )2. (2.76) 

If p ~ is given in terms of known subblocks C ~m this allows 
one to calculate the expansion coefficients L ~m.a) for a gen
eral solution of (2.71 ), 

C~a =P~C~a =LC~mC~;:'C~a =LC~mL~m,al' 
(2.77) L k - cht C h 

(m,a) - km ka' 

Equations (2.72) and (2.77) show that the relation 

C~!C~b =L~a,b) (2.78) 

may be interpreted as a scalar product that assigns to any 
two "vectors" C~a' C~b a "number" L ~a,b) of the corre
sponding (skew) field. Since this product has all the usual 
properties of a scalar product the set of solutions of (2.71) 
can be considered as a unitary space (for the properties of the 
less familiar quatemionic Hilbert space see, e.g., Ref. 5). 
Note especially that in all cases the square of the norm of 
C ~a has the form 

L ~a,a) = YaE(n k ), Ya = Ta'>0. (2.79) 

Let us now consider the operators T( q), qEQh,\ defined 

(2.80) 

Because of (2.78) and the unitarity of the matrices Uh,h and 
Uk these operators are certainly norm preserving. Further-
more, 

T(q)[C~aLk] = [T(q)C~a]Lk{q}, (2.81 ) 

where 
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(2.82) 

If we transfer the transformation qEQ k to Eq. (2.74) in ex
actly the same way as the transformations qEQnQ (n) were 
transferred to relation (2.39) we obtain 

[qD k(q) ][qL k] (g) = [qL k ][qD k(g)] for all gEG, 
(2.83) 

or, using (2.6) and (2.82), 

D k(g)L k{q}(g) = L k{q} D keg) for all gEG. (2.84) 

Therefore the matrices L k{q} also belong to the commuting 
algebra of D k and it is obvious from (2.82) that 

(L ~ + L ~ ) {q} = L ~{q} + L ~{q}, 
(2.85) 

(L ~L ~){q} = L ~{q}L ~{q}. 

This shows that each mapping L k _ L k{q} may be considered 
as an automorphism of the corresponding (skew) field. The 
number and the properties of these automorphisms are well 
known from the literature and can also be deduced from the 
form of the matrices L k. For ordinary irreps and coirreps of 
type I these matrices are multiples of the unit matrix, 

irreps: L k{q} = qL k, (2.86) 

coirreps of type I: L k{q} = L k. (2.87) 

For coirreps of type II where {L k}~Q and all automor
phisms of Q are inner ones one can always find unitary ma
trices L k(q) such that5 

L k{q} = L k(q)tL kL k(q). (2.88) 

Thus if we use the matrices 

Uk(q) = L k(q) Uk(q) (2.89) 

instead of the matrices Uk(q), they also satisfy (2.6) but 

L k{q} = Uk(q) (qL k) Uk(q)t = L k. (2.90) 

Likewise we could use matrices Uk (q) = L k (q) Uk (q) such 
that 

L k{q} = Uk(q)(qL k) Uk(q)t = qL k (2.91) 

sinceL k_ (L k)* is also an automorphismof{L k}~Q. For 
coirreps of type II we therefore always choose one of the 
following two conventions for the matrices Uk(q), 

coirreps of type II: L k{q} = L \ (2.92a) 

L k{q} = qL k. (2.92b) 

For coirreps of type III a redefinition of Uk(q), i.e., a substi
tution Uk(q) -L k(q) Uk(q), has no effectonL k{q} since all 
matrices L k commute. The automorphism L k_L k{q} is 
therefore uniquely determined by the transformation q and 
the coirrep D k. Since there exists only one nontrivial auto
morphism of{L k} ~C, namely L k _ (L k) *, we arrive at the 
following result: 

coirreps of type III: L k{q} = L k or L k*. (2.93 ) 

Summing up we see that for ordinary irreps and coirreps of 
type III the operators T(q) are either linear or antilinear 
and, since they are also norm preserving, either unitary or 
antiunitary. For coirreps oftype I they have to be linear and 
unitary, and so they are for coirreps of type II if the matrices 
Uk(q) are properly chosen [Eqs. (2.89) and (2.90)]. An 
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alternative choice of these matrices leads to operators that 
are linear/antilinear and unitary/antiunitary (in a general
ized sense). 

It follows from (2.56) and (2.73) that 

T(q)Ctm = L Ctm,L ~m"m) (q). (2.94) 
m' 

The matrices L ~m,m') (q), m,m' = 1, ... ,(hlk), of dimension 
nk may be combined into a matrix of dimension (hlk)n k, 

Mb,k(q)=Lb,k(q)®E(nk'Tk- 1), 'Tk=l or2 (2.95) 

[cf. Eqs. (2.48)-(2.52)], which represents the action of 
T(q) on the basis blocks ctm' Because of (2.81 ) the product 
T( ql) T( q2) is represented by 

(2.96) 

where the rhs is either the ordinary product or a coproduct 
of the two matrices (note the definition of conjugation for 
type III coirreps!). If neither convention (2.92) nor (2. 92b) 
is adopted for coirreps of type II Eq. (2.96) has to be consid
ered as a generalization of the usual coproduct. 

If for a transformation qEQh,k both matrices Uh,h(q) 
and Uk(q) are given then the operator T(q) is uniquely 
defined by (2.80). However, usually these matrices are 
known only for a few generators of Qh,k so that a variety of 
products of the corresponding operators is needed to close 
them into an operator group Q h,k. The form of the matrix 
(co) representation of this group, T(q) _Mh,k(q), or equiv
alently T(q) -L b,k(q), depends on which Clebsch-Gordan 
matrix is used to fix the basis blocks C tm' We exploit this 
fact in requiring the following property. 

qEQb,\ JY(q)qEQb.\ k = kx: 
the matricesL h.k( q) are direct sums of (co )irreps of the 

operator group Qb.k = {T(q)}. (2.97) 
In general this requirement will not be fulfilled for a given set 
of subblocks if (h I k) > 1 but it can always be achieved by a 
suitable unitary transformation. If all (co) irreps occurring 
in L b.k(q), k = kx' are inequivalent then the multiplicity 
(hlkx ) may be explained in terms of the auxiliary operator 
group Qh,kx. If at least one of the (co)irreps occurs more 
than once the mUltiplicity problem is only reduced but not 
completely solved. 

D. Summary of the scheme 
Although it should be clear from the preceding discus

sion how to proceed in a concrete calculation of Clebsch
Gordan coefficients we list once more the essential steps for 
those who are mainly interested in possible applications of 
our method. 

( 1) Prerequisites: The multiplication law of the given 
(finite or compact) group determines the inner automor
phisms and gives hints for the existence (or nonexistence) of 
outer automorphisms. From this knowledge the group AUT 
(or a subgroup of it) may be constructed; note the restriction 
(2.5) for magnetic groups G(R). 

Next determine the simple characters of G [or R if 
G = G(R)]. They include one-dimensional irreps and 
hence the definition of the group ASS. Take care of conven
tion (2.1) for magnetic groups. 

Define the group Q ( = Qrep or Q CO) by means of gener-
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ating elements and use them to find the qk table (see papers I 
and II and the examples in Sees. III-V) and the Q-classes 
[Eq. (2.13)]. Choose representatives D k and determine for 
each of them the subgroup Q kC Q [Eq. (2.10)] and a set of 
R k of coset representatives [Eq. (2.12)]. Moreover con
struct for the generators of Q k unitary matrices Uk (q) relat
ing D k and qD k according to Eq. (2.6). 

(2) Generating relations of the first kind: Define the 
group Q for the n-fold Kronecker products of interest and 
use it to find the Q-classes [h], Choose representatives hand 
find the subgroups Qb and coset representatives 'I:' [Eqs. 
(2.37) and (2.38)]. Then determine for the components of 
q~h), qj = (q~b» i> of each of these transformations, the ma
trices UI,.h'(qj)' In doing so use the matrices Uk(q) and the 
decomposition of Q into cosets of Q k [Eqs. (2.14)-(2.16), 
(2.18)]. The tensor product U·,b(q), q = ~h), composed of 
these matrices is one of the three matrices needed to calcu
late the Clebsch-Gordan matrices C·, IE[h], from the ma
trixC h [Eq. (2.61)]. TheothertwomatricesareZb(q) and 
P(q), where q = JY(q~h» [Eqs. (2.31)]. The matrix P(q), 
Eq. (2.58), is easily found from theqk table. For Zh(q), Eq. 
(2.55), one has to calculate the matrices UI',1(q), I' = ql, 
from the matrices Uk(q) and the coset representatives q?) 
ERk [Eqs. (2.15) and (2.18)]. 

(3) Generating relations of the second kind: For each h 
construct the classes IkJh [Eq. (2.63)] and choose repre
sentatives kx for each of them. Then determine the group 
Qh.k and coset representatives R h,k for each k = kx [Eqs. 
(2.64) and (2.65)], Find for each qER h.k a transformation 
qEQh such that JY(q) = q according to (2.31). Construct 
for these transformations q the matrix Uh,h(q) as a product 
ofmatricesq.Uk(q2) (Eqs. (2.32) and (2.18)]. Finally use 
the matrices UI.k(q), constructed like the factors of Uh.b(q) 
before, to find the matrix zt (q) [Eq. (2.67)]. This enables 
one to calculate the blocks C~, IElk I, from the block ct, 
k = kx' according to (2.67). 

( 4) The multiplicity problem: First calculate from the 
defining equation 

Dh(q)ct~g) = CtaDk(g) for all gEG, (2.98) 

the general form of C ta for each pair h, k = kx . This rectan
gular matrix must contain 2 (h I k) free real parameters, if D k 

is an irrep. If D k is a coirrep the number of free real param
eters in C t has to be N for type I, 4N for type II, and 2N for 
type III, where N = (hlk). This number of real parameters 
is reduced by one ifCta is normalized toE(n k ) according to 
Eq. (2.79). Then define a basis {ctm} by fixing the free 
parameters. Next determine the groups Qb,k and choose a set 
of generators for each ofthem. For these transformations q 
find the operators T(q) [Eq. (2.80)] and the structure of 
the operator group generated by them. Finally pass to a new 
basis that transforms according to (co) irreps of Q b.k. 

Before discussing several examples treated along these 
lines we would like to emphasize once more what freedom is 
left in following the proposed rules. For instance, while the 
transformation groups Q and Q and all their subgroups are 
uniquely defined, the selection of generating elements or co
set representatives is to a large extent arbitrary. Further-

Dirl etal. 1953 



                                                                                                                                    

more all the matrices U relating (co)irreps to equivalent 
ones are only determined up to factors that lie in the com
muting algebra. Finally, a third kind of arbitrariness enters 
through the choice of the class representatives k, h, and k x . 

III. TWOFOLD KRONECKER PRODUCTS FOR THE 
DOUBLE SPACE GROUP P23 

In this example we consider twofold Kronecker prod
ucts (KP's) for the double space group P 23 (Ref. 6). Here 
we adopt the same notations and conventions as in Ref. 6 as 
long as they do not conflict with our auxiliary group ap
proach. The present example has been briefly sketched in 
Ref. 7. Here we give a much more detailed discussion which 
should enable the reader to gain more insight into our proce
dure. 

The double space group G = P 23 is, as every symmor
phic space group, a semidirect product 

G= T&.P= U T(R 10) (3.1) 
REP 

with the multiplication law 

(R If)(R 'If') = (RR 'If + Rf') = (R "If"), (3.2) 

where fET (translation group) and REP""",G IT (point 
group). For the sake of simplicity we choose the lattice con

I 

stant equal to 1 so that the basic translations fj,j = 1,2,3 are 
normalized. An arbitrary translation f is an integral linear 
combination of the basic translations ~. The point group P 
assigned toP 23 is the tetrahedral double point group consist
ing of 24 elements, 

P = {E, C2x , C2y ' C2z , C 31' C 32' C 33' C 34 , 

C 3t, C 31, C 31, C 3"! , 

E, C2X , C2y , C2z , C31 , C32 ,C 33 , C34 , 

c3t, C31, C31, C3"!}· (3.3 ) 

Space group irreps are sometimes called "standard" ir
reps if they are determined by induction (Ref. 8) out of the 
one-dimensional irreps of the translation group T. These 
standard space group irreps of G = P 23 have the form 

D~.£(R If») = !:J.q(B..,RSJe-iRq·'Dk(B.. -IRS.), (3.4) 

where in part a matrix notation has been adopted. The sym
bols D k(R '), R 'EP(q) denote matrix irreps of the "little 
cogroup" P(q), where 

P(q) = {REP IRq = q + Qh~G(q)IT, (3.5) 

G(q) is the corresponding "little group" and Q is a vector of 
the reciprocal lattice. In detail our notation has to be under
stood as follows: 

K = (q,k) tG = (q ,k), 

qE!:J.BZ(G), 

standard G-irrep label, 

kEA(q), 

representation domain of the Brillouin zone BZ( G), 

set of P(q)-irrep labels, 
(3.6) 

B...s..E£(q) , fixed set of coset representatives (CR's) for the 

decomposition of P with respect to P(q), 

A (G) = { (q ,k ) I qE!:J.BZ ( G) , kEA (q ) }, set of standard G-irrep labels. 

The meaning of the symbol !:J. q is defined as 

(3.7) 

This uniquely determines the permutational structure of 
standard space group irreps ofG = P 23 if the coset represen
tatives (CR's) are fixed. Note that 

G = U (,8. IO)G(q) and P = U B'p(q). (3.8) 
BE£.(q) BE£.(q) 

Finally we choose for the many-dimensional P(q)-irreps 
D \ kEA (q), the corresponding Miller-Love matrices (ML 
matrices, Ref. 6). 

Clearly when applying the auxiliary group approach we 
have to modify correspondingly what we have called up to 
now standard G-irreps. This comes from the definition of 
standard G-irreps within the framework of the auxiliary 
group approach. Therefore, to be consistent, we define only 
the irreps D K of Q-class representatives K along the lines 
given above. The irreps of the remaining members of a Q
class [K] are, on the other hand, determined by choosing the 
unitary matrices UK·,K(qiK.», qiK.)ER K to be unit matrices. 
This defines a specific modification of the usual standard 
space group irreps. 
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The first task in our approach is to determine the auxil
iary group Q for G = P 23. In this case it only requires to 
inspect the character tables for P 23 (Ref. 6) to obtain the 
group ASS. The automorphism groups of space groups are 
well known in the literature, 9 

AUT(P23) = AUT = Im3m, (3.9) 

ASS(P23)=ASS={Gl, G2, G3, Rl, R2, R3}. 
(3.10) 

It should be pointed out that AUT(P23) = Im3m must 
have the same lattice constant as P 23. Moreover note that 
the P 23-irrep labels K = (q,k) for the special points G (gam
ma), ~ (R point), etc. are abbreviated by Gk, kEA(G), Rk, 
kEA(R), etc. 

Note that the group AUT contains P 23 as a normal sub
group. However, as inner automorphisms do not affect P 23-
irrep labels, we carry out a coset decomposition of Im3m 
with respect to P 23. One readily finds 

AUT = (E IO)GU (C2b IChGU (lIO)GU (O'db ICl)G 

U (E IB)GU (C2b IB)GU (lIB)GU (O'db IB)G. 
(3.11 ) 

Note, in particular, that the special translation 

B=!(f l +f2 +f3 ) 
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does not belong to the translation group T of G = P 23. This 
comes from the fact that the translation group of Im3m con
tains the translation group T of P 23 as a subgroup of index 
two and B can be chosen as the nontrivial CR. The factor 
group AUT /G is an Abelian group of order 8 and shows that 
only seven nontrivial outer automorphisms (modulus G) 
exist. For the set of CR's defining (3.11) we introduce a set 
of generators that create all outer automorphisms (modulus 
G). We choose 

bl = (C2b 10), b2 = (110), b3 = (E IB) 
and abbreviate them by 

bj = (Sj IBj ), j = 1,2,3, 

(3.13) 

(3.14) 

where the entries ~ and Bj have to be identified correspond
ingly. According to our approach we assign to every bj a 
mapping f3j of G onto G, where 

f3j(R rt») = (SjIBj)(R It)(SjIBj)-I. (3.1S) 

These three mappings together with those that are associat
ed with inner automorphisms are sufficient to assign to every 
element of AUT the corresponding mapping of G onto G. 
Conveniently only the automorphisms (3.13) are needed to 
determine the Q-classes of A ( G). According to our proce
dure we have 

Q = ASS&(AUTXCON) 

= (C3 XC2 ) & (1m3m XC2 ), (3.16) 

which is a discrete group. Later we shall show that we cannot 
ignore the inner automorphisms as they arise automatically 
when applying our approach. 

For the following we limit our considerations to a subset 
of A (G). This set, denoted by S!'-LG)J. contains allP23-irrep 
labels of the special points G, R, X, MeI::JJZ(P23): 

SA(G) = {GI, G2, G3, G4, G5, G6, G7; 

R 1, R 2, R 3, R 4, R 5, R 6, R 7; 

Xl, X2, X3, X4, X5; 

MI, M2, M3, M4, M5}. (3.17) 

The choice of SA(G) is influenced by the auxiliary group 
approach because this set is invariant with respect to all 
operations of Q. In other words the set SA( G) decomposes 
into disjoint Q-classes without leading to other P 23-irrep la
bels which are not contained in SA(G). Moreover let us 
recall6 

P(G) =p(iO =P, 

P(X) = P(M) = {E, C2x ' C2y , C2z , E, C2x ' C 2y , C2z}. 
(3.18 ) 

Finally to fix the standard P 23-irreps for t!!-e ~-c~ass !epre
sentatives K we have to fix CR-sets for G, R, X, M. We 
choose 

E.(G) =E.(R) = {E}, 
( 3.19) 

and take for the P(i)-irreps Dk, keA(i) the corresponding 
ML matrices. 6 

To determine the Q-classes one has to inspect 
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Tr(aJDK)(R It») = x'(R It)xK(R It), 

Tr(b/DK)(R It») = ~(f3/-I(R It»), 

Tr(cDK) (R It») = XK(R It)*, 

(3.20) 

(3.21 ) 

(3.22) 

where aJeASS and J abbreviates the irrep labels ofthe one
dimensional irreps of P23. 

The mappings aJ : K -K' defined by (3.20) are readily 
obtained from the KP Tables of Ref. 10. We arrive at the 
following qK tables: 

aJ Gk G 1 

Gl GI 

G2 G2 

G2 G3 

G2 G3 

G3 Gl 

G4 G5 G6 G7 

G4 G5 G6 G7 

G4 G6 G7 G5 

G3 

Rl 

R2 

R3 

G3 Gl G2 G4 G7 G5 G6, 

Rl R2 R3 R4 R5 R6 R7 

R2 R3 Rl R4 R6 R7 R5 

R3 Rl R2 R4 R7 R5 R6 

Rl R2 R3 R4 RS R6 R7 

Gl 

G2 

G3 

Rl 

Rl R2 R3 R4 RS R6 R7 

R2 R3 Rl R4 R6 R7 RS 

R3 RI R2 R4 R7 R5 R6, 

Gl G2 G3 G4 G5 G6 G7 

R2 G2 

R3 G3 

aJ Xk Xl 

Gl Xl 

G2 Xl 

G3 Xl 

R 1 Ml 

R2 MI 
R3 MI 

aJ Mk Ml 

Gl MI 

G2 MI 

G3 MI 

G3 GI G4 G6 G7 

Gl G2 G4 G7 GS 

X2 X3 X4 X5 

X2 X3 X4 X5 

X2 X3 X4 X5 

X2 X3 X4 X5, 

M3 M4 M2 MS 

M3 M4 M2 M5 

M3 M4 M2 M5 

M2 M3 M4 M5 

M2 M3 M4 M5 

M2 M3 M4 M5 

M2 M3 M4 MS. 

G5 

G6 

(3.23 ) 

R 1 Xl X4 X2 X3 X5 

R2 Xl X4 X2 X3 X5 

R3 Xl X4 X2 X3 X5 

The mappings b/: K-K' defined by (3.21) require a 
careful analysis especially because P 23 is assumed to be a 
double space group, 

(C2b 10) 

(110) 
(EIB) 

bl Rk 

(C2b 10) 
(110) 
(EIB) 

Gl 

Gl 

GI 

GI 

G2 G3 G4 G5 

G3 G2 G4 G5 

G2 G3 G4 G5 

G2 G3 G4 G5 

G6 G7 

G7 G6 

G6 G7 

G6 G7 

Rl R2 R3 R4 R5 R6 R7 

Rl R3 R2 R4 R5 R7 R6 

Rl R2 R3 R4 RS R6 R7 

RI R3 R2 R4 R5 R7 R6 
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bl Xk Xl X2 X3 X4 XS (3.24 ) 

(C2b 10) Xl X3 X2 X4 xs 
(11(» Xl X2 X3 X4 XS 

(EIE) X4 X3 X2 Xl XS 

bl Mk M1 M2 M3 M4 MS 

(C2b I0) M1 M2 M4 M3 MS 

(110) M1 M2 M3 M4 MS 

(EIE) M2 M1 M4 M3 MS 

Finally the mappings c: K -+ K ' are readily obtained from 
(3.22) by comparing the complex conjugate characters with 
the character table of P 23. 

c Gk I G 1 G2 G3 G4 GS G6 G7 

G3 G2 G4 GS G7 G6' * G 1 

c Rk I R 1 R2 R3 R4 RS R6 R7 

R3 R2 R4 RS R7 R6' * R I 

c Xk I Xl X2 X3 X4 XS (3.2S) 

X2 X3 X4 XS' * Xl 

c Mk I M1 M2 M3 M4 MS 

M2 M3 M4 MS' * M1 

Inspecting the tables for the various mappings one easily 
deduces the following Q-classes [K] CSA(G): 

[G1] ={G1, G2, G3, R1, R2, R3}, 

[ G 4] = {G 4, R 4}, 

[GS] ={GS, G6, G7, RS, R6, R7}, 

[Xl] = {Xl, X4, MI, M2}, 

[X2] = {X2, X3, M3, M4}, 

[XS] = {XS, MS}. 

(3.26) 

Accordingly the set SA (G) consisting of 24 elements de
composes into six Q-classes, where G 1, G 4, G S, Xl, X 2, X S 
are chosen as representatives. The next task is to determine 
the groups Q K and to fix the corresponding sets R K of CR's. 
Taking into account (3.9), (3.10), and (3.16) one readily 
finds from (3.26), 

QGI = AUTxCON, 

QG4={G1, G2, G3}&(AUTXCON), 

QG5 = AUT X CON, 

QXI = {G 1, G2, G 3}Cx(Pm3mXCON), 

QX2={G1, G2, G3}&(lm3xCON), 

QX5 = {G 1, G2, G3}&(AUTXCON). 

(3.27) 

To derive the fourth and fifth equations of (3.27) two differ
ent coset decompositions of AUT = Im3m have to be uti
lized, namely, 

Im3m = Pm3mU (E IE)Pm3m, 

Im3m = Im3U (C2b 10)Im3. 
(3.28 ) 

These decompositions can be easily deduced from Ref. 11. 
From (3.16), (3.27), and (3.28) we infer that 
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R G I = R G 5 = ASS, 

R G4 = R X5 = {G 1, R 1}, 

R XI = {G 1, R l}X{(E 10), (E IE)}, 
R X2 ={G1, Rl}x{(EIO), (C2b I0)}, 

(3.29) 

can be chosen as CR's R K. For the sake of clearness it is 
useful to list the various sets R K in more detail. Due to the 
definition of the auxiliary group Q the CR's are ordered tri
plets. I In detail we have 

R G I = {(ao,bo,co), (G 2,bo,co)' (G 3,bo,co)' 

(R 1,bo,co)' (R 2,bo,co)' (R 3,bo,co)}, 

R G4 = {(ao,bo,co)' (R 1,bo,co)}' 

R XI = {(ao,bo,co), (R 1,bo,co)' 

(aO,b3,cO)' (R 1,b3 ,co)}' 

R X2 = {(ao,bo,co), (R 1,bo,co)' 

(ao,bl>co), (R 1,b l ,co)}' 

( 3.30) 

where the symbols ao = G 1, bo = (E 10), and Co are the tri
vial operations of the groups ASS, AUT, and CON, respec
tively. Very often, however, we omit the trivial constitutents 
of the triplets (a, b, c) in order to keep the notation as con
cise as possible. 

At this point we recall briefly how we modify the usual 
standard P 23 irreps. First we have to fix the P 23 irreps for 
theQ-classrepresentativesG 1,G4,G S,X 1,X2,XS. Then the 
remaining P 23 irreps within a Q class are obtained by using 

DK'(R rt) = (qk~)DK)(R It), (3.31) 

whereqk~)ER K. Note that our standardP23 irreps may dif
fer from commonly used standard P 23 irreps by nontrivial 
similarity transformations. 

The next task is to compute the matrices UK (q), qEQ K 
for the various Q-class representatives. For this purpose we 
have to use definition (2.6). Before summarizing our results 
it is useful to explain how to treat inner automorphisms. Let 
us start from our basic equation (2.6) where q = b is an 
arbitrary automorphism belonging to Q K, 

(bDK)(R It) = DK(j3 -I(R It») 

(3.32) 

If b = b ' is an inner automorphism then we can identify b ' 
with a specific group element (R 'It')EP 23. Hence 

DK(j3'-I(R It») =DK(R 'It')-I(R It)(R 'It'») 

and therefore we may identify 

UK(b ') = DK(R 'It '). (3.33 ) 

This shows how simple inner automorphisms can be treated. 
Although they are trivial one must not forget that they can 
occur because of (2.7) and (2.8). Moreover we only need to 
know the matrices UK (bj ) for the generating automor
phisms bj , j = 1, 2, 3 (provided that they belong to Q K) . 

Straightforward computations yield for the various Q-class 
representatives K the following similarity transformations: 
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K=GI: UK(q)=I, qEQGI. 

0 0 

K = G4: U K(G2) = 0 a* 0 

0 0 a 

a = exp(i21T/3), 

o 0 
U K (C2b I<h = 0 0 1 

o 1 0 

(3.34 ) 

(3.35 ) 

UK(lI<h = UK(E IE) = UK(c) = E(3). 

1957 

1
0 r*1 . K=G5: U K(C2b l<h = r 0 ' r=exp(l1T/4), 

UK(c) = I 0 
-1 ~I· 

0 0 

K=Xl: U K(G2) = 0 a 0 , 
0 0 a* 

a = exp(i21T/3), 

010 

U K (C2b 10) = 0 0 , 
o 0 

UK(lIO) = UK(c) = E(3). 

o 0 
K =X2: U K(G2) = 0 a 0 

o 0 a* 

a = exp(i21T/3), 

o 0 
U K (C2b IE) = 1 0 0 

o 0 

UK(lIO) = UK(c) = E(3). 

1 0 0 
K =X5: U K (G2) = 0 a 0 ® E(2), 

o 0 a* 

a = exp(i21T/3), 

o 0 
U K (C2b 10) = 1 0 0 

o 0 

1 11 ®-
.J2i 
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(3.36) 

(3.37) 

(3.38) 

(3.39) 

UK(c) =E(3) ® I ~ 1 11 o . 

These similarity transformations are unique up to arbitrary 
phase factors which is in agreement with the general theory. 
We have taken the "simplest" choices. One should bear in 
mind that whenever the matrices UK(q) are involved they 
have to satisfy the comultiplication law. I 

As already pointed out at the beginning we consider 
twofold KP's of P 23-irreps. We discuss the set ofKP's which 
is assigned to the elements ( = ordered pairs) of the product 
set 

SA(G XG) = SA(G) xSA(G) 

= {(ql,k l ),(ql,k2 ))1 
XqjE{G, R, i, it}, kjEA(qj)}. (3.40) 

Clearly this set is a subset of the set A (G X G) 
= A (G) xA (G) of all ordered pairs of P 23-irreps labels. 

The order of SA (G X G) is given by 

ISA(G xG)1 = 242 = 576. (3.41 ) 

Now the crucial question is which simplifications and reduc
tions in the calculation of the CG matrices for the set 
SA( G X G) can be achieved by means of the auxiliary group 
approach. Or, in other words, how many CG matrices or 
parts of them actually have to be computed when generating 
relations of the first and second kind are exploited. 

To answer these questions we first have to define the 
auxiliary group Q. Due to Sec. II we have 

Q = (ASS X ASS) <1< (AUT X CON X PERM). (3.42) 

Because of ASS = C3 X C2 we can write 

Q~ (C3 X C2)(2l<1< (lm3m X C2 XS2 ), (3.43 ) 

where the "diagonal" product groups AUT[ X ]AUT and 
CON [ X ] CON are simply written as AUT and CON, re
spectively. 

The next task is to subdivide the set SA (G X G) into 
disjoint Q-classes [H]. The corresponding manipulations 
are straightforward. One has to take into account Eqs. 
(3.23)-(3.25) and the group Q given by (3.42). However 
one must not forget that the groups Q and the direct product 
group Q (2) = Q X Q are different and are not in a group-sub
group relation. This implies that in general it is not sufficient 
to take only the Q-class representatives to form ordered pairs 
in order to get a complete set of Q-classes [H]. This comes 
from the fact that AUT and CON are Kronecker product 
groups and therefore cannot act individually on the constitu
ents of the KP's. 

We summarize the Q-classes in the following equation . 
Here the sets [K,K'] listed at the intersections of two Q
classes (column [K1 ], row [K2 ]) contain all KP's K ®K', 
KE[Kt1, K 'E[K2 ]. Note that a full Q-class is always of the 
form [K,K'] U [K ' ,K], the second class being omitted here. 
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[G 1] [G4] [GS] [Xl] [X2] [XS] 

\lGI,Gl] [G I,G4] [GI,GS] [GI.xI] [GI.x2] [Gl.xS] [G 1] 
[G4,G4] [G4,GS] [G 4.x 1] [G4.x2] [G4.xS] [G4] 

[GS,GS] [G S.x 1] [G S,x2] [G S.xS] [GS] 
[X l.x 1] 

[X 1.x2] [X I.xS] 
[X l.x 4] 

[X 1] 
(3.44 ) 

[X2.x2] 
[X2.xS] [X2] 

[X2.x3] 

Let us introduce 

(3.4S) 

as the notation for product sets of ordered pairs where Kj are 
the Qj-class representatives. Using this definition we con
clude from ( 3.44 ) that except for two cases the sets 
[KI ] X [K2 ] coincide with the Q-classes [KI ,K2 ]. The two 
exceptions are 

[XI]X[XI] = [XI.xl]U[XI,X4J, 

[X2] X [X2] = [X2.x2] U [X2.x3]. 
(3.46 ) 

What is the reason for this result? We may infer that if at 
least one CR set R K

j consists only of elements of ASS then 
[KI ] X [K2] U [K2] X [KI ] = [K I.K2] holds. This relation 

is also valid if elements of AUT or CON occur in R \ pro
vided that R K'nR K, = {qo}. Therefore only in the cases 
given in (3.46) do we arrive at a splitting of the sets 
[KI ] X [K2 ] U [K2 ] X [KI ] into disjoint subsets because 
there the same elements of AUT occur in both sets R K, and 
R K ,. 

We know from the preceding discussion that the sets R K 

are sets of ordered triplets which also can be written as prod
uct sets [see (3.29) ]. But in the following we keep the nota
tion as concise as possible and write the sets R" (if possible) 
as product sets omitting the trivial group elements of the 
various subgroups of Q. For convenience we denote the tri
vial subgroup of ASS by CI and recall that C3 = {G 1, G2, 
G 3} and C2 = {G 1, R 1} [cf. (3.9)]. In the following we 
summarize the groups Q" together with their CR sets R": 

1958 

QGI.GI = Im3mXC2XS2, 

RGI,GI = ASSXASS, 

QGI,G4 = (CIXC
3
)Q<(/m3mXC2 ), 

RGI,G4 = (ASSXC2 ) XS2, 

QGI,G5 = Im3m X C
2

, 

RGI ,G5 = (ASSXASS) XS2, 

QGI,XI = (CI XC3 )Q«Pm3mXC2 ), 

RGI,XI = (ASSxC2 ) X{(E 1<l),(E IE)}XS2, 

(3.47) 

(3.48 ) 

(3.49) 

(3.S0) 

QGI,X2 = (CIXC3 )Q<(/m3xC2 ), 
(3.S1 ) 

R GI.X2 = (ASSXC2 ) X{(E I<l), (C2b 10)}XS2, 

QGI.X5 = (CI XC3 )Q<(/m3mXC2 ), 

(3.S2) 
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[XS.xS] [XS] 

QG4,G4 = (C
3
XC

3
)(x(/m3mXC2XS2), 

RG4,G4 = C2 XC2' 

QG4,G5 = (C3 XCI)(x(/m3mXC
2
), 

RG4,G5 = (C2 XASS) XS2, 

QG4,x1 = (C3 XC3 )Q«Pm3mXC2), 

RG4,XI = (C2 XC2 ) X{(E 10),(E IE)}XS2 , 

QG4,X2 = (C3 xC3 )Q<(/m3XC2 ), 

RG4,X2 = (C2 XC2 ) X{(E 10),(C2b 10)}xS2, 

QG4,X5 = (C
3
XC3 )(x(lm3mXC2), 

RG4,X5 = (C2 XC2 ) XS2, 

QG5,G5 = Im3m X C2XSZ' 

RG5,G5 = ASS X ASS, 

QG5,XI = (CI XC3 )Q«Pm3mXCz), 

(3.S3) 

(3.S4) 

(3.SS) 

(3.S6) 

(3.S7) 

(3.S8 ) 

(3.S9) 
RG5,XI = (ASSXCz) X{(E 10),(E IE)}XSz, 

QG5,X2 = (C
I 
XC

3
)(x(/m3 X Cz), 

G5X2 {~~ (3.60) 
R ' = (ASSxCz)X (EIO),(CZbIO)}xSz, 

QG5,X5 = (CI XC3 )Q<(/m3mXCz), 

RG5.X5 = (ASSx Cz) XSz. 
(3.61) 

At this point we arrive at the two exceptions which require a 
more careful analysis. To determine QX I,X I and RX I.X lone 
can proceed in the same way as before, 

QXI,XI = (C3 XC3 )(X(Pm3mXC
2
xS

2
), 

RXI,xl = (C2 XC2 ) X{(E 10),(E IE)}. 
(3.62) 

It is less trivial to find QX 1,X4 and RX 1,X4 because X 4 is a 
member of the Q-class [X 1] but does not coincide with the 
Q-class representative X 1. Therefore we have to establish a 
relationship between QXI and QX4. We expect them to be 
conjugate subgroups of Q. The proof can be given quite gen
erally. Assume that k and 1 belong to the Q-class [kJ, then 
there must exist a q = q~k)EQ such that k = q?) I. Therefore 
if qEQ k then q?)q(q~k» -IEQ lor, in other words, 

QI = q?)Qk(q~k»-I. (3.63) 

This means for our special case 

QX4= (EIE)Qxl(EIE)-I=Qxl. (3.64) 

To prove the identity QX4 = QXI one needs the relation 
(E IE)Pm3m(E IE) -I = Pm3mandthefactthatC3 isanor
mal subgroup of ASS. However, we must not infer from 
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(3.64) that ~I.XI = QXI,x4 because QXI.XI contains S2 
whose nontrivial element P12 cannot belong to QXI.X4. 
Hence the group ~ 1.X4 has a more complicated structure. 
In fact the combined group element 

q' = (E IE),pn) (3.65 ) 

belongs to QXI,X4 whereas neither (E IE) nor PI2 belongs to 
this group. Therefore we arrive at 

QXI.X4 = (C3XC3)<2«Pm3m XC2 »)<2<{qo,q'}, 
(3.66) 

RXI .X4 = RXI.xI, 

where the choice RX 1.X4 = RX I.X I has been made for con
venience. However, note that 

(E IE)D xI ,x4 = PI2DxI.X4 = D X4·XI (3.67) 

holds, i.e., both group elements are equally well suited to 
serve as CR's. To determine QXI.X2 and RXI.X2 we need 
some further subgroup relations for the space groups Pm3m 
and 1m3. We deduce from Ref. 11 that 

Pm3m = Pm3U (C2b 10)Pm3, 

1m3 = Pm3U (E IE)Pm3, 
(3.68 ) 

holds which leads us to Pm3mnlm3 = Pm3. Therefore we 
have 

QXl,X2 = (C3XC3)<2«Pm3XC2), 

RXl,X2 = (CZ XC2) X{(E 10),(E IE), (3.69) 

(C2b 10),(C2b IE)}xS2• 

The determination of QXI,XS and RX1.XS is simple and we 
obtain 

QXI,XS = (C3XC3)<2«Pm3XC2), 

RXl,XS = (C2 XC2 ) X{(E 10),(E IE)}XS2• 

To find QX2.X2 and RX2.X2 is again straightforward, 

QX2.X2 = (C3 xC3 )<2<(/m3XC2 XS2 ), 

RX2,X2 = (C2XCZ ) X{(E 10),(C2b 10)}. 

(3.70) 

(3.71) 

However, the decomposition of Q with respect to QX2.X3 
requires a more careful analysis analogous to (3.66). We 
need 

QX3 = (C2b I0)QX2(C2b I0)-1 = QX2, (3.72) 

where the coincidence of Q x 3 with Q X2 comes from the fact 
that 1m3 and C3 are normal subgroups of Im3m and ASS, 
respectively. Again we must not infer from (3.72) that 
~2,X2 = ~2,X3 is valid. One readily proves that the special 
combined group element 

qA = « C2b 10),pn) 

belongs to QX2,X3. Thus we arrive at 

QX2.X3 = (C3 XC3 )CX(/m3XC
2

»)Cx{qo,q A}, 

RX2,X3 = RX2.X2 . 

(3.73 ) 

(3.74) 

Again note that the group elements (C2b 1(5) andpI2 have the 
same effect on D X2.X3, namely, to permute the constituents 
of the KP. The remaining two cases are simple and we obtain 
the following groups and CR's: 

QX2,XS = (C3XC3)<2<(/m3xC2), 
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X2XS {~~ } R ' = (C2XC2 ) X (E 10),(C2b 10) XS2, (3.75 ) 

QXs,xs = (C3XC3)Cx(/m3mXC2 XS2 ), 

RXs,xS = C2 XC2• (3.76) 

Before we start with the first step in our auxiliary group 
approach let us check the relation 

ISA(G X G) I = L I [H] I = L IRH I· (3.77) 

" " 
FromEq. (3.44) weknowthatSA(P23XP23) decomposes 
into 23 disjoint Q classes. Summing the orders of the various 
CR sets R" one readily proves (3.77). 

The first step in our auxiliary group approach is to uti
lize generating relations of the first kind. This requires the 
determination of the KP decompositions for the Q-class 
representatives H. To begin we merely need to know the G
irreps occurring in the KP decompositions. For the sake of 
simplicity the KP decompositions are written symbolically. 
The formulas we state emerge from Ref. 10, 

G 1 ® G 1 = G 1, G 1 ® G 4 = G 4, 

G1®G5=G5, G1®X1=X1, 

G 1 ®X2 =X2, G 1 ®X5 =X5, 

G 4 ® G 4 = G 1 ~ G 2 ~ G 3 ~ 2 G 4, 

G4®G5 = G5~G6~G7, 

G4®X1 =X2~X3~X4, 

G4®X2 =X1 ~X3~X4, G4®X5 = 3X5, 

G5®G5 = G 1 ~G4, G5®X1 =X5, 

(3.78) 

(3.79) 

(3.80) 

G5®X2 =X5, G5®X5 =X1 ~X2~X3~X4, 

X1®X1 =Gl~G2~G3~2Ml, 

Xl ®X4= G4~M3~M4, 

X 1 ® X 2 = G 4 ~ M 2 ~ M 4, 

X 1 ® X 5 = G 5 ~ G 6 ~ G 7 ~ 2 M 5, 

X 2 ® X 2 = G 1 ~ G 2 ~ G 3 ~ 2 M 3, 

X2®X3 = G4~Ml ~M2, 
X2®X5 = G5~G6~G7~2M5, 

X5®X5 = G 1 ~G2~G3~3 G4 

~2(Ml~M2~M3~M4). 

(3.81 ) 

(3.82) 

(3.83 ) 

To utilize generating relations of the first kind it is not 
necessary to know explicitly the generating CG matrices 
C" . We merely need the CR's qi")ER", their homomorphic 
images qi"), and the corresponding similarity matrices 
UL'"(qi"» and UL',L(qi"», whereL' = qiH>L. The latter 
matrices compose the transformations Z"(qi"», 

Z"(qi"» = ~ E(HIL) ® UL'.L(qi"». (3.84) 
L 

Specifying formula (2.61) to the present examples, the gen
erating relations of the first kind read 

(3.85) 

where P(qi"» is, in general, a nontrivial permutation ma
trix which ensures that the irreps D L, LEA (G), occur in the 
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decomposition in the lexicographical sequence given by 
(3.17). 

Clearly for a given KP D", where H presents the Q
class representative of [H], the following must hold: 

number of generating relations of the first kind 

for D"= I[H]I = IR"I. (3.86) 

To get more insight into the structure of generating rela
tions of the first kind we discuss three examples in full detail. 
The first example concerns the KP D G4,G4. Because of 

(G I,G I)D G4,G4 =D G4,G4, (G I,R 1)D G4,G4 =DG4,R4, 

(R I,G1)D G4,G4=D R4,G4, (R I,R I)D G4,G4=D R4,R4, 
(3,87) 

which are identities due to the standardization procedure of 
G irreps, we choose the following CR's: 

q~~~G~4) = (G I,G 1), q~~~~4) = (G I,R 1), 

q1~~~4) = (R I,G 1), q1~~~4) = (R I,R 1). 
(3.88) 

Their homomorphic images are 

q(G4,G4) _ q(G4,G4) _ G 1 q(G4,G4) - q(G4,G4) - R 1 G4,G4 - R4,R4 - , G4,R4 - R4,G4 - . 
(3.89) 

Because of the standardization procedure of the G irreps we 
have 

U L ;G4,G4(qiG4,G4» = E(3) ®E(3), 

ZG4,G4(qiG4,G4» =E(6) for all LE[G4,G4]. 
(3.90) 

The second relation holds by virtue of U L',L(qiG4,G4» 
= E(nL ) forallLE[G4,G 4] and all LEA (G) which are con

tained in the KP decomposition of D G4,G4. Hence in this 
example we arrive at generating relations of the first kind of 
the form 

C L = C G4,G4 for all LE[G4,G4]. (3.91) 

Note, in particular, that the simplicity of (3.91) is achieved 
because of the standardization procedure for the G irreps. 
This example does not represent the most general situation 
where nontrivial similarity transformations may occur. 

To investigate if nontrivial similarity transformations 
may also appear in generating relations of the first kind we 
consider as a second example the KP D x I,X I. Here we have 
eight generating relations of the first kind because of (3.86) 
and (3.62). In detail we have 

(G I,G 1,(E 10»)DXI,XI = DXI,XI, 

(G I,R 1,(E 10»)D X1,X I = DX1,M\ 

(R I,G 1,(E 10»)DXI,XI = DMI,X\ 

(R 1,R 1,(E 10»)DXI,XI = DMI,M\ 

(G I,G 1,(E IB»)DX1,X I = DX4,X4, (3,92) 

(G I,R 1,(E IB»)Dxl,xl = D X4,M2, 

(R I,G 1,(E IB»)DXI,XI = DM2,X4, 

(R I,R 1,(E IB»)D X1,X I = DM2,M2, 

which are again identities due to the standardization proce
dure for G irreps. Therefore we choose the following CR's: 
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n\!I,XI) = (G 1 G 1 (E 10») "U:I,XI " , 

cfi~,lj/) = (G I,R 1,(E 10»), 

q~I~;/) = (R I,G 1,(E 10»), 

q~I~~:) = (R 1,R 1,(E 10»), 

n\!I,XI) = (G 1 G 1 (E IB») 
~4.X4 " , 

n\!I,XI) - (G 1 R 1 (E IB») 
'lX4.M2 - " , 

q~2~;41) = (R I,G 1,(E IB»), 

q(XI,XI) = (R 1 R 1 (E IB») M2,M2 " . 

Their homomorphic images are the following: 

q(XI,XI) - q(XI,XI) - (G 1 (E 10») XI,XI - MI,MI -, , 

q(XI,Xl) - q(XI,XI) - (R 1 (E 10») XI,MI - MI,XI -, , 

q(XI,XI) _ q(XI,x1) - (G 1 (E IB») X4,x4 - M2,M2 -, , 

q(XI,XI) - q(XI,XI) - (R 1 (E IB») X4,M2 - M2,X4 -, . 

(3.93) 

(3.94) 

Now let us discuss the structure of the matrices 
U L;X I,X I (qiX I,X I) since we want to demonstrate that they 
are in fact unit matrices. For instance let qiX I,X I) = cfi\l~i). 
We have to write this transformation as an element of Q (2), 

cfi~,lj21) = «(G 1,(E IB»);(R 1,(E IB»))EQ(2). (3.95) 

From this we conclude that the constituents (G 1, (E IB») and 
(R 1,(E IB»)areelementsofR XI and thus generate standard
ized P 23 irreps. This holds for every qiX I,X 1 )ERX I,X I. There
fore 

(3.96) 

Next we have to find out the structure of the matrices 
UL',L(qiXI,XI) which are the constituents of 
ZXI,XI(qP:I,XI». For that purpose we have to investigate 

qiXI,XI)DXI,XI_qiXI,XI)(DGI $D G2 $D G3 $ 2 D MI ). 

(3.97) 

Let q(XI,XI) - n\!I,XI) - (G 1 R 1 (E 10») then q(XI,x1) L _ - "U: I,MI - , , XI,Ml 
= (R 1,(E 10»). Therefore on the rhs of (3.97) we have 

(Rl)D GI =D RI , (Rl)D G2 =D R2, 

(R I)D G3 =DR3, (3.98) 

(R I)D MI = (R 1)2Dxl =DXI, 

where we have employed (2.11) and (2.15). Consequently, 

URI,GI(q) = U R2,G2(q) = U R3,G3(q) =E(1) 
, (3.99) 

UMI,XI(q) = E(3), 

where q = q5c\ljll). This leads to the generating relation of 
the first kind CXI,MI = C XI ,X1. Now let qiX I,X I) = cfi~}.~I) 

=(Gl,G2,(EIB») then qi-~,}.~I)=(Gl,(EIB)). Accord
ingly the rhs of (3.97) undergoes the following transforma
tions: 

(G 1,(E IB»)D GI =D G
\ 

(G 1,(E IB»)D G2 =D G2, 

(Gl,(EIB»)D G3 =D G3, (3.100) 

(G 1,(E IB»)D MI = (G 1,(E IB»)(R 1,(E 10»)D XI 

= (R 1,(E IB»)Dxl = DM2. 

Because D G I is one dimensional we can choose 
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UGI,GI(q) = U G2,G2(q) = U G3,G3(q) = E(1), 
(3.101) 

U M2,MI(q) =E(3), 

where q = qJ{4,~x..I), One can verify quite generally that all 
generating relations of the first kind take the form 

CL=CXI,XI for all LE[Xl,xl]. (3.102) 

Again we arrive at generating relations of the first kind 
which possess the simplest form. 

To demonstrate that nontrivial matrices may also occur 
in generating relations of the first kind we discuss as the third 
example the KP D XI ,X4. Here because of (3.86) and (3.66), 
we also have eight generating relations of the first kind. 
However, in contrast to D x I,X I, the constituent D x 4 of the 
KP D x I,X 4 is not a Q-class representative of [X 1 ]. In detail 
we have the equivalence relations 

(G I,G 1, (E 10»)D X1,X4 = D X1,X4, 

(G I,R 1,(E 10»)D XI ,X4=D xI ,M2, 

(R 1,G 1,(E 10»)DXI,X4=D MI .x4, 

(R 1,R 1,(E 10»)DXI,X4=D MI,M2, 

(G I,G 1,(E IB»)D XI ,X4=DX4,XI, 

(G I,R 1,(E IB»)DXI,X4=D X4,M\ 

(R 1,G 1,(E IB»)DXI,X4=D M2,X\ 

(R 1,R 1,(E IB»)DXI,X4=DM2,MI, 

(3.103) 

which are in general not identities. Nevertheless we can 
choose the transformations occurring in (3.103) as CR's, 

cfi\~x..4) = (G 1,G 1,(E 10»), 

cfi\lff24) = (G I,R 1,(E 10»), 

c&l~:44) = (R I,G 1,(E 10»), 

q (XI,X4) = (R 1 R 1 (E 10») MI,M2 " , 

cfix..,~~4) = (G I,G 1,(E IB»), 
(3.104) 

cfix..,lfft) = (G I,R 1,(E IB»), 

c&2~:t) = (R I,G 1,(E IB»), 

q(XI,X4) - (R 1 R 1 (E IB~») M2,MI - " . 

The homomorphic images of these transformations q are the 
following elements qEQ: 

q(XI,X4) - q(XI,X4) - (G 1 (E 10») XI,X4 - MI,M2 -, , 

q(XI,X4) - q(XI,X4) - (R 1 (E 10») XI,M2 - MI,M4 -, , 

q(XI,X4) - q(XI,x4) - (G 1 (E IB») X4,XI - M2,MI -, , 
(3.105) 

q(XI,X4) - q(XI,X4) - (R 1 (E IB») X4,MI - M2,XI -, . 

Again we have to find out the structure of the matrices 
U L;XI,X4(q(XI,X4» Let us take the CR n\~1,x4) 

L ~. "OX4,XI 
= (G I,G 1,(E IB»). This group element reads in more detail 

Because of (G 1,(E IB»)DxI = DX", which is in an irrep in 
standard form, we take 

U X4,XI(G 1,(E IB») = E(3). (3.107) 

However, we see 
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(3.108) 

that a nontrivial element of Q x I appears, namely 
(G 1,(E 12B),co)EQxl. Since this is an inner automorphism 
we can use (3.33) and arrive at 

U XI ,X4(G 1,(E IB») = DXI(E 12B), (3.109) 

which yields 

(3.110) 

Accordingly we may conclude that in generating relations of 
the first kind some nontrivial matrices UL'"(qi"» mayoc
cur. To see whether the matrices UL'.L(qi"» are also non
trivial we have to investigate the mapping 

q?I,X4) D XI,X4 _qiX 1,X4) (D G4 tBD M3 tBD M4). 

(3.111) 

Let qiXl,X4) = q1x..,~~4) = (G 1,(E IB»). This group element 
acts on the rhs constituents as follows: 

(G 1,(E IB»)DG4=D G4, 

(G 1,(E IB»)D M3 = (G 1,(E IB»)(R 1,(E 10»)D X2 

= (R 1,(E IB»)D X2 

= (R 1,(C2b 10»)(G 1, (C2b IB»)D X2 

=D M4, (3.112) 

(G 1,(E IB»)DM4 = (G 1,(E IB»)(R 1,(C2b 10»)Dx2 

= (R 1,(C2b IB»)DX2 

= (R 1,(E IO»)(G 1,(C2b IB»)Dx2=D M3. 

To prove the preceding relations one has to utilize the 
fact that ~ (G 1,(E IB»)EQG4, (G 1, (C2b IB»)EQX2, and 
(G 1,(C2b IB»)EQx2. Employing the general relation (2.18) 
we arrive at the following matrices: 

U G4,G4(G 1,(E IB») = E(3), 

U M4,M3(Gl,(EIB») = U X2 (C2b IB), (3.113) 

U M3,M4(G 1,(E IB») = U X2 (C2b IB). 
X2 - ~ ~ 

Note that U (C2b IB) = U X2 (C2b IB) since DX2 is a non-
faithful P 23 irrep. Inserting these results into the general 
formula (2.67) we obtain 

ZX4,XI;XI,x4(G 1,(E IB») 

= E(3) tB U X2 (C2b IB) tB U X2 (C2b IB). (3.114) 

Ifwe ignore the lexicographical ordering of the constituents 
in the KP decomposition of D XI ,x4 the corresponding gen
erating relations of the first kind take the form 

C X4,x1 = E(3) ®DX2(E 12B)C XI ,X4 

XZ X4,xI;XI,X4(G 1,(E IB)jf. (3.115) 

To establish this sort of generating relation one does not 
need to know explicitly the generating matrices Cu. Apart 
from this we realize that the generating relations of the first 
kind lead to a drastic reduction, namely from the original 
576 KP's to the 23 KP's given in Eq. (3.44). Both aspects 
demonstrate the usefulness of generating relations of the first 
kind. 
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The second step in our auxiliary group approach is to 
look for generating relations of the second kind. Ifsuch rela
tions exist we clearly gain a further reduction in the actual 
computation of the CG matrices because of (67). Whether 
generating relations of the second kind exist or not follows 
immediately from the coset decomposition of Q H with re
spect to Q H,K. (The definitions of Q Hand Q H,K are given in 
the general part [see (62), (64), and (65)]). Whenever 
Q H,K is a proper subgroup of Q H then nontrivial generating 
relations of the second kind must exist, They read 

Cr = UH,H(qiH,K» (Q iH,K)C~)Z~(qiH,K»t, 

(3.116) 

where CG blocks are denoted by C r and where 

Z~(qiH,K» = E(HIK) ® UL,K(qiH,K». (3.117) 

For the sake of brevity we do not give all generating relations 
of the second kind occurring for the 23 KP's of Eq. (3.44). 
Again we concentrate on the preceding three examples for 
which we discussed the generating relations of the first kind 
at full length. 

We start with the KP D G4,G4. From (3.53) we deduce 
the homomorphic image ofQG4,G4, 

2(QG4,G4) = C/i<(lm3mXC2) = QG4,G4. (3.118) 

The kernel of the homomorphism restricted to the subgroup 
QG4,G4 is 

ker 2nQG4,G4 = {(G I,G 1 ),(G2,G2),(G 3,G 3)}<2<S2' 
(3.119) 

If one takes into account (3.27), (3.79), and (3,118), one 
obtains 

IGlIG4,G4 = {Gl,G2,G3}, 

R G4,G4;GI = {G I,G2,G3} = {qiG4,G4;GI)}, 

IG4/G4,G4 = {G4}, 

R G4,G4;G4 = {G l}. 

(3.120) 

(3.121) 

At this point we do not have to know the CG blocks C gi,G4 
and Cg!,G4 explicitly. Their actual computation is done in 
the third and last step of the auxiliary group approach. The 
next task is to fix by some convention inverse images of the 
CR's qiH,K)ER H.K. We choose 

(G I,G 1) = qlEdY'-I(G 1), 

(G2,G 1) = q2EdY'-I(G2), 

(G 3,G 1) = q3EdY'-I(G 3). 

(3.122) 

(Note that the inverse image of the element qiH,K) is a set of 
the order of ker 2.) Employing (3.35) the matrices 
U G4.G4;G4,G4(CI; ),j = 1,2,3 are found to be 

U G4,G4;G4,G4(ql) =E(3) ®E(3), 

U G4,G4;G4.G4(q2) = U G4(G2) ®E(3), 

U G4,G4;G4,G4(q3) = U G4 ( G 2)2 ®E(3). 

(3.123) 

Due to our standardization procedure for P 23 irreps we have 

U GI,GI(G1) = U G2,GI(G2) = U G3,GI(G3) =E(1), 

(3.124) 

which implies 
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ZG4.G\Gj) =E(1), j= 1,2,3. (3.125) 

Finally inserting into the generating relations (3.116) we 
obtain 

Cgi,G4 = U G\G2) ®E(3)Cgi,G4, 

Cgj,G4= U G4 (G2)2®E(3)Cgi,G4. 
(3.126) 

Again one realizes the merits of our approach. One merely 
has to compute the CG block cgi·G4 whereas the other two 
CG blocks are determined by (3.126). 

To get a better insight into generating relations of the 
second kind we also discuss in detail the other two examples 
beginning with the KP DXI,xl. From (3.62) one readily 
derives the homomorphic image of QX I,X I and its kernel, 

2(Qxl,xl) = C3<2«Pm3mXC2) = QXI,XI, 

ker 2n QXI,X I = {(G I,G 1),(G2,G2),(G 3,G 3)}CxS2. 
(3.127) 

From (3.81) and (3.27) we deduce 

IGlIxl,xl ={Gl,G2,G3}, 

R XI,XI;GI = {G I,G2,G3}, 

IMlIxl,xl = {Ml}, 

R XI,XI;MI = {G l}. 

(3.128) 

(3.129) 

Note that we used the relation (R 1) Q x I (R 1) -I = Q M I 
= QXI to derive (3.129). Again we only need to determine 
the CG blocks C~:,XI and C!/jXI to generate the remaining 
ones. Analogous to the previous case we fix by conventions 
the inverse images of the CR's qiXI,XI;K)ER XI.XI;K. We take 
the same choice as in (3.122) which allows us to determine 
the matrices UXI,XI;XI,XI(CI;),j= 1,2,3. Using (3.37) we 
arrive at 

UXI,XI;XI,XI(ql) = E(3) ®E(3), 

U XI ,XI;XI,XI(q2) = U XI (G2) ®E(3), 

U X I,XI;XI,XI(Q3) = U XI (G2)2 ®E(3). 

Because of (3.124) we also obtain 

ZXI,XI(Gj) =E(1), j= 1,2,3, 

(3.130) 

(3.131) 

which leads to the following generating relations of the sec
ond kind: 

c~i,xl = U XI (G2) ®E(3) cgXI , 

C~~,XI = U XI (G2)2®E(3) C~:,xl. 
(3.132) 

As in the last example we investigate the KP D x 1,X4. 

From (3.66) we obtain as homomorphic image 

2(QXI,X4) = C3<2«Tm3mXC2) = QXI,X4. (3.133) 

Note, in particular, that in contrast to the previous case the 
group QXI,x4 contains QXI,XI as the proper subgroup. Ac
cordingly the kernel of the homomorphism must be smaller, 

ker 2nQXI,x4 = {(G 1,G 1),(G2,G2),(G 3,G3)}. 
(3.134) 

Consulting the KP decomposition of D X1 ,X4 and (3,27) we 
find 

IG4Ixl ,X4 = {G4}, 

R XI,X4;G4 = {G l}, 

Dirl eta/. 

(3.135) 

1962 



                                                                                                                                    

IM3Ixl ,X4 = {M3,M4}, 

R XI,X4;M3 = {(E 1<»,(C2b I<»}. 
(3.136) 

In order to verify (3.136) one has to take into account the 
relation QM3 = (R I)Qx2(R 1)-1 = QX2. We choose as 
inverse images 

(G I,G 1,(E ID») = qIEK-I((E ID»), 
(G I,G 1,(C2b ID») = q2EK-I((C2b ID»), 

(3.137) 

which allow us to construct the matrices 
UXI.x4;XI.X4(qiXI,X4;M3»,L = M3,M 4. Moreover we need 

(C2b ID)D X4 = (C2b ID) (E IE)D xl = (C2b IE)D XI 

= (E IE)(E IE)-I(C2b IE)D XI 

= (E IE)(C2b ID)D XI , (3.138) 

where (C2b ID)EQxl. Employing (3.37) we obtain 

U XI ,X4;XI,X4(ql) = E(3) ®E(3), 

U XI ,X4;XI,X4(q2) = U XI (C2b ID) ® U XI (C2b ID). (3.139) 

Finally we have to determine U M 4,M 3 (q;;4I,X4;M 3» to define 
ZXl,X4(q;;l,X4;M3». For this purpose we have to compute 

(G 1,(C2b ID»)DM3 = (G 1,(C2b ID»)(R 1,(E ID»)D X2 

= (R 1,(C2b ID»)D X2 =DM4. 
(3.140) 

Because q'EQ X2 turns out to be the trivial element we have to 
take 

(3.141) 

But this does not represent the most general situation since 
the matrices U L ',L (qiH,K» can be different from the unit 
matrices. In the last example generating relations of the sec
ond kind therefore take the following form: 

C1-~X4 = U XI (C2b ) ® U XI (C2b )C1-I{4. (3.142) 

The third and last step in our procedure is to reduce (re
solve) the multiplicity problem by means of auxiliary opera
tor groups. 

To carry out this step the first task is to determine the 
inverse images of the groups Q ",K, 

Q",K = j¥'-I(Q",K). (3.143) 

LetKx be the representative of the Q" class IKxl". Clearly 
if (HIK) = 1 then it is superfluous to determine the groups 
Q",K since the corresponding CG blocks C ~x are unique up 
to arbitrary phase factors. Therefore we determine the in
verse images Q",K only if (HIKx) > 1. We discuss this task 
again only for our three examples. 

For the first example which concerns the KP D G4.G4 we 
conclude from its KP decomposition that only Q G4.G4;G4 
must be determined. Inspecting (3.118), (3.53), and 
(3.119), one derives 

(3.144) 

For the second example we infer from its KP decomposition 
that only j¥'-I (Q x I.X I;M I) must be determined because 
(Xl,xlIG1) = 1. From (3.127) and (3.62) one deduces 
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j¥'-I(QXI,XI;MI) = QXl,XI. (3.145) 

For the third example there is no need to determine the in
verse images j¥'_I(QXI,X4;Kx

), Kx = G4, M3 because 
(Xl,x4IG4) = (Xl,x4IM3) = 1. 

Due to their definition the CG blocks C ~,m have to sat-
isfy ~ ~ 

D"(R It)C~,m = C~,mDK(R It). (3.146) 

To obtain the CG matrix C G4,G4 it suffices to compute the 
CGblocksC~i,G4and C~!:~4, m = 1,2. The remaining CG 
blocks are defined by (3.126). Simple manipulations yield 

(3.147) 

0 0 0 

0 0 am 

0 bm 0 

0 0 bm m = 1,2, 
C G4,G4 _ G4,m - 0 0 0 , a 1 = b1 = 1/,fi, (3.148) 

am 0 0 a2 = - b2 = 1/,fi, 
0 am 0 

bm 0 0 

0 0 0 

where we have fixed the CG blocks C~!:~4 by conventions. 
What remains to be settled is the question of whether the 
multiplicity problem is resolved by the auxiliary group ap
proach or not. To be able to do this we adapt the general 
formulas (2.80) and (2.94) to our example, 

H=G4,G4; K=G4; qEQ",K, 

(3.149) 

= L C~.m·Lm"m (q). 
m' 

Straightforward matrix multiplications yield for the gener
ating elements of QG 4,G 4;G 4 the following matrices L (q): 

L (( G 2,G 1») = ~ I - 1 - i/31 ' 
2 - i/3 - 1 

L((Gl,G2»)=~ 1-1 
2 i/3 

i/31 ' 
-1 

~ 11 0 I L((C2b IO»)= 0 -1 =L(P12), 

L ((lID») = L ((E IE») = L(e) = E(2). 

(3.150) 

To arrive at these matrices we have used (3.35). Note in 
particular that (3.150) defines an irreducible corepresenta
tion of the operator group ijG4,G4;G4 = D3 X e. Accordingly 
the multiplicity problem is resolved by the auxiliary group 
approach. One may conclude from the specific form of 
L (p 12) that the CG blocks C ~ !:~ 4 are r symmetrized with 
respect to the permutation group S2' This was the main rea
son to choose the constants am , bm as we did in (3.148). The 
matrix L (p 12) shows that the permutation group S2 with its 
irreps would have been sufficient to resolve the multiplicity 
problem. Piecing all things together we arrive at the follow
ing CG matrix C G4,G4: 
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1/../3 1/../3 1/../3 0 0 0 0 0 0 

0 0 0 0 0 1/{2 0 0 1/{2 
0 0 0 0 1/{2 0 0 -1/{2 0 

0 0 0 0 0 1/{2 0 0 -1/{2 
C G4,G4 = 1/../3 a */../3 al../3 0 0 0 0 0 0 (3.151) 

0 0 0 1/{2 0 0 1/{2 0 0 

0 0 0 0 1/{2 0 0 1/{2 0 

0 0 0 1/{2 0 0 -1/{2 0 0 

1/../3 al../3 a */../3 0 0 0 0 0 0 
.rj --------------------------------

The generating relations of the first kind are given by (3,91) 
and read explicitly 

CG4,G4 = CG4,R4 = CR4,G4 = C R4,R4. (3.152) 

The second example concerns the KP D x I,X I. To arrive 
at the CG matrix C x I,X I it suffices to determine the CG 
blocks C ~ l.x I and C f/i;'l, m = 1, 2. By means of computer 
generation we obtained 

{C~l,XI}R"R2 = (l/../3)DR"R2' E.je!!..(X), (3.153) 

0 0 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 1 0 0 

C XI,x1 -
MI,I - 0 0 0 C XI,XI_ 

, MI,2- 0 0 0 , (3.154) 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0 

0 0 0 0 0 0 
where in (3.154) we have chosen a special solution of the 
multiplicity problem (Refs. 12 and 13). The remaining CG 
blocks are defined by (3,132). The next task is to compute 
(3.149) for qEQXI.XI;MI = OXI,XI, the transformation 
properties of the CG blocks C ~li;'l. To derive them we need 
(3.37) and the matrices UMI(q), qEK(OXI,XI;MI). For 
that purpose we remember that (R 1)D xI = DMI holds. 
Therefore 

q(R l)D xI = (R 1)(R 1)q(R 1)D X\ qEQXI,XI;MI, 

(3.155) 

where (R 1 )q(R 1 )EQ x I,X I;M I must be valid. From this we 
conclude 

UMI(q) = qUXI((R 1)q(R 1)), qEQXI,xI;MI. 

(3.156)1 

1/../3 1/../3 1/../3 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 
CXI,XI= 1/../3 al../3 a*/../3 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

1/../3 a *1../3 al../3 0 0 0 0 0 

1964 J. Math. Phys., Vol. 28, No.9, September 1987 

0 

0 

1 
0 

0 

0 

0 

0 

0 

In detail we have for the generating elements of Q x I,X I;M I 

(R 1 )q(R 1) = q. Consequently we arrive at 

o 0 
U MI (G2) = U XI (G2) = 0 a 0 , 

o 0 a* 

a = exp(i21T13), 

o 0 
U MI (C2b IO) = U XI (C2b IO) = 1 0 0 , (3.157) 

o 0 

Employing these matrices together with (3.37) the corre
sponding transformation matrices L(q) turn out to be 

L ((G2,G 1») = I~ 

l
a 2 

L ((G 1,G2») = 0 

(3.158) 

L((lIO»)=L(c) =E(2). 

We conclude from the matrix L (p 12) that the CG blocks 
C ~li;'1 are not symmetrized with respect to the permutation 
group S2' On the other hand the irreps of S2 would again be 
sufficient to resolve the multiplicity problem. Apart from 
this note that (3.158) defines an irreducible corepresenta
tion of the operator group ijXI,XI;MI = D3Xe. We there
fore finally arrive at the following CG matrix CXI,XI: 

(3.159) 
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To complete this example we use the generating relations 
(3.102) to obtain all CG matrices which belong to the Q
class [X 1,x 1]: 

CXI,XI = CXI,MI = CMI,XI = CMI,MI 

= CX4,x4 = C X4,M2 

= CM2,x4 = C M2,M2. (3.160) 

Finally, let us summarize the simplifications that arise 
from the auxiliary group approach when the CG matrices of 
all KP's contained in the set SA(G XG), Eq. (3.40), are 
calculated. As already pointed out the generating relations 
of the first kind reduce the 576 KP's to 23 KP'S which refer 
to the Q-classes [H]. To display the role of generating rela
tions of the second kind and the reduction (resolution) of 
the multiplicity problem we repeat the decompositions 
(3.78)-(3.83) in a condensed form where the trivial KP's 
defined in (3.78) are omitted, 

G 4 ® G 4 = G 1 Ell G 2 Ell G 3 Ell ~ G 4, 

G4®G5 = G5E1lG6E1lG7, 

G4®X1 =X2E1lX3E1lX4, 

G4®X2=X1E1lX4E1lX3, 

G4®X5 = (,EIl!)X5, 

G 5 ® G 5 = G 1 Ell G 4, 

G5®X1 =X5, 

G5®X2=X5, 

G5®X5 =X1 EIlX4E1lX2E1lX3, 

Xl ®X1 = G1 EIlG2E1lG3E1l~M1, 

Xl ®X4= G4E1lM3E1lM4, 

Xl ®X2 = G 4 Ell M2 Ell M 4, 

Xl ®X5 = G5E1lG6E1lG7E1l~M5, 

X2®X2 = G 1 EIlG2E1lG3E1l~M3, 

X2®X3 = G4E1lMl EIlM2, 

X2®X5 = G5E1lG6E1lG7E1l'Jr,M5, 

X5®X5 = G 1 EIlG2E1lG3 Ell (~EIl!>G4 

(3.161) 

(3.162) 

(3.163) 

(3.164) 

(3.165) 

In these formulas the effect of generating relations of the 
second kind are shown by underlining certain direct sums of 
inequivalent G irreps. For instance the meaning of these lines 
is that CG blocks Cgi,G4 and Cg1,G4 are generated by 
C g t,G 4, etc. The results of third step are indicated by double 
underbars. For instance, ('Jr, Ell 1> means that the three P23 
irrepsX 5 occurring in G 4 ® X 5 transform according to two
and one-dimensional irreducible corepresentations, respec
tively. In this example all multiplicities can be explained in 
terms of irreducible corepresentations of auxiliary operator 
groups. Clearly the most effective step is to exploit generat
ing relations of the first kind because they reduce the set of 
576 KP's to 23 KP's. Generating relations of the second kind 
lead to further reductions as only CG blocks C ~ have to be 
computed explicitly whereas the CG blocks Cr, LE/K / are 
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defined by simple matrix multiplications. But we are aware 
that the validity of our approach relies upon the fact that 
"standardized" G irreps have to be used. Finally we would 
like to mention that in Ref. 7 our approach is presented in a 
slightly modified form because there the permutation group 
has been incorporated in a different way. 

IV. THREEFOLD KRONECKER PRODUCTS FOR THE 
GREY GROUP c:xe 

In the second example we discuss threefold KP's of coir
reps of the grey group 

G(H) = C:X0, 

C: = {E,C4,C~,C!,E,C4:C~,CD, 
0= {E,O}. 

(4.1 ) 

Its generating elements are C4 and O. Coirreps of this group 
are tabulated in Ref. 14 from where we take over the nota
tion. From these tables we see that G(H) has two one-di
mensional and three two-dimensional coirreps. The one-di
mensional coirreps, labeled by 1 and 2, are of type I, where 1 
denotes the trivial one. The two-dimensional coirreps, la
beled by 3, 5, and 8, are of type III. To be consistent with 
( 2.1) we choose 

D 2 (O) = 1. (4.2) 

Next we determine the auxiliary group taking into ac
count (2.5) when fixing the admissible automorphisms. The 
automorphism group AUT turns out to consist of four ele
ments. The corresponding mappings are 

f30( C4) = C4, f30(0) = 0; 

f31(C4) = C!, f31(0) = C!O; (4.3) 
f32(C4 ) = C!, f32(0) = C!O; 

f33(C4) = C4, f33 (0) = C40. 

Assigning to each mapping f3j the corresponding group ele
ment bi , the automorphism group AUT reads 

AUT = {bo,bl,b2,b3}r;;;;r,D2' (4.4) 

Thus we arrive at 

ASS = {1,2} = {ao,a}r;;;;r,C~, 

AUT = {bo,b l ,b2,b3} r;;;;r,D2' 

CON = {co,c}r;;;;r,C;, 

(4.5) 

where the nontrivial element of ASS is denoted by a. Because 
of the structure of ASS the auxiliary group forms a direct 
product group, 

Q = {(am,b ~ b; ,CS
) Im,n,r,s = 1,2} 

(4.6) 

where for the sake of clearness the subgroups of order 2 are 
distinguished by different superscripts. We take as genera
tors of this group the elements (a,bo,co) , (ao,bl,co), 
(aO,b2,cO), and (ao,bo,c). Later on we sometimes omit the 
trivial transformations ao, bo, Co to make the notation more 
concise. 

The next task is to determine the Q-classes. We denote 
by A (G(H») the index set of all coirrep labels 
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A (G(H») = {I,2,3,5,8}. (4.7) 

The Q-classes can be found by inspecting the qk table for the 
coirreps of G(H): 

qk 2 3 5 8 

a 2 3 8 5 

bl 1 2 3 5 8 . (4.8) 

b2 1 2 3 8 5 

c 1 2 3 5 8 

From this we readily obtain the following Q-classes: 

[1] = {1,2}, [3]={3}, [5] = {5,8}. (4.9) 

The corresponding groups Q k and CR sets R k are given in 
the following list: 

QI = AUT X CON r;;;t,D2 X C;, 

R I = ASS, 

Q3 = Q =D2h XE>, 

R 3 = {qo}, qo = (ao,bo,co), 

Q5 = {qo,(ao,bl ),(a,b2),(a,b3 )} X CON, 

R 5 = {qo,(a,bl,co)}' 

(4.10) 

(4.11 ) 

( 4.12) 

Note that the choice for R 5 is not the simplest one as 
(ao,b I'CO) is a nontrivial element of Q 5. The reason for taking 
this peculiar element is to arrive at standard coirreps which 
coincide with those tabulated in Ref. 15. 

Next we choose the coirreps 1,3,5 as Q-class represen
tatives and their generating matrices in the following form: 

k = 1: D I(C4) = 1 = D I«(), (4.13) 

3 Ii k=3:D (C4 ) = 0 0·1, 
-/ 

D
3 «() = I~ ~I ' 

(4.14 ) 

5 la k=5:D (C4 ) = 0 :.1, a = exp(i1rI4), 

D
5 «() = I~ - 11 o . (4.15 ) 

For the sake of completeness we also state the nontrivial one
dimensional coirrep of G(H), 

D 2(C4 ) = - 1, D2«() = 1. (4.16) 

The next task is to determine the matrices Uk(q), qEQ k, 
where k denotes the Q-class representatives. Simple manipu
lations lead us to the following matrices: 

k = 1: UI(q) = 1 for all qEQ I, ( 4.17) 

k = 3: U 3 (a) = U\b l ) = U 3 (b2) = U(c) = I~ ~I ' 
(4.18 ) 

~ 11· 

( 4.19) 

The next step is to fix the KP's considered in the follow
ing as this determines the structure of the auxiliary group Q. 
We discuss threefold KP's. Accordingly, 
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Q = (ASS(3)XAUTXCON)<?:PERM(3) 

r;;;t, (C;(3)XD2 XC;)<?:S3' (4.20) 

where the generating elements of ASS(3) are (a,ao,ao), 
(ao,a,ao), and (ao,ao,a). The generating elements of AUT 
and CON are the triplets (bl,bl,b l), (b2,b2,b2), and (c,c,c), 
respectively. Finally we choose P123 = (123) and 
P12 = (12)(3) as generating elements of the permutation 
group S3' Because ofthe structure ofQ, Eq. (4.20), the ele
ments of this group will be labeled by three associations, an 
automorphism, a conjugation, and a permutation, part of 
which may be trivial transformations, 

q = (a',a",a"',b ',c',p). (4.21 ) 

Following our approach we now have to determine the 
Q-classes. Adopting a notation similar to that in the pre
vious example for the irrep label sets we have 

IA (G(H) (3») I = IA (G(H)W = 53 = 125. (4.22) 

The Q-classes are disjoint subsets of A (G(H)(3») and turn out 
to be the following sets: 

[ 111] = {111, 112, 122, 222, and permutations}, 

[113] = {113, 123,223, and permutations}, 

[115] = {115, 125,225,118,128,228, and 

permutations}, 

[ 135] = {135, 235, 138, 238, and permutations}, 

[155] = {155, 158, 188,255,258,288, and 

permutations} , 

[ 133] = {133, 233, and permutations}, 

[333] = {333}, 

[335] = {335, 338, and permutations}, 

[355] = {355, 358, 388, and permutations}, 

[555] = {555, 558, 588, 888, and permutations}. 

(4.23) 

In contrast to the previous example it suffices to consider 
products of Q-class representatives to obtain all Q-classes. 
Again it is straightforward to show that 

IA (G(H)(3»)1 = L I [b) I· (4.24) 
b 

We now focus on the single Q-class [335] and demon
strate how to proceed along the lines of our approach. In 
doing so we have to determine the group Q335 and to fix a CR 
set R335. One readily finds 

Q335 = (D2XD; XC2) <?:82, 

D2 = {(am,an,ao,bo,co,po) Im,n = 1,2}, 

D; = {(ao,ao,am,b '{:b 7 ,Co,Po) Im,n = 1,2}, 

C2 = {(ao,ao,ao,bo,cn,po) In = 1,2}, 

82 = {(ao,ao,ao,bo,cO,P~2 ) In = 1,2}. 

We choose the CR's from the set 

R335 = {QO,QI,Q2,Q3,q4,q5}' 

where 

Dirl etat. 
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qo = q~~~S) = (ao,ao,ao,bo,co,po), 

ql = qn~S) = (aO,aO,aO,bO,CO,PI23)' 

q2 = q~nS) = (ao,ao,ao,bO,CO,P23), 

q3 = q~~~S) = (a,a,a,bl,co,po), 

q4 = qg~S) = (a,a,a,b l,co,PI23)' 

Qs = q~~j5) = (a,a,a,b l,cO,P23)' 

(4.27) 

To establish generating relations of the first kind we now 
have to determine the matrices UI.b(q~b» and UI'·/(q~b». 
For the latter we need the KP decomposition of D 335, 

D335~2D5$2D8. (4.28) 

Both D 5 and D 8 are of type III. As we use standard G (H) 
coirreps we have U 8,5(a,bl ») = E(2). Moreover it follows 
from (4.18) that U 3(a,b l ») = U 3(a)U 3(b l ) =E(2). 
Therefore 

=E(8). (4.29) 

Apart from this we need the matrices U 338,335(q) for q = ql' 
q2 to generate all the matrices U 338,335(qj ),j = 0,1,2, ... ,5, 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

U 338,335(ql) = 
0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 
(4.30) 

1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 

U 338,335 ( q2) = 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 

The rows and columns of these matrices are enumerated in 
lexicographical order (in accordance with the KP 
D 335 = D 3 ®D 3 ®D 5). To obtain thematricesZh(qt» we 
need the homomorphic images of the elements qj ER335. 
These are easily found to be 

Jir'(qo) = qo = qo' Jir'(ql) = q] = qo' 

Jir'(q2) = q2 = qo, Jir'(q3) = q3 = (a,b l ), (4.31 ) 

Jir'(q4) = q4 = (a,b l ), Jir'(q5) = q5 = (a,b l )· 

We see from (2.55) and (4.28) that the matrix Z335(q3) 
must have the form 

Z335(q3) = U 8,S(a,b]»)$ U 8,S(a,b l ») 

$ U S,8(a,bl ») $ U s,8(a,bl »). (4.32) 

Due to our standardization the matrix U 8,5(a,bl ») is as-
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sumed to be a unit matrix. To obtain U S
,8( (a,b l ») we need to 

inspect the relation between D 8 and D s, 

(a,b l )D 8 = (a,b l )2D 5 =D s, (4.33) 

which turns out to be an identity. Accordingly, 
U S,8(a,bl ») = E(2) and hence 

Z335(a,b l») = E(8). (4.34) 

By similar arguments we finally arrive at 

Z335(qj) =£(8), j=0,1, ... ,5. (4.35) 

Inserting this result into the general formula (2.61) we ob
tain the following generating relations of the first kind: 

C k j = U krJ35 ( .) C 33S . = 0 1 5 q, ,J " ... , , (4.36) 

where kj = qj(335)E[335]. 
The next step in our approach is to establish generating 

relations of the second kind. For that purpose one has to find 
the subgroups Q b,k of Q h = Jir' (Qh). If some of these groups 
are proper subgroups of Q h then there exist nontrivial gener
ating relations of the second kind. To state them one merely 
has to compute the matrices Uh,h(ql(h,k» and Zb(q}h,k». 
First we determine the homomorphic image Q 335 of Q335. 
One easily finds 

Jir'(Q33S) = Q335 = Q, 

ker Jir'nQ33S = {(am,am,ao,bO,p~2) Im,n = 1,2}. 

(4.37) 

(4.38 ) 

In this example the partitions / k / b and the CR's R h,k are 

/3/335 = {3}, R 335.3 = {qo}, (4.39) 

/5/335 = {5,8}, 
(4.40) 

R 335.5 = {qo,q'}, q' = q~335,5) = (a,b l ). 

Now we have to fix by suitable conventions inverse images of 
the transformations qo, q'ER 335,5. We choose 

Jir'-I(qO) = qo, 

Jir'-I(q') = q' = (a,ao,ao,b],co,po)' 

Due to formula (2.32) we have 

(4.41 ) 

U 335•335 (q') = U 3(a,b l»)® U 3(b l ) 181 US(b l ) 

=£(2)181101 11 181 1
0 

o 1 
-11 o ' (4.42) 

the last equation following from (4.18) and (4.19). From 
(4.33) we infer 

Z335(q') = £(2) $£(2) = £(4). (4.43) 

Accordingly we arrive at the following generating relations 
of the second kind: 

C~3S = U335,33S(q')C~35, (4.44) 

where the corresponding CG blocks are denoted by C ~35 and 
C~3S, respectively. Note that until now it was not necessary 
to compute the generating CG blocks explicitly. 

The last step in our approach is to reduce (resolve) the 
multiplicity problem by means of (co) irreps of an auxiliary 
operator group. To this end we need the inverse image of 
Q33S.5, 

Q335.S = {(am,b ';b ~ ,CS
) Im,r,s = 1,2}, (4.45) 

Dirl et a/. 1967 



                                                                                                                                    

j'f'- I ( Q 335.5 ) 

= Q335.5 = {(am,am,an,b ~b ~ ,c',P~2) Im,n,r,s,t = 1,2}. 
(4.46) 

Next we compute the general CG block C~~;. A simple 
calculation yields 

0'=1 0'=2 

0 0 

0 0 

a 0 
C 33S _ 

S.a - 0 P* , a,pee. ( 4.47) 

P 0 

0 a* 
0 0 

0 0 

Considering now the action of the operators T(q), 
qeQ335.S, on the CG block (4.47) we see from (4.18) and 
( 4.19) that these operators coincide for some of the genera
tors q or even reduce to the unit operator, 

T(a,a,ao,bo,co,po») = T(ao,ao,ao,bo,co,P12»)' 

T( (ao,aO,a,b2,cO'po» = T (ao,ao,ao,bl,co,po», 

T ( (ao,ao,ao,bo,c,po» = T ( ao,ao,ao,bo,co'po) ). 

( 4.48) 

(4.49) 

(4.50) 

Note that (4.49) is antilinear whereas (4.48) is a linear oper
ator. Accordingly, 

ij335.5 = c2 xe. (4.51) 

The two-dimensional space spanned by the blocks (4.47) 
contains two irreducible subspaces spanned by the blocks 
C~~~, where 

a = P = 1/ Ji for m = 1, 
(4.52) 

a = - P = 1/ Ji for m = 2. 

The corresponding coirreps are 

L I( (ao,ao,ao,bo,co,P12») = L I( (ao,ao,ao,bl'co,po») = 1, 

- L 2«ao,ao,ao,bo,cO,PI2») = L 2( (ao,ao,ao,bl'co,po») = 1. 
(4.53 ) 

Putting all pieces together we arrive at the CG matrix 

511 512 521 522 811 812 821 822 

0 0 0 0 0 -1 0 1 

0 0 0 0 1 0 1 0 

1 0 1 0 0 0 0 0 

JiC 335 = 0 1 0 -1 0 0 0 0 

1 0 -1 0 0 0 0 0 

0 1 0 1 0 0 0 0 

0 0 0 0 0 -1 0 -1 

0 0 0 0 1 0 -1 

where for convenience the column indices ImO' are written 
explicitly. From this we obtain all the other CG matrices for 
the Q-class [335] using the generating relations given in 
(4.36). 

V. THREEFOLD KRONECKER PRODUCTS FOR THE 
GREY GROUP C;-Xe 

In the last example we investigate threefold KP's of 
coirreps of the grey group 

G(H) = CTXe, 
Cr = {E,C3,C 3- I,E,C3,C 3-

1
}, 

e= {E,O}. 

(5.1) 

We choose the elements C3 and 0 as generators of this group. 
Coirreps of this group can be found in Ref. 16. From these 
tables we see that G(H) has one one-dimensional and three 
two-dimensional coirreps. 

According to our approach we first have to determine 
the corresponding auxiliary group taking into account (2.5) 
when defining admissible automorphisms. One readily veri
fies that the automorphism group AUT consists of two ele
ments. The nontrivial element, denoted by b, corresponds to 
the following mapping: 
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0 

P(C3 ) = Cj, P(O) = e. 
Denoting the trivial automorphism by Po we have 

AUT = {bo,b}; 

(4.54) 

(5.2) 

(5.3 ) 

in the present example the group ASS is trivial and is there
fore omitted. Thus we arrive at 

Q = AUT X CON g,;C2 XC; = c 2 Xe, (5.4) 

where beAUT and ceCON are the generating elements of 
this group. 

Next we have to determine the Q-classes of A (G(H») 
where this symbol denotes the set of coirrep labels of G(H). 
From the character tablel6 one readily derives the following 
qk table: 

qk 2 4 6 

b 1 2 4 6. (5.5) 

c 2 4 6 

Consequently the Q-classes consist only of single elements, 
Le., 

[k] = {k} for = 1,2,4,6. (5.6) 

Therefore 

Q k = Q and R k = {qo} (5.7) 
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for all Q-class representatives. 
Because of (5.6) we have to fix the explicit form of all 

coirreps of G(R), 

k = 1 (type I); 

D I(C3 ) = 1, D 1(0) = 1. 

k = 2 (type III); 

~I ' a = exp(hr/3), 

~I· 
k = 4 (type III); 

-11 o . 

k = 6 (type II); 

-11 o . 

(5.8) 

(5.9) 

(5.10) 

(5.11 ) 

These equations allow us to determine the corresponding 
matrices Uk(q), qEQk, 

k= 1; UI(q) = 1, qEQ. (5.12) 

k = 2; UZ(b) = UZ(c) = I~ 11 o . (5.13 ) 

k = 4; U
4
(b) = U

4
(c) = I~ -11 o . (5.14 ) 

k = 6; U
6
(b) = U

6
(c) = I~ 01 1 . (5.15 ) 

It is worth emphasizing that U 6 (c) has been chosen to be 
differentfromD 6(0). Such a choice is possible since U 6(c) is 
unique only up to a unitary element of the corresponding 
commuting algebra. 

In order to determine the structure of Q we have to fix 
the type of KP's, i.e., the number off actors, which we want 
to consider. We shall investigate threefold KP's. The corre
sponding auxiliary group reads 

Q = {(b m,C
n,p;3 P~Z3) Im,n,r = 1,2; s = 1,2,3} 

= AUTXCONXPERM 

(5.16 ) 

For the sake of brevity we discuss in the following only 
the KP D446. One easily finds 

Q446~CzXC~ XSz, 

R446 = {qo,ql,qz}, 

where the choice of the CR's is as follows; 
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( 5.17) 

(5.18 ) 

qo = q.4~6) = (bo,co,Po), 

ql = q~6) = (bo,co,P123)' (5.19) 

qz = q~:16) = (bo,CO,PZ3)' 

Equations (5.18) and (5.19) show that [446] 
= {446,644,464}. 

The first step in the auxiliary group approach for KP's is 
to establish generating relations of the first kind. This only 
requires to determine the matrices UI.h(q:b» and UJ"J(q}h» 

which compose the matrices Zb(q}h». For the latter we 
need the KP decomposition of D 446, 

(5.20) 

Because of (5.19) the matrices UI,b(q:b» must be permuta
tion matrices that correspond to PI23 and PZ3' As dim D 4 
= dim D 6 = 2 we can take the same matrices as in Sec. IV, 

i.e., 

U644,446(ql) = U338.335(ql) of (4.30), 

U464.446(qZ) = U 338,335(qZ) of (4.30). 
(5.21 ) 

To determine the matrices Z446(qj), j = 1,2, we have to 
know the homomorphic images of the elements qj ER446. Due 
to (2.31) they are 

JY'(qj)=qo; j=0,1,2, (5.22) 

and therefore 

Z446(qj) =E(8), j=0,1,2. (5.23 ) 

Inserting this into the general formula (2.61) we arrive at 
the following generating relations of the first kind; 

(5.24) 

(5.25 ) 

Note that there are no generating relations of the second 
kind because of (5.6). 

To tackle the multiplicity problem we first need the 
groups Q 446.4 and Q 446.6 and their inverse images. We have 

JY'-I(Q446.4) = JY'-I(Q446.6) = Q446, (5.26) 

(5.27) 

As the KP decomposition (5.20) contains two inequivalent 
constituents which are not related by generating relations of 
the second kind we have to treat each of them separately. 

We start with the CG block C~a6, and try to resolve the 
multiplicity problem by means of coirreps of an operator 
group Q446.4. The general form of this CG block is 

0 -/3* 
0 a* 
0 0 

C 446 _ 0 0 
a,/JEC. 4.a - 0 0 

, (5.28) 

0 0 
a 0 

/3 0 

The blocks of this configuration form a two-dimensional lin
ear space over C which is in accordance with the general 
considerations of Sec. II [( 44614) = 2, D Z is of type III]. 
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The action of the operators T( q), qeQ446, on these blocks 
follows from their definition, Eq.(2.80). the special form of 
the matrices Uk(q), k = 4,6, given in (5.14) and (5.15), 
and 

0 0 0 

U446.446(bo,cO,PI2) = 0 0 1 0 
® I~ ~I· 0 1 0 0 

0 0 0 
(5.29) 

It is evident from (5.28) and (5.29) that T(bo,cO,PI2) is the 
unit operator; hence we omit the label P for the operators 
T( q). It is easily verified that T( bo,c) is a linear operator of 
order 4 and that T( b 3 ,c) is the operator of complex conjuga
tion commuting with all other operators T( q). Therefore 

ij446,4 = C4X0. ( 5.30) 

Choosing 

a = 1/{l, {3 = il{l for m = 1, 

a = 1/ {l, {3 = - il {l for m = 2, 
(5.31) 

we obtain two orthonormalized blocks which transform ac-
cording to the corep generated by 

4 II L (bo,c) = 0 o I 4 3 1
0 

1* ' L (b ,c) = E (5.32) 

The matrices 

1= diag(i, - i), E = E(2) (5.33 ) 

are elements of the ground field of the linear space corre
sponding to the numbers i, 1eiC. The corepresentation L 4 is 
therefore a coirrep of C4 X 0 in standard form 16 where the 
complex numbers have been replaced by elements of the 
commuting algebra of D4. Note that in this case the multi
plicity (44614) equals the dimension of L 4 over the field 
{diag(a,a*) laeC}~C and that the two blocks Cf.!, 
m = 1,2, are uniquely determined by the corresponding ir
rep of the unitary subgroup {T(bo,c)nln = 1,2,3,4}~C4' 

To obtain the full CG matric C 446 we also have to con
sider the blocks belonging to D 6. Their general form is 

411 412 421 422 611 612 621 

0 0 -i 0 0 0 

0 1 0 0 0 0 

0 0 

0 0 

a 0* 

C 446 _ 
6.a -

{3 -y* 

y {3* 
(5.34 ) , a,/3,y,oeiC. 

0 -a* 

0 0 

0 0 

Here we have eight real parameters since (44616) = 2 and 
D6 is of type II. The action of the operators T(q), qeQ446, 
follows again from Eqs. (2.80), (5.14), (5.15), and (5.29). 
One finds that the operators T(b,co,Po), T(bO,CO,P12)' and 
T(bo,c,po) generating ij446.6 are all of order 2; the first two 
are linear whereas the last one is antilinear. Moreover 
T(b,co,PI2) is the negative unit operator and T(b,c,po) is the 
operator of complex conjugation commuting with all opera
tors T(q). Accordingly 

(5.35 ) 

The grey group on the rhs has four one-dimensional coirreps 
of type 1. 14 Substituting numbers peR (CQ) by 2X2 matri
ces pE (2) belonging to the commuting algebra of D 6 we can 
find two of them in the two-dimensional quatemionic linear 
space spanned by the blocks (5.34). They are carried by 
basis blocks with 

a = y = 1/ {l, {3 = 0 = 0, for m = 1, 

a = y = 0, {3 = - 0 = 1/ {l, for m = 2, 

and generated by the matrices 

L 6.1(b,co,Po) = -L 6.1(bo,cO,PI2) = -E(2), 

L 6.2 (b,co,Po) = - L 6.2(bo,cO,P12) = E(2), 

L 6.1 (b,c,po) = L 6.2 (b,c,po) = E(2). 

(5.36) 

( 5.37) 

Here too the multiplicity problem is resolved since the two 
blocks transforming D 466 into D 6 may be distinguished by 
their transformation properties under the operator group 
ij446.6. 

Combining all these results we arrive at the following 
CG matrix: 

622 

0 

0 

0 0 0 0 0 0 -1 

{lC 446 = 0 0 0 0 0 -1 

0 0 0 0 0 0 

0 0 0 0 0 -1 -1 

0 1 0 0 0 0 

0 -i 0 0 0 0 

From this matrix the other CG matrices C h, he [ 446] , can be 
generated according to (5.24). 
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The method of formal series is applied to the construction of nonlinear representations of 
Poincare's group in three dimensions. The first term of the series must be a linear massless 
representation. In the special case of discrete helicities, the cocycles of extension of these 
representations by their tensor product are determined. It turns out that a nonlinear 
representation with a nonzero quadratic term must have a helicity zero representation as 
leading term. It is proved by induction how to avoid the successive obstructions to the 
computation of each term in the series. 

I. INTRODUCTION AND FUNDAMENTALS 

Interacting field equations are nonlinear equations and 
contain the transformation properties of the fields under the 
Poincare group &' . Insofar as the solutions of such equations 
are uniquely determined from initial data, these transforma
tion properties induce a nonlinear representation of &' on 
the space of initial conditions. Since &' includes time trans
lations, the field dynamics is completely known from such a 
representation. 

Thus we are naturally led to determine directly the non
linear representations of &' and to study their classification. 
Indeed, this is an extensive program and only partial answers 
have been given so far. In this paper, we follow the method 
initiated in Ref. 1, restricting the study to the Poincare group 
in three space-time dimensions &' 3. This rather particular 
choice originates in the relative simplicity of &' 3' which nev
ertheless does not exhibit the oversimplified features of &' in 
two space-time dimensions. 

First, we recall the basic principles of Ref. 1 and the 
corresponding fundamental equations. Generally speaking, 
a representation of a group G in a topological vector space E 
is a separately continuous mapping 

S: E XG-E 

such that 

S(O,g) = 0, 

S(<p,gg') = S(S(<p,g'),g), 

where <pEE and g,g'EG. 

(1.1 ) 

( 1.2) 

If S is a linear mapping, this reduces to the usual defini
tion of a linear representation. The method proposed in Ref. 
1 amounts to considering linear representations as the first 
term of a formal expansion: 

'" S(<p,g) = L Sn (g)<p en, (1.3 ) 
1 

where ® denotes the projective tensorial product and Sn (g) 

is a linear mapping from ® n E into E. Here S is thus defined 
by a formal series. It is invertible in the formal sense if SI is 
invertible. 

In this scheme, two representations Sand S ' are said to 
be equivalent if there exists a formal invertible mapping t: 
E - E such that 

S'(<p,g) = t -1(S(t(<p),g). (1.4 ) 

In particular, if S' is linear, we will say that the representa
tion S is formally linearizable. 

Defining the operators 

zn(g) =Sn(g)SI(g-l)en, n>l, (1.5) 

we can write the group law (1.2) applied to the series (1. 3 ) 
as 

n-I 

= L zq(g)SI(g) eq L Zll(g') 
q = 2 I, + ... + Iq = n 

( 1.6) 

where (Tn is the customary symmetrization operator. When 
compatible, these equations allow us to construct the formal 
series from the first term SI by induction on the order n. For 
n = 2, we have, in particular, 

Z2(gg') _Z2(g) -SI(g)Z2(g')SI(g-l) ®SI(g-l) =0. 
( 1.7) 

This defines a one-cocycle of extension of SI (g) by 
SI (g) ®SI (g). For n>3, the right-hand side is a two-cocycle 
ofextensionofSI byS ?n. Equation (1.6) makes the cocycle 
a coboundary. 

In this paper, we want to build nonlinear representa
tions of &' 3 when SI is a unitary irreducible representation 
restricted to a convenient subspace of the Hilbert space. It 
has been proved in Ref. 2 that we can expect a nontrivial 
construction only if SI is a massless representation. So, we 
first describe with some details these massless representa
tions (Sec. II) and the nontrivial cocycle of extension of one 
of them by the tensor product of two (Sec. III). We show 
that Eq. (1.7) has nontrivial solutions only if SI is a helicity 
zero representation. Then we prove that all the successive 
equations (1.6) can be solved, essentially because the little 
group of &' 3 on the cone is a one-parameter Abelian group 
(Sec. IV). 

1972 J. Math. Phys. 28 (9), September 1987 0022-2488/87/091972-06$02.50 © 1987 American Institute of Physics 1972 



                                                                                                                                    

II. POINCARE GROUP f}' 3: DEFINITION AND 
REPRESENTATIONS 

We denote the elements of the three-dimensional trans
lation group ,73 by a == (ao,a) == (aO,aI,a2) and those of 
SL(2,R) by 

A= I; ~I, a,/3,y,8ER., a8-/3y= 1. 

The Poincare group in three space-time dimensions f}' 3 is 
the semidirect product,73 A SL(2,R), where the action of 
SL(2,R) on ,73' a-+Aa, is given by 

l
ao - a

2 
a

l I A laO - a
2 

a
l I 

al aO+a2 -+ A al aO+a2 A+. 

Let M 3 be the three-dimensional Minkowski space with 
elements x = (xo,x) and M3 its dual; the Minskowskian sca
lar product is denoted by ( , ). 

We consider the mass zero positive energy representa
tions of f}' 3' The corresponding orbit in M3 is the cone C + 
without the origin. To any point kEC + we associate the ma
trix A k : 

Ak = I e< ~ I I co~ tp sin tp I ' ° e < -Stntp costp 

tER., - 1T/2 < tp < 1T/2, (2.1 ) 

such that 

k = A k- 1m, m = (!,O, - !)EC +. 

Thus we can use (t,w),w = tan tp, as coordinates of k: 

k O =! e- 2<, 

k I = ! e - 2< sin 2tp, (2.2) 

k 2 = _! e - 2< cos lip. 

The stabilizer of the pointm is r", =,73 AH, where His the 
Abelian group of matrices 

h==(€,z)==€I~ ~I, €= ± 1, ZER.. 

Starting with the unitary one-dimensional representations of 
Hgiven by 

(€,z)EH-+€7J, TJ = 0,1, 

we obtain, by induction, unitary representations of f)' 3 real
ized in L 2 ( C +) according to 

U7J (a,A): /(k) -+ej (a.k)€7J(A,k)/(A -Ik), (2.3) 

where the coordinates (t' ,w') of A -I k are given by 

e - 2<' = e - 2< [ (aw - y) 2 + ( /3w _ 8) 2] (1 + w2) - I, 

W' = (aw - y)(8 -/3w)-I, 

and €(A,k) by 

€(A,k) = sgn( - /3 tan tp + 8). 

Furthermore, we have 

€(A -I,A -Ik) = €(A,k), 

€(AA',k) = €(A,k)€(A',A -Ik), 

€(Ak,m) = 1. 

(2.4 ) 

(2.Sa) 

(2.Sb) 

(2.Sc) 

Actually, the Hilbert space L 2 (C + ) is not well adapted 
to the formulation of our cohomological problems. Its use 
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would lead to the occurrence of formal coboundaries, which 
are difficult to interpret either mathematically or physically, 
and would discard significant cocycles meaningful only on 
dense subspaces. 

Consequently, we consider the restriction V1/ of U1/ to 
the space 9J 1/ (see Ref. 3) of functions/(t,w) such that (1) 
/(t,w) has compact support in t, (2) /(t,w) is C eo in t and w, 
and (3) f(t,w) ==sgn7J(w)/(t, - l/w) has the same proper
ties. A sequence/n (t,w) in 9J 71 converges to zero if/n (t,w) 
andfn (t,w) together with all their derivatives converge uni
formly to zero on a fixed compact in t and on every compact 
inw. 

Here 9J 1/ is a space dense in L 2 ( C +) [for the norm 
topology of L 2( C +)] and contains as a subspace the space 
9J (R.2

) whose elements are the Ceo functions/( t,w) of com
pact support in t and w. Also 9J (R2) is not invariant under 
the whole Poincare group but only under a subgroup of ele
ments (a,A), where a is any translation and A has the gen
eral form 

I~ A ~II, A,zER. 

III. EXTENSIONS OF V .... by V .... , GD V ..... 

We want to find an operator Z(g), gEf}' 3' from 
9J 711 X 9J 1/2 into 9J 71 satisfying the one-cocycle equation 

Z(gg') = Z(g) + V7J (g)Z(g') V ~;2 (g), (3.1) 

where the notation V7It7J2 (g) stands for V7J1 (g) ® V1/2 (g) and 
Z for Z 2. Such an operator is determined up to a coboundary 
and we can choose as a representative of each equivalence 
class a cocycle which is Ceo on f}' 3 and equal to zero on 
SU(1) (see Ref. 4). 

We define a continuous linear functional Zk (a,A) on 
9J 7J1 ®9J 7J2 by 

(Zk (a,A)'/1 (k l ) ®/2(k2») 

= (Z(a,A)/1 ®/2)(k), /;E9J 7Ji' (3.2) 

When we choose as/; (k j ) functions in 9J (R2), then the left
hand side of (3.2) defines a continuous functional on 
9J2(R2) ==9J (R2) ® 9J (R2).Therefore there exists a distri
bution Zk (a,A;k l ,k2) such that 

f Zk (a,A;k l ,k2)/1 (k l )/2(k2)dk l dk2 

= (Zk (a,A),fI(k) ®};(k2») 

whenever/; (k j ) are ceo functions with compact support in 
(tj,Wj ). 

A. Determination of Zk (s,/) 

Lemma 1: There exists a functional A k E(9J 711 ® 9J 712)' 
such that 

(3.3 ) 

Proof: First, we compute Z", (a,I). Let us consider the 
associated distribution Z", (a,l;k),k2 ). As 9J (R2) is invar
iant under the translations subgroup, we can apply the con
siderations of Ref. 2 (cf. also Ref. 4) to prove the existence of 
a distribution t(k),k2) on 9J2(R2) such that 
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Z'" (a,1;k»k2) = (1 - ei(a,w - k, - k,) )t(k l ,k2). (3.4) 

This gives us Z'" (a,1) only on a subspace fiJ (R2) of 
fiJ ® fiJ . To get it on the whole space, we proceed in two 'Yfl 172 

steps. 3 

(1) Let J;EfiJ 71; be such that 11./2 are simultaneously 
equal to zero when w belongs to a bounded open set 0. C R. 
We can find z such that - z-IEo.; this implies 

V~I(0,h)j;(t,W)EfiJ(R2), i= 1,2, (3.5) 

for 

Then, from the cohomological equation, we have 

(Z", (a,I)./1 ®/2) 

= (Z", (h -la ,1), V;;' I (O,h) II ® V;;' I (O,h) 12) 

+ (Z", (O,h)./I ®/2) - ei(a,w) 

X(Z", (O,h),V;;, I (a,I)/1 ® V 71-: I (a,I)/2)' 

Taking (3.5) into account, we can apply (3.4) and get 

(Z", (a,I)./1 ®/2) = (Z'\/I ®/2) - ei(a,w) 

X (Zn,V 71-. I (a,1)/1 ® V;;' I (a,1)/2) , 

where the functional Z n is given by 

(Zn./I ®/2) = (Z", (O,h)./I ®/2) 

+ (t(k l ,k2),V 7J-. I (0,h)/1 ® V 71-: 1(0,h)/2)' 
(3,6) 

(2) Next, let 0. 1,0.2,0.3 be three open bounded sets on R 
such that 

(i) o. l no.2 #0, o. i nco.j #0, i,j = 1,2, 

(ii) o. l no.2 Co.3, 

(iii) n3 Co. l uo.2 , 

where C indicates the complement of a set. Now, any func
tionJ;EfiJ 71; can be written as 

J; = II + I~ + I~, 
where/~ = ° on o.j,j = 1,2 and/~ has a compact support 
such that 

0. In 0.2 C supp I~ C 03' 
Then we have 

3 

(Z", (a,1)./1 ®/2) = L (Zoo (a,1)./; ®/~) 
i,j~ I 

and we can apply the previous results. Indeed, either both 
functions/; ./~ are zero on some common bounded open set 
or both are of compact support. We eventually get 

(Zoo (a,1)./1 ®/2) 

= (T./I ®/2) - ei(a,w)(T,v 7J-. I (a,I)/1 

® V 71-: I (a,1) 12)' (3,7) 

where T is a continuous linear functional on fiJ 71, ® fiJ 71, ' 

according to the continuity of the mappingsJ; -+/~ ,j = 1,2,3. 
We can now compute Z k (a,1). Indeed, applying (3.1) 

to the identity 

Z",(O,A k ) (a,I») = Zoo(Ak a,l) (O,A k »), 
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noticing that, from (2.Sc), 

Zk (a,l) = V7J (O,Ak )Z", (a,1) 

and, taking (3.7) into account, we get 

Zk (a,1) = Ak - ei(a,k) Ak V;;'7JI, (a,1) 

with 

Ak = [T - Zoo (O,Ak ) ] V7J ,7J2 (O,Ak ). 

Proposition 1: The restriction of Z(a,A) to the transla
tion subgroup is a coboundary, 

Proof: We have to verify that .s;ff k == (A k ,II ®/2) belongs 
to fiJ 71 for J; EfiJ 71; and that A k is continuous. 

From the assumptions above, Z(O,Ak ) is actually a Coo 
function of t. Using then the explicit expression of 
V7J; (O,Ak ): 

V7J; (O,Ak )J; (towi ) 

= sgn 7J;(e-' - e'wwi ) 

X J; t - -log ----------( 
1 w~e2' + e - 2, e'wi + e - 'w) 

" 2 1 + w~ , e - , - e'wwi ' 

we conclude from the very definition of fiJ 71; that 
V7J,7J2 (O,A k ) II ®/2 is Coo in t,w. Therefore .s;ff k is Coo in 
(t,w). 

Let us now discuss ;;Z k' We write 

;;Zk = (sgn7J w[ T - Z'" (O,Ak )] V7J ,7J2 (O,Ak )./1 ®/2)' 
(3.8) 

where 

k = (t, - w- I
), Ak = uAk , 

_ I e' ° II sin rp - .cos rp I ' 
Ak = ° e - , cos rp sm rp 

u = (wllwl)I. 

Because of (3.1), we have 

Z'" (O,Ak ) = sgn7J wZ", (O,Ak ) V ;;'~2 (O,u). 

On the other hand, straightforward manipulations using 
(3.1) and the identity 

(a,1) = (O,u)(u- Ia,I)(O,u- l
) 

lead to another expression of Z'" (a,1): 

Z'" (a,1) = (sgn7J w)TV7J ,7J, (O,u) 

- ei(a.w) (sgn7J w)TV7J ,7J2 (O,u) V7J ,7J, ( - a,I). 

This allows us to substitute T for (sgn7J w)TV7J ,7J2 (O,u) in 
Eq. (3.8) which becomes 

;;Z k = ([ T - Z'" (O,Ak )] V7J ,7J2 (O,Ak ), II ®/2) 

and the C 00 property is proved as above. 
To study the support of .s;ff ko choose l(kl ,k2 ) 

EfiJ ® fiJ with S = supp! Then the following properties 11. Tl2 

hold. 
(i) There exist real numbers E and R, depending only on 

S, such that 

(Zk (a,I)./) = 0, 

whenever Ikl < E or Ikl > R. 
(ii) The function] defined by 
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f(k l ,k2) = (1_ei(a,k'-k,-k2»-1(kl,k2) 

belongs to !1J 71, ®!1J 712 and has support S provided I k' I < E' 
or I k' I > R " where again the real numbers E' ,R ' depend only 
onS. 

From this, we conclude that 

d k = (Ak,J) = (Zk (a'/)./) = ° 
for Ikl < min E,E' or Ikl > max R,R '. 

It should be remarked that we have incidentally proved 
that the support of .PI k depends only on the support of 
l(kl,k2). The continuity of.PIk is easily inferred from this 
property. This completes the proof. 5 

Therefore, in the following, we shall assume 

Zk (a,I) = 0. 

B. Determining Zoo (a,h),(a,h)Er oo 

Developing the relation 

Zoo (a,l) (O,h») = Zoo (O,h)(h -Ia,/») 

and using assumption (3.9), we get 

Zoo (O,h) = ei(a,w)zoo (O,h) V 71-:711, (a,/). 

(3.9) 

(3.10) 

Again, we restrict ourselves to functions II (k I) ® 12 (k2) , 
/;E!!iJ 71;' with compact support in Wi' Thus the/; are func
tions of compact support in k I,k 7 and equal to zero in a 
neighborhood of the half-line k I = 0, k 7 :2: 0. Equation 
(3.10) can then be written in terms of a distribution kernel 
according to 

(1 - ei(a,w - k, - k,) ) Zoo ( O,h) ;kl,k2) = O. 

Proposition 2: If 1] + 1]1 + 1]2#0 mod 2, we have 

Zoo(a,h);k l ,k2) = 0. 

If 1] + 1]1 + 1]2 = ° mod 2, then 

Zoo (a,h) ;kl,k2) 

= 8(m - kl - k 2 ){8(k: )(U'(A)Z2 + V(A)Z) 

+8'(k:)u(A)z}, (3.11) 

where 

U(A),V(A)E!!iJ'( 10,1 [). 

Proof We must have 

(m - kl - k2)Zoo(0,h);kl,k2) = 0, 

q - Ikll - Ik2I>Zoo«0,h);kl,k2) = 0. 

From (3.12), we get 

(Zoo (O,h),JI ®/2) = f S(h;k)t/'(k)dk, 

with 

t/'(k) =/1 (k)/2(m - k). 

(3.12) 

(3.13 ) 

(3.14) 

Therefore S(h;k) is a distribution on the space of functions 
with compact support in k I,k 2, equal to zero in a neighbor
hood of the set k I = 0, k 2:2: 0, or k 2 ~ -~. 

Equation (3.13) then yields 

(k 1)2S(h,k) = O. 

Hence 

S(h,k) =8(k l )so(h;A) +8'(k l )sl(h;A), (3.15 ) 
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where A = - 2k 2 andso,s I are elements of!!iJ' (] 0, 1 D. These 
are to be determined through the use of the cohomological 
equation (3.1) for H which reads 

f [8(k 1 )so(hh ';A) + 8'(k I )Sl (hh ';A) It/'(k)dk 

= f [8(k I )so(h;A) + 8' (k I )Sl (h;A) It/'(k)dk 

+ E7I f E7I '(h -t,k)E7I'(h -1,6> - k) 

X [8(k I )so(h ';A) + 8' (k 1 )Sl (h ';A) It/'(hk)d k. 

Identifying terms, we get 

so(hh';A) =so(h;A) +E7I +71,+ 712so(h';A) 

as 
+ 2E7I + 71, + 712z al (h ';A), 

sl(hh';A) =sl(h;A) +E7I + 71,+71'SI(h';A). 

( 3.16) 

(3.17) 

If 1] + 1]1 + 1]2#0 mod 2, the only solution ofEqs. (3.16), 
(3.17) isso=sl =0. 

If 1] + 1]1 + 1]2 = 0 mod 2, the solution of (3.17) is 

sl(h;A) = U(A)Z, (3.18) 

where uE!1J'( 10, 1 [). 
Solving (3.16), we get 

so(h;A) = u' (A )Z2 + V(A )z, (3.19) 

where 

VE!!iJ' (]O, 1 D. 
Collecting results from Eqs. (3.14), (3.15), (3.18), and 
(3.19), we can write finally 

Zoo(a,h);kl,k2) 

= 8(ro - kl - k 2){8(k: )(U'(A)Z2 + V(A)Z) 

+ 8'(k: )U(A)Z}. 

Now, we extend Z'" (a,h) to the whole !1J 71, ®!1J 712' 
Lemma 2: (Z", (O,h),/) = 0, whenever ICt I ,WI ,t2,W2) 

E!1J 71, ®!1J 712 is such that there exists a neighborhood Wof 
the origin on the real line with 

ICt I ,W I ,t2,WZ ) = 0, 

for WI or W2 in W. 
Proof First, (3.10) implies that for any FE!1J 71, ®!!iJ 712' 

we have 

(Z", (O,h),(1 - ei(a,w- k, - k2 »F) = 0. 

Taking derivatives, we infer 

(Z", (O,h),(e - 2t, [wi I( 1 + wi)] 

+ e-2t'[w~/(1 + w~)])F) = 0. 

Ifl has the properties stated in the lemma, then 

FCtI,WI,tZ,W2) = (e- Zt , [wi/(1 + wi)] 

(3.20) 

+ e - 2t, [w~/(1 + w~ ) ] ) -1Ct I,W I,tZ'W2 ) 

belongs to !1J 71, ®!1J 712 since the factor in front of I is well 
defined on the support off 

From (3.20), we get 

(Z", (O,h),J) = 0. 
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Let X (w) be a C"" function with compact support equal 
to one on a neighborhood of the origin. For Feg 71, 181 g 712 
we have 

F= FX(w1}X(W2} + F(1 - X(WI »X(W2} 

+ FX(w l )(1 - X(w2») + F(1 - X(w l »)(1 - X(w2»). 

By linearity and Lemma 2, we then get 

(Z", (O,h),F) = (Z", (0,h),F(tI,WI ,t2,W2)X(W1)X(W2 »), 

so that the operator Z'" (O,h) is thoroughly determined by 
the distribution Z'" ( O,h) ;kl,k2)' 

Remark: In (3.11), the v-dependent term is a cobounci
ary. 

Proof: If Z", (a,h );kl,k2) is a coboundary, there exists a 
distribution A", (kl,k2) such that 

Z",(a,h);kl ,k2) 

= A", (k
l
,k

2
) - ej(a . ., - k, - k2)ETj(h,m) 

x II ETji(h,kj)lh-1kjl/lkjIAoo (h- 1k l,h- 1k2)· 
j= 1,2 

(3.21 ) 

Since Zoo (a,I);k l ,k2) is equal to zero, we conclude that 
A", satisfies (3.12), (3.13) and can be written as 

A", (kl,k2) = 8(00 - kl - k2) 

X [8(k: )Ao(A) + 8'(k: )AI (A)] 

with Ao,Aleg' (] 0, 1 [). Identifying (3.11) and (3.21), we 
obtain the result with 

Ao(A) = 0, V(A) = - 2A ; (A). 

C. Final determination of Zk (s,A) 

Applying the cohomological equation to both sides of 
the identity 

Zoo(O,Ak ) (a,A») = Zoo «(Aka,hk (A»)(O,AA-'k»' 

k = Ak-1m, hk (A) = AkAA;:Jk, 

we get the relation 

Zoo (O,Ak ) + VTj (O,Ak )Zoo (a,A) V;;:Tj: (O,Ak ) 

= Z",(Aka,hk (A») + VTj(Aka,h k (A») 

XZ", (O,AA-'k) V ;;:~2(Aka,hk (A»). (3.22) 

But we have from (2.5c), 

VTj (O,Ak )Zoo (a,A) = Zk (a,A) 

and, from the group law, 

(Aka,hk(A»)-I(O,Ak ) = (O,AA-'k)(a,A)-I. 

Hence, Eq. (3.22) yields 

Zk (a,A) = Zoo(Aka,hk (A»)VTj,Tj2 (O,Ak ) 

- Z'" (O,Ak ) VTj,Tj2 (O,Ak ) + VTj(Aka,h k (A») 

XZ", (O,AA-'k) VTj,Tj2 (O,AA-'k) V;;:TjI2 (a,A). 

The explicit computation ofthe last term gives 

VTj(Aka,hk (A»)Z", (O,AA-'k) VTj,Tj2 (O,AA-'k) 

= i(Aka''')ETj(hk (A),m)Z", (O,AA-'k) VTj,Tj2 (O,AA-'k) 

or, from Eq. (2.5), 
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VTj (Aka,hk )Z", (O,AA-'k) VTj,Tj2 (O,AA-'k) 

= ej(a,k)ETj(A,k)Z", (O,AA-'k) VTj,Tj2 (O,AA-'k)' (3.23) 

Defining a function of k by 

B(k} =Z", (O,Ak ) VTj,Tj2 (O,Ak ), 

we then recognize in the rhs of (3.23) the action of VTj (a,A) 
on B(k). 

As shown above (Sec. III A), the operator B associated 
with the linear functional B(k} [as in (3.2)] maps 
g 71, 181 g 712 into g 71 . Thus we have, up to a trivial cocycle to 
be neglected, 

Zk (a,A) = Z",(Aka,hk (A»)VTj,Tj2 (O,Ak ). (3.24) 

A priori, the full expression (3.11) has to be substituted 
here. However, it is easily shown that the coboundary part in 
(3.11) leads to a coboundary contribution in the cocycle 
Z k (a,A). Therefore only the U (A) -dependent part must be 
used in (3.24). So we get the following. 

Theorem 1: For 7] + 7]1 + 7]2 = ° mod 2, the classes of 
extension cocycles of VTj by VTj, 181 VTj2 can be labeled by a 
distribution U (A ) eg' ( ] 0, 1 [ ). Each class contains a repre
sentative Z k (a,A) with 

(Zk (a,A}./) 

= t dA {U'(A)Z2(A,k} + U(A) z(A,k) 
Jo Ik I 

Xf(kl,k2)lk,=u , 
k2 = (I-A)k 

(3.25) 

wherefeg 71, 181 g 712 and z(A,k) is defined by 

_ I 11 z(A,k) I 
hk(A)=AkAAA-'k =E(A,k} ° 1 ' 

k= (ko,k l ,k 2). (3.26) 

IV. REMOVAL OF OBSTRUCTIONS TO THE 
CONSTRUCTION OF A NONLINEAR REPRESENTATION 
WITH A QUADRATIC TERM 

We now proceed to the construction of a nonlinear rep
resentation (1.3) of &'3 driven by VTj as the linear part and 
containing, at least, a quadratic term. We see at once from 
Proposition 2, that this will not be possible unless 7] = 0. 
According to the general scheme (Sec. I), we first study the 
two-cocycle 

C(g,g') = Z(g)(Y(gg') - Y(g»), 

where 

Y(g} =Z(g) 1811 +!fsZ(g). 

Proposition 3: C(g,g') is a coboundary, i.e., there exists 
Z 3 (g) mapping g ~ (the third symmetrical tensor power of 
go) into go such that 

C(g,g'} = Z3(gg') - Z3(g) - V(g}Z3(g'} V(3)-I(g), 

(4.1 ) 

where 

Vo = V, Vo® Vo® Vo = V(3). 
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Proof' As above, we introduce C k (g,g') and Z~ (g) in 
(.@~)'by 

(Ck (g,g'),J) = (C(g,g')/)(k), /e.@~, 

(Z~ (g),J) = (Z3(g)/)(k). 

Since, according to the definition of C, 

C(O,u);g') = C(g;(O,u») = 0, ueSU(1), 

Eq. (4.1) impliesthattherestrictionofZ 3 (g) toSU(1) isa 
one-cocycle of extension over a compact group. Hence it can 
be assumed that 

Z3(0,U) = O. 

Furthermore, as 

C(a,J);g') = C(g;(a,J») = 0, 

we get from (4.1) the equation 

Z~ (O,Ak ) + Z~ (a,J) V(3)-1(0,Ak ) 

= Z~ (Aka,J) + ei(a.k)z~ (O,Ak) V(3)-I(Aka,J), 

which is consistent with the assumptions 

(4.2) 

Z~ (O,Ak ) = Z~ (a,J) = O. (4.3) 

Now, using again the identity 

(O,Ak ) (a,A) = (Aka,hk (A»)(O,AA-Ik)' 

hk (A) = AkAA;:Jk, 

we obtain from (4.1) 

Z~(a,A) 

= Z~(O,hk (A»)V(3)(0,Ak ) + Z",(O,hk (A» 

X [Y(Aka,AkA) - Y(Aka,hk (A»)) V(3)(0,Ak ). 
(4.4) 

Therefore we need to determine Z ~ (O,h k (A»). It satisfies 
the following cohomological equation: 

Z~ (O,hh') - Z~ (O,h) - Z~ (O,h ') V(3)-1(0,h) 

=Z",(O,h)[Y(O,hh') - Y(O,h)], (4.5) 

where 

h=EI~ ~I, hl=EII~ ~l 
Then, it can be verified directly that 

Z~(O,h) = f z",(o,l~ ~1)~~(0,1~ ~1)dU (4.6) 

is the solution of (4.5) whose derivative is zero at the origin. 
Substituting (4.6) into (4.4), we end up with a solution of 
(4.1) satisfying (4.2) and (4.3). Thus we have removed the 
first obstruction to the general construction. We now prove 
by induction that the same holds for all other obstructions. 

Theorem 2: Assume that Zi (a,A) is known for i ~ n - 1 
with the properties 

Z~ (a,J) = Z~ (O,Ak ) = 0, 

Zi(O,U) = 0, ueSU(1), 

d:z ~ ( 0, I ~ ~ I ) I z = 0 = 0, i> 2. 
Then there exists Z" (a,A), mapping.@~ (the nth symme
trized tensor power of .@o) into .@O such that 
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Z"(gg') _zn(g) - V(g)zn(g,)v(n)(g-I) 

n-I 

= L zq(g) V(q)(g) L Z/I(g') 
q = 2 II + ... + I. = n 

1,;;;:1 

with 

and 

vq(g) = Vo(g) .,q, q integer 

Z~ (a,J) = Z:, (O,Ak ) = 0, 

Z"(o,u) = 0, ueSU(1), 

! z:, ( 0, I ~ ~ I ) I z = 0 = o. 
Proof' The result is proved as in Proposition 3, the only dif
ference being the expression of Z:, (O,h) now given by 

Z:'(O,h) = :t~f duz~(o,l~ ~1)V(q>(o,l~ ~I) 

with 

dz
r
(o)=!!....zr(o,ll zl)1 ' 2<r~n-l, 

dz dz 0 I z=o 

h=EI~ ~I· 
V. CONCLUDING REMARKS 

In conclusion, we want to stress some features of the 
previous construction. We have been able to build each term 
of the formal series (1.3) once the existence of a nontrivial 
cocycle has been proved. This has been obtained here using 
essentially the Abelian nature of the C + stabilizer group. 
Since the latter is no longer Abelian for Poincare groups of 
higher dimensionality, a similar result cannot be extrapolat
ed without further examination. 

It may look striking that the nonlinearities of the repre
sentation concern only pure Lorentz transformations. In 
fact, this property is strictly dependent on the choice made 
for the representation space; it ensures that the extension 
cocycle restricted to space-time translations is a coboundary 
instead of a pseudocoboundary. This would be false if we had 
chosen, for instance, the space of Fourier transforms offunc
tions in .@(R2

). Such a situation would deserve a separate 
study. 
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Applications of group theoretical methods in the path integral formalism of nonrelativistic 
quantum theory are considered. Analysis of the symmetry of the Lagrangian leads to the 
expansion of the short time propagator in matrix elements of unitary irreducible 
representations of the symmetry group. Identification of the coordinates with the group 
parameters transforms the path integral to integrals over the group manifold. The integration 
is performed using the orthogonality of the representations. Compact and noncom pact rotation 
groups are considered, where the corresponding path integral is embedded in Euclidean and 
pseudo-Euclidean spaces, respectively. The unit sphere and unit hyperboloid may either be 
viewed as the group manifold itself or at least as a group quotient. In the first case Fourier 
analysis leads to an expansion in group characters. In the second case an expansion in zonal 
spherical functions is obtained. As examples the groups SO (n), SU (2), SO (n - ~,1): and . 
SU(1,l) are explicitly discussed. The path integral on SO(n + m) and SO(n,m) m blsphencal 
coordinates is also treated. 

I. INTRODUCTION 

In the year 1948 Feynman 1,2 had established the path 
integration formalism of quantum theory. In field theories 
the functional integration has been successfully applied in 
the last two decades. In nonrelativistic quantum theory, 
however, not much progress in solving exactly particular 
problems has been made up to 1979. Only quadratic Lagran
gians, including a 1/,-2 potential, could be integrated due to 
their Gaussian nature. The breakthrough was made in 1979 
by Duru and Kleinert,3 who solved the path integral (in 
phase space) of the hydrogen atom for the first time. In con
figuration space this problem has been treated explicitly by 
Ho and Inomata4 (a critique of this work was made in the 
paper by Kleinert5

). For later calculations see Ref. 6. This 
success has become possible by employing new techniques 
such as local time rescaling and dimensional extension. With 
these tricks the list of exactly soluble problems has increased 
rapidly. Common to all these is the fact that the dimensional 
extension has been used for the realization of the dynamical 
symmetry of the Lagrangian. For example, the dynamical 
symmetry of the Coulomb3

.4 and dyonium problem5 has 
been utilized by the Kustaanheimo-Stiefel transformation 
being a nonlinear map from R3 into R4. Various problems 
having SU (2) as dynamical symmetry have become solvable 
by using similar methods. Examples are the P6schl-Tell
er,7.S Rosen-Morse,9,10 Hartmann,l1 and Hulthen poten
tials. 12 For noncompact groups only the SU( 1,1) symmetry 
of the modified P6schl-Teller potential 13 and the Kepler 
problem in a uniformly curved space l4 have been realized. 
Therefore the path integration on symmetry groups, espe
cially on compact and noncompact rotation groups, is of 
great importance. 

In the Schr6dinger theory the solution of symmetric 
problems is usually simplified by choosing proper coordi-

a) Dedicated to Hans 100s on the occasion of his 60th birthday. 

nates, e.g., spherical polar coordinates for spherically sym
metric potentials. In the path integral formalism this transi
tion is not that simple since for non-Cartesian coordinates 
additional quantum corrections of order O( If) do appear in 
the Lagrangian. 15.16 Indeed, the Feynman integral in the 
usual sliced-time basis2.17 is only valid in Cartesian coordi
nates. The aim of the present paper is to derive a general 
procedure for the path integral treatment on compact and 
noncom pact rotation groups. For this we have to embed the 
group manifold in Euclidean or pseudo-Euclidean spaces, 
respectively. We will proceed as follows. 

In the next section we start with the definition of our 
notation. For this we have to recall some properties of trans
formation groups and their representations. Section III is 
devoted to the extension of the Feynman ansatz in pseudo
Euclidean space, in order to include the noncompact groups. 
This makes necessary a modification of the usual regulariza
tion scheme. 16 In Sec. IV we introduce generalized polar 
coordinates and develop two equivalent methods for per
forming the angular integration. The first one is the charac
ter expansion. In lattice gauge theories this technique, called 
cluster expansion, is used extensively. IS Actually, the char
acter expansion of Dosch and Miiller,19 where the cluster 
expansion of a SU(2) Yang-Mills gauge theory on a two
dimensional lattice is done, looks very similar to the expan
sion formula of Junker and Inomata,1O where the path inte
gral on the SU (2) manifold is expanded in SU (2) group 
characters. However, it will be shown that SU(2) and 
SU (1,1) are the only simple Lie groups where this technique 
is applicable in ordinary quantum mechanics. In looking for 
a method having a wider application we develop an expan
sion in zonal spherical functions. This technique does indeed 
work on all homogeneous spaces, which may be viewed as a 
group quotient G / H. In the last part of Sec. IV the connec
tion between both expansions is shown. Finally we discuss 
an example for both methods for compact and noncom pact 
groups. As compact groups we choose SO(n) and SU(2). 
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For SU(2) we briefly review the path integral treatment in 
the Poschl-Teller problem in order to perform the path inte
gral on SO(n + m) in bispherical coordinates using the 
group chain SO(n + m) :::)SO(m) XSO(n). As noncom
pact groups we will take SO(n - 1,1) and SU( 1,1). An ap
plication of the SU ( 1, 1) propagator is made for the modified 
Poschl-Teller potential leading to a path integral treatment 
on SO(n,m) by using SO(n,m) :::)SO(m) XSO(n). In the 
Appendix we give the calculation of the Fourier coefficient 
for the SU ( 1,1) expansion which has been omitted by us in 
Ref. 13. 

II. TRANSFORMATION GROUPS AND THEIR 
REPRESENTATIONS 

In order to define our notation we repeat some proper
ties of transformation groups and their representations. 20.21 

A group G is called a transformation group of a space JI, if 
one may associate with each element gEG a transformation 
x --+ gx on JI. If there exists for any x,yEJi an element g such 
that gx = y, then G is called a transitive transformation 
group and JI a homogeneous space. 

Let G be a transitive transformation group of JI. Fur
thermore let !f be a linear vector space of functions f( x) , 

xEJi such that 

f(X)E!f ¢} f(gx)E!f, (2.1 ) 

for any gEG. WithfE!f and gEG a representation of the 
group G is given by 

D(g)f(x) =f(g-IX). (2.2) 

Choose !f to be the Hilbert space of square integrable func
tions with respect to a group invariant measure dJ-l(x) on 
JI. Then the above representation is unitary relative to the 
scalar product 

(2.3 ) 

Such a representation is called a regular representation. For 
compact groups the regular representation is decomposable 
into a direct sum of unitary irreducible representations Dl of 
this group on JI. (A generalization for noncompact groups 
may be found in Chap. 5 of Ref. 21.) They form a complete 
basis in the Hilbert space. 

Take Dl (g) to be a unitary irreducible representation of 
G in the Hilbert space !f. Furthermore, let H be a subgroup 
of G which leaves the nonzero vector aE!f invariant, i.e., 

D I(h)a = a, hEBe G. (2.4) 

Then Dl (g) is called representation of class 1 relative to H. 
With each vector fE!f we may associate a scalar function 

fl(g) = (Dl(g)f,a). (2.5) 

Herefl (g) is called spherical function of the representation 
Dl (g). Choosing a basis {bj } in !f such that bo = a, the 
matrix elements of D' (g) are given by 

d ~m (g) = (D '(g)bm,bn). (2.6) 

The d bm (g) are called associate spherical functions and the 
d bo (g) are the zonal spherical functions. Obviously, 
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d~o(gh) =d~o(g), dbo(h -Igh) =dbo(g). (2.7) 

The spherical functions are eigenfunctions of the Laplace
Beltrami operator on the homogeneous space JI = G I H. 
The Hilbert space is spanned by a complete set {l} of associ
ate spherical functions. 

Finally we give the general Fourier analysis on compact 
and noncompact groups22; 

f(g) = L d , Limn (/)d~m (g), 
1 m.n (2.8) 

Imn (/) = Lf(g)d ~n (g-I )dg. 

The sum ~l is to be taken over the complete set {l}. For 
compact groups d l is the dimension of the representation. 
However, we will call d, the dimension also in the case of 
infinite-dimensional unitary representations of noncom pact 
groups. In this case we may take 

ld
l d". d - D(/,l') £ £ mn (g) m'n' (g) g - --- Umm'Unn' 

G d, 
(2.9) 

as a definition for d, . In (2.9) D(/,I') stands for D(l- I') in 
the continuous and for Dl/' in the discrete case, as noncom
pact groups in general contain both series. For the contin
uous series ~I is replaced by an integral in (2.8). 

III. THE FEYNMAN PROPAGATOR IN PSEUDO
EUCLIDEAN SPACE 

According to Feynman l
•
2 the nonrelativistic quantum 

propagator K (rb ,ra ;tb - ta ) is given by afunctionalintegral 
over the action, 

= irb_= r(tb> exp {l...- f'b L dt} iii r (t). 
ra - r(ta) Ii )to 

(3.1) 

On the sliced-time basis the path integral in n dimensions is 
usually written as 

K(rb,ra;tb - ta) = lim f IT exp {l...-Sj} 
N_«> j=1 Ii 

N ( m )n12 N-I 
X II -.- II dnrj , 

j=1 2m'IiE j=1 
(3.2) 

with the short time action 

Sj = (mI2€)[(Axj)2 + ... + (Axj)2] - V(rj )€. (3.3 ) 

For convenience we have chosen an equidistant time slicing 
N€ = tb - ta, xl' (J-l = l, ... ,n) are the Cartesian coordinates 
ofr and Axf = xf - xf _ I • 

In many physically interesting problems the Lagrangian 
corresponding to (3.3) has a symmetry, which means that it 
is invariant under group transformations of the symmetry 
group. Therefore the Hamiltonian of the system may be ex
pressed by Casimir invariants of the dynamical symmetry 
group. The wave functions correspond to unitary irreducible 
representations in the Hilbert space. This is the well-known 
procedure used by the algebraic method. 23 
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However, the symmetry of the action may be also very 
useful in the path integral treatment. Expanding the phase 
exp{ (illi)S) via the Fourier decomposition (2.8) in a series 
of unitary irreducible representations, the path integral may 
be performed (at least partially) using the orthogonality 
(2.9) of the matrix elements. The use of this group property 
in path integration has already been suggested in 1970 by 
Dowker.24 The above path integral (3.2) is defined on a Eu
clidean space with metric g/LV = 0/Lv' As Feynman l has al
ready mentioned a generalization to an indefinite metric 

g/LV = diag {+ 1, ... , + 1,," -l.z. ... L-- n (3.4) 
~~ 

is possible. The pseudo-Euclidean space will be denoted by 
Ep,q. With metric (3.4) the short time action is given by 

Sj = (mI2E) [(Ax)2 + ... + (AxP2 

- (Ax) + 1)2 - ... - (Ax}H)2] - V(rj)E. (3.5) 

In order to match the boundary condition 

the measure has to be chosen in the following way: 

= lim J IT exp {~Sj} 
N-oo j=1 Ii 

N ( m )P/2( mi )q/2 N-I 
X II -.- -- II dp+qrj . 

j = I 2mIiE 21T'1iE j = I 

(3.7) 

For p = nand q = ° we recover the Euclidean propagator 
(3.2). The short time action (3.5) still remains invariant 
under some group transformation depending on VCr). 
Therefore the above arguments are valid in the pseudo-Eu
clidean space, too. Here the symmetry group will be in gen
eral noncompact. 

However, the above extension of the Feynman ansatz to 
Ep,q requires some modification of the usual path integral 
formalism. First we have to regularize the path integral in 
the following way: Integration over compact coordinates 
x ~ ... ,xp is regularized, as usual, by a mass having a small 
positive imaginary part, m-.m + i1] (1] > 0), that over the non
compact (xP+ I , ••• ,xp+

q ), however, by a small negative imagi

nary part of the mass, m-.m - i1]. 
For q = 0, i.e., the Euclidean case, this reduces to the 

prescription of Langguth and Inomata. 16 Second, due to the 
topology of Ep,q the scalar product 

(r,r) = (XI)2 + ... + (XP)2 _ (xP+ 1)2 _ ... _ (Xp+ q)2 

(3.8) 

can be positive, negative, or zero. Consequently, the space 
Ep,q may be divided into three different subspaces Ta: 

T + I = {rl (r,r) > O}, timelike, 

T _ I = {rl (r,r) < O}, spacelike, 

To = {rl (r,r) = O}, lightlike. 

(3.9) 

Integration over Cartesian coordinates in Ep,q is similar to 
the usual one in En. We still have Gaussian integrals. Up to 
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signs the methods of path integration in Cartesian coordi
nates on En may be applied here similarly. 2, 17,25 The propa
gator has contributions from space-, time- and lightlike 
paths. And also from paths intersecting different regions Ta . 

Systems that may evolve only along one kind of path are 
also physically interesting. For example, quantum mechan
ics on a space of constant negative curvature may be dis
cussed in one region Ta of En _ 1,1 (see Ref. 26). 

In this paper we will explore the path integral on such 
subspaces TaEEp,q. For this we introduce generalized polar 
coordinates rand (J /L, J-l = I, ... ,p + q - 1. In general we 
have 

XV = reV«(J 1, ... ,(Jp+q-I), V = I, ... ,p + q. (3.10) 

The functions eV define a unit vector in Ta, 

e = (el, ... ,e p + q ). ( 3.11) 

The set of all such vectors forms a hyperboloid ~ a ETa. We 
will call ~ a the unit sphere of Ta , 

~a={el(e,e)=a}, a=I,-I,O. (3.12) 

To be more explicit one should also distinguish the noncon
nected regions of Ta . 

The short time action of the free system on T ± I reads in 
polar coordinates (O..;rj < 00, f::.rj = rj - rj _ I ) 

Sj = ± (mI2E)f::.rJ ± (mIE)rjrj _ I [1 =+ (ej,ej _ I)]' 

(3.13 ) 

In To we have Sj = - (ej,ej _ I )mrjrj _ I IE. The corre
sponding path integral separates into an angular and radial 
part. 

K(rb,ra;tb - ta ) 

= lim J IT exp{~ s.} IT (~)P/2 
N-oo j=1 Ii J j=1 21riliE 

X .....!!!!...- II r~+q-I dr. dp+q-I!l .. ( 
. )q/2 N-I 

21T'1iE j=1 J J J 
(3.14) 

IV. PATH INTEGRATION IN GENERALIZED POLAR 
COORDINATES 

In this section we derive a general procedure for the 
angular path integration on Ep,q using group theoretical 
methods. 

Let G be a transformation group of ~a' i.e., 

e =ga. (4.1) 

The n X n matrix representation gEG (n = p + q) maps the 
fixed vector a into the vector e, both being unit vectors on 
~a' In (4.1) the vectors e and a have to be in the same 
subspace Ta. The unit sphere ~a is covered by all possible 
rotations (4.1). For example, we have 

e2 = + 1: a= (+ 1,0, ... ,0) for~+1 with XI>O, 

e2 = + 1: a = ( - 1,0, ... ,0) for ~ +1 with Xl <0, 

e2 = -1: a=(O, ... ,O,+I) for~_lt etc. (4.2) 

Note that to a~a corresponds aE5t' of Sec. II. 
A possible choice of the group G is one that contains 

SO(p,q), G~SO(p,q). However, other groups like SU(u,v) 
may do as well. For example, the unit sphere S 3 in the four-
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dimensional space E4 is isomorphic to the group manifold of 
SU (2). Therefore instead of SO ( 4) we may choose SU (2) as 
a transformation group of S 3 = SO ( 4) /SO( 3). 

In this paper we restrict ourselves to the cases where 
JY' a is isomorphic to the group manifold of G, JY' a = G, or 
JY'a is given by a group quotient G /R, JY'a = G /R. Here 
G = SO (p,q) and R is the stationary subgroup of a. 

A. Expansion in group characters, 2 .. :=G 

First we consider the special case JY'a =G, where the 
unit sphere is isomorphic to G. In order to find all rotation 
groups having this property we use the necessary condition 
dim JY'a = dim G. From Table I it follows that SO(2), 
SOC 1,1), SU(2), and SUe 1,1) are the only candidates. 

For the one-parameter groups SO(2) and SOC 1,1) the 
irreducible representations are one-dimensional [nonuni
tary for SO (1 , 1) ]. Obviously their characters and zonal 
spherical functions are identical and therefore these groups 
will be included in the general theory of the next section. 
Actually the expansions reduce to the Fourier and Laplace 
expansions, respectively. 

Therefore we are left with the groups SU(2) and 
SU(1,1). First we consider the group SU(2) which is iso
morphic to S3. The infinitesimal generators are given by 
Pauli matrices: 

(4.3) 

Defining 

sl' = Cia,I), $1' = ( - ia,I), (4.4) 

the isomorphism between points on the unit sphere xeS 3 cor
responding to unit vectors e ~ (e ~exl' = 1) and the group 
elements geSU (2) may be established by 

ie! + e;) 
e! - ie! ' 

(4.5) 

(4.6) 

Note that indeed det gx = 1, g! gx = 1 and therefore 
geSU(2). From Eq. (4.5) follows 

Tr(ga- 1 gb) = 2ea • eb. (4.7) 

The explicit identification of the coordinates will be given 
later. 

The group manifold of SU(1,1) is isomorphic to the 
hyperboloid 13 

(e,e) = el'el' = - (e l )2 _ (e2)2 + (e3)2 + (e4)2, 

I' (I 2 3 4) (I 2 3 4) e = e,e,e,e , e I' = - e , - e ,e ,e . 
(4.8) 

The infinitesimal generators may be given by 

TABLE I. Solutions for dim G = dim Ha. 

G dimG dimHa dimG=dimHa 

SO (p,q) (p+q)(p+q-1)/2 p+q-I p+q=2 
SU(U,v) (u + V)2 - I 2(u + v) - I u + v = 2 
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al = e ~), a2 = ( _ ~ ~), a3 = (~ _ ~) . 
(4.9) 

The isomorphism can be established through 

sl' = Cia,I), $1' = ( - ia\I), (4.10) 

using the scalar product (4.8) on E 2,2 : 

(4.11 ) 

(4.12) 

For gx being an element of SU (1,1) it has to fulfill the fol
lowing conditions. The pseudounitarity g-I = a 3 gta3 is ob
viously true. But in order to get det g = + 1 we must have 
(e,e) = + 1. This means the hyperboloid J¥' + 1 has to be 
chosen. Again we find that the scalar product on JY' + 1 may 
be written as a trace: 

( 4.13) 

We conclude that for the case with G=JY'a, the corre
sponding short time propagator depends only on Tr(gj ), gj 
= g/=- \ gj and is therefore invariant under group transfor
mationsf(g) -f(ggg-I). Such functions are called central 
functions and may be expanded in group characters. 20

,21 The 
Fourier decomposition (2.8) simplifies to 

I(g) = L d, X(l) (g )f(l), , 
(4.14) Ali f(l) = - f(g)x(l) * (g)dg. 

d, G 

Applying (4.14) to the short time propagator, 

leads to 

( 4.16) 

The radial short time propagat?r K, (rj ,rj _ 1 ;E) is deter
mined by the Fourier coefficientl(l). 

Using the group properties 

LX(l)(g/=-11 gj )XU ') (gj- 1 gj+ 1 )dgj 

8 (1,1 ' ) (I) ( - 1 ) 
= -d-,-X gj-I gj+ 1 , ( 4.17) 

m,n 

the angular integration can be performed. The d ~n (g) are 
the unitary irreducible representations of G in the Hilbert 
space .Y being infinite dimensional for noncompact groups. 
Note that dO in Eq. (3.14) is given by dO = lJY'a Idg, where 
lJ¥'a I denotes the volume of JY'a. The resulting propagator 
reads 
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= L KI (rb,ra;tb - ta ) Ylmn (eb) yrmn (ea ), (4.18 ) 
I,m,n 

with 

( 4.19) 

which we may call generalized harmonics. As for 
G = SU(2) they lead to the monopole harmonicsofWu and 
Yang.27 Here KI(rb,ra;tb - ta ) is given by 

KI(rb,ra;tb -tal 

= ;~n: J iii KI(rj,rj _ 1 ;€)~~II rfH- I drj . (4.20) 

The expansions for the compact groups SO (2) = U ( 1 ) 
=8 I and SU(2) =8 3 have been discussed in detail by lunker 
and Inomata. \0 The expansion of the SU ( 1,1) propagator in 
E 2,2 with metric ( + 1, + 1, - 1, - 1) has been given by the 
authors. 13 A detailed discussion for SU ( 1, 1) in E 2,2 with 
metric (4.8) follows in Sec. VI. The method of character 
expansion has also been used in the high temperature expan
sion offield theories on the lattice. IS 

Since as a homogeneous space 7t" a usually may be 
viewed as a quotient G 1 H, we do need a general scheme for 
performing the path integration. Such a method may be 
found by using the expansion of the short time propagator in 
zonal spherical functions. 

B. Expansion in zonal spherical functions, Jra =GIH 

In this subsection we consider the case 7t" a = G 1 H, 
where the unit sphere is given by a group quotient. The sub
group He G is the little group of a, i.e., ha = a, hEll. 

With (4.1) the scalar product in the short time action 
(3.13) may be written as 

(ej,ej _ I ) = (gja,gj _ I a) = (gJ-::' \ gja,a). (4.21) 

The short time propagator (4.15) again depends on the 
group element 

gj =gj-=-\ gj (4.22) 

and is invariant with respect to left and right transforma
tions of the subgroup H: 

K(hgjh -I;€) = K(gj;E), hEll. (4.23) 

Functions having this property may be expanded in 
zonal spherical functions of the representation of class 1 rela
tive to H (see Ref. 20). The angles ()J" can be identified with 
the group parameters of G which do not belong to the sub
group H. As by construction 7t" a = G 1 H, dim 7t" a 

= dim G - dim H, this identification is always possible. 
For functions having the property I(hgh -I) = I(g) the 

Fourier decomposition (2.8) simplifies to 

I(g) = Ldl d~(g)J(l), 
I 

J(l) = f>Ya/(g)d~(g)dr. 
(4.24) 

In (4.24) the integration over the subgroup H has already 
been performed using dg = dr dh. Here dr and dh are the 
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normalized measures of £'a and H, respectively. Note that 
here dO is given by I£'a Idr. 

Since the short time propagator (4.23) belongs to this 
class of functions the expansion yields 

K(gj;€) = L KI (rj,rj _ I ;€)dl d ~ (gj)' 
I 

( 4.25) 

where the radial short time propagator if.l (rj,rj _ ] ;€) is 
again determined by the Fourier coefficientl(l). 

Using the group properties 

d ~ (gj) = L d ~o (gj )d ~o (gj - I ), 

m (4.26) 

i 8 ' 
. 

d~o (g)d~~ (g)dr = ~8(l,1'), 
;.va dl 

the angular path integration can be performed. The result is 

K(rb,ra ;tb - ta ) = L KI (rb,ra;tb - ta ) Ylm (eb) Y?;" (ea ), 
I.m 

(4.27) 

where 

( 4.28) 

are the hyperspherical harmonics on £'a. Note 
KI (rb,ra ;tb - ta ) is the remaining radial path integral 
(4.20). 

Since any unit sphere £'a in Ep,q can be viewed as a 
quotient G 1 H, the expansion in zonal spherical functions is a 
general method for performing the path integral on £' a ' As 
examples we will discuss the cases G = SO(n) and 
SO(n - 1,1) withH = SO(n - 1). 

C. Equivalence of both methods 

Above we have discussed two different methods for the 
path integration on homogeneous spaces. However, as the 
expansion in zonal spherical functions will always work by 
construction there arises the question of whether both meth
ods are equivalent or not. In the following we will show that 
they are indeed identical in the cases where the character 
expansion does work. 

According to Maurin (Ref. 21, p. 237ff), a character of 
a compact group H can be considered as a zonal spherical 
function on the group G = H X H. The homogeneous space 
G IH may be identified with H. For Abelian groups G the 
characters are also zonal spherical functions of G. Here G 
need not be compact. 

Restricting ourselves to simple Lie groups, the only iso
morphism having the above structure is D2=A] XA] (Ref. 
28). The following isomorphisms are obtained 23: 

SO(4) =SU(2) XSU(2)/Zz, 

SO(2,2) "",SU( 1,1) XSU( 1,1 )/Z2 • 

(4.29) 

With SU(2)/Z2 =S0(3) and SU(l,I)/Z2 =SO(2,l) we 
identify the group manifolds ofSU(2) and sue 1,1) with the 
quotients SOc 4 )/SO(3) and SO(2,2)/SO(2,1), respective
ly. Therefore the discussion of SU (2) and SU (l, 1) in Sec. 
IV A contains all simple Lie groups where the expansion in 
group characters works. By Marinov and TerentyevZ9 the 
fact that the path integral over the SU(n) manifold with 
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n > 2 cannot be embedded into a flat space has already been 
noticed. 

v. EXAMPLES FOR COMPACT GROUPS 

A. Path integration on SO(n), Jf"a =SO(n)/SO(n-1) 

The path integral over sn - I = SO(n )/SO(n - 1) has 
been discussed by Marinov and Terentyev30 for the first 
time, see also Refs. 10 and 31. However, up to now no explic
it path integral treatment has been given. 

Introducing spherical polar coordinates 

Xl = r sin ¢l(n - I) •• 'sin ¢l(I), 

X2 = r sin ¢l(n - I) •• 'cos ¢l(l), 

xn = r cos ¢l(n - I), 

O';;;;r< 00, 

0.;;;;¢l(1) < 21T, 

O';;;;¢l(k)<1T (k#1), 

the Feynman ansatz on En reads 

K(rb,ra;tb - ta ) 

= lim J IT exp {.!....Sj} 
N-oo j~1 Ii 

X IT (~)n/2 NIT I rj - I drj d n - 10j' 
j~1 21TlftE j~1 

with 

Sj = (mI2E)t:.'; + (mIE)rjrj _ 1 [1- ej • ej _ 1 ], 

d n - 10. = sinn - 2 ",(n - I) .• 'sin2 ",(3) 
J 'l'J 'l'J 

(5.1 ) 

(5.2) 

(5.3 ) 

Xsin¢lY)d¢l?-I)"·d¢l]I). (5.4) 

In order to perform the expansion of the short time pro
pagator in zonal spherical functions we have to recall some 
properties of the SO ( n) representations. 20 

A n X n matrix representation may be given by a product 
of rotation matrices 

g =gn-I ... gk ... gl, 

gk = gl (O~)" 'gi (07)" 'gk (0 Z), 
( 5.5) 

wheregi (0 7) represents a rotation in the (i,i + 1) plane by 
an angle 07: 

( X'i) (cos 07 sin 07 ) ( Xi ) (5.6) 
\x'i+1 = -sin07cos07 \xi + I . 

The n (n - 1) 12 parameters 0 7 are called Eulerian angles of 
the rotation g, 

0.;;;;07 < 1T, i = 2,3, ... ,k, 

0.;;;;0~ <21T, k = 1,2, ... ,n - 1 
(5.7) 

The associate invariant measure is 

d =n
rr
-l{r(k+1)/2) rrk sini-IOkdO k}. 

g k=1 21T[(k+I)12] i=1 " 
(5.8) 

Choosing a = (0, ... ,0,1) as the stationary vector, each point 
eon sn - I may be obtained by a rotation e = gao The param-
eters 0 ~ - I , ... ,0 ~ =: of g are identical with the polar coordi-
nates ¢l(l), ... ,¢l(n - I) of e. The stationary subgroup 
H = SO(n - 1) of a is given by the elements 
h =gk (k #n - 1). Integrating (5.8) overall parameters of 
H yields the normalized volume element on sn - I : 
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(5.9) 

The dimension of the unitary irreducible representation 
DI (g) in the Hilbert space is 

d l = (21 + n - 2) [(/ + n - 3)!//!(n - 2)!], 

1 = 0,1,2,... . (5.10) 

The zonal spherical functions depend only on the parameter 
o ~ =: and are given by Gegenbauer polynomials, 

d ~ (g) = [( n - 3)!l!/ (/ + n - 3)!] 

xCln-2)/2(cosO~=:). (5.11) 

Note, that E> == 0 ~ = : is the angle between the vectors a and e, 
i.e., a • e = cos E>. 

The associate zonal spherical functions are denoted by 
d ~o (g), where M stands for the (n - 2) -tuple 

M= (m l,m2, ... ,mn_ 2), 

I==mo">m l ">'" ">mn _ 3"> Imn - 21· 
(5.12) 

An explicit expression is given by Vilenkin,20 see also Eq. 
(5.25) . 

Now we are well prepared for the expansion of the short 
time propagator. According to the general theory of Sec. IV, 
the action may be written as 

Sj = (mI2E)t:.';+ (mIE)rjrj _ 1 [1-gja·a], (5.13) 

and depends only on the parameter E> == 0 ~ = : of gj. Actually 
we have gja· a = cos E>. For the Fourier analysis only the 
factor exp (iz cos E», where z = - mrj rj _ I 1 Eli, has to be 
considered. We have 

exp{izcosE>}= 52 dld~(gj)I(/), 
I~O 

(5.14 ) 

(5.15 ) 

The integral can be simplified to 

I(l) = r(nI2)r(n - 2)l! 

2{iTr(n - 1)/2)r(n + 1- 2) 

X LT eizcos ElC In - 2)/2(COS E»sinn - 2 E> dE> (5.16) 

and yields (p. 221 in Ref. 32), 

I(l) = r(nI2)(2Iz) (n - 2)/2iIJ1+ (n _ 2)12 (Z). (5.17) 

Replacing the Bessel function Jv (z) by the modified one 
Iv (iz) leads to the well-known Gegenbauer formula 
[ v = (n - 2) 12] : 

. ( 2)V 00 e,zcosEl= --:- rev) L (/+v)Cr(cosE»II+v(iz). 
IZ I~O 

(5.18 ) 

This formula has been used earlier for the path integration in 
polar coordinates. 10,30.31 

The short time propagator now reads 

K( A r(nI2) ~ d d l (A K ( gj ,E) = /2 £.. I 00 gj) I rj ,rj _ I ;E) . 
2~ I~O 

( 5.19) 

The angular path integral can be performed and we find 
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The radial propagator is given by 

(5.21 ) 

where we have made use of the asymptotic formula l6 

n-3 

1m z < 0 ¢::> 1m m > O. (5.22) 

The propagator (5.20) may be also expressed in terms of 
hyperspherical harmonics [see Eq. (4.27)] 

00 r(n/2) 
K(rb,ra;tb - ta ) = I KI (ra,rb;tb - ta ) -'--~ 

1=0 21T"/2 

XIY1M (eb )Y1M(ea ), (5.23 ) 
M 

where 

I= I I (5.24 ) 
M m.=Om2 =O 

The Y1M (e) are given explicitly by20 

Y (e)=A 1 II {Cmk+,+(n-k-2)/2(cosJ.(n-k-l»sinmk+'J.(n-k-I)}exp(im .1.(1) 
1M M mk-mk+1 ." ." n-2'f' , 

k=O 

I 2 1 II mk-mk+l' n-3 { 22mk+l+n-k-4( )' 
(AM) =--- (n-k-2+2mk) 

r(n/2) k=O fiir(mk+ 1 + mk + n - k - 2) 

X [r(mk+ I + (n - k - 2)/2)]2} . 

They form a complete set on S" - I : 

1n-, Y1M(e)yrM.(e)dr=ol/'0MM'· (5.26) 

The result (5.23) is identical with that obtained ear
lier. 10.15,31,33 The SO(n) propagator has already been proved 
useful in the path integration of the n-dimensional harmonic 
oscillator and the singular potential V(r) = - a/r (see 
Refs. 8 and 31 ) which is sometimes erroneously called the n
dimensional Coulomb problem. 

B. Path integration over the SU(2) manifold, Ka =53 

The path integration over the SU(2) manifold has re
cently attracted much attention in the Feynman quantiza
tion of various problems having SU(2) as dynamical sym
metry. Examples are the nonsymmetric Rosen-Morse, 10 

P6schl-Teller/ Hartmann,l1 and Hulthen potentials. 12 

Even for the dyonium problem6 the expansion of the Feyn
man ansatz in SU(2) matrix elements has been proved use
ful. In this section we would like to show how this SU (2 ) 
expansion, derived by Junker and Inomata,lo can be incor
porated into the general scheme of Sec. IV. 

The spinor representation of SU (2) is usually parame
trized in Eulerian angles20

: 

(
ei'P/2 

g(t/J,(J,t/J) = 0 

(

COS (J /2 
X _ sin (J /2 

sin (J /2) ( eil/l/2 

cos (J /2 0 
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(5.27) 

(5.25 ) 

The matrix elements of the (2J + 1 )-dimensional unitary 
irreducible representation in the Hilbert space are the well
known Wigner functions, 

d-:"n(g) = e-im'Pd-:"n«(J)e-inl/l, 

J = 0, p,~, ... , - J<.m,n<,J. 

The characters are 

(J)( ) = ~ d J ( ) = sin(2J + 1)0/2 
X g £.. mm g . 1::\/2 ' 

m=-J SlD~ 

where 

cos (~) = cos (~) cos (qJ ~ t/J»). 

The invariant volume element follows to be 

dg = (l/167?)sin (J d(J dqJ dt/J. 

(5.28) 

(5.29) 

(5.30) 

(5.31 ) 

Comparing (5.27) with the spinor representation (4.5) of 
Sec. IV suggests the following parametrization of E4 : 

Xl = r sin«(J /2)sin(qJ - t/J)/2), 
x2 = r sin«(J /2)cos( (qJ _ t/J)/2), O<'qJ < 21T, 

O<.(J < 1T, (532) 
x 3 = r cos«(J 12)sin(qJ + t/J)/2), . 

O<.t/J < 41T. 
X4 = rcos«(J /2)cos(qJ + t/J)/2), 

The corresponding Feynman ansatz reads 

K(rb,r .. ;tb - ta ) = 1~~ J iiI exp {~ Sj} 

X IT (~)2 Yf rJ drj 27? dgj , 
j= 1 2mfi£ j= 1 

S. = m fl."; + m r.r. I [1 - 21 Tr(gj')] ' (5.33) j 2€ j € j j-
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where we have made use of ( 4. 7). 
The expansion of the factor exp{z Tr(g)} in SU(2) 

characters has already been investigated in lattice gauge the
ories l9: . 

1 
exp{z Tr(g)} = I (2J + 1)-I2J+ I (2z)X(J) (g). 

J z 
(5.34 ) 

For 2z = mrjrj _ I/irli we find using the asymptotic formula 
(5.22) for small € 

exp rmr~-l [1 - ~ Tr(gj)]} 

::::::_1 ( 21ri-l1£ )3/2 I (2J + 1) 
2~ mrjrj _ 1 J 

Xexp { - ~[J(J + 1) +~] 21f€ } X(J)(gj)' 
~ 16 m00-1 

(5.35) 

This is the expansion derived by Junker and Inomata.1O A 
similar formula has been given by Duru.7 It contains only 
integer angular momenta J and therefore does not yield the 
complete SU (2) propagator. 

Performing the angular integration leads to 

(5.36) 

where 

N ( m )112 N-I 
X II -.- II drp 

j= 1 2m-l1£ j= 1 

(5.37) 

Sf = m ll.rJ _ [J(J + 1) +~] 2-11£ • 
2€ 16 mrjrj _ 1 

The result is identical with (5.20) for n = 4, as expected. 
As already mentioned, the above expansion has been 

used for various problems having SU(2) symmetry. As an 
instructive example we may take the one-dimensional 
Poschl-Teller potential34 

V(x) = lfa
2 (~ - i + A 2 - i) 

2m sin2 ax cos2 ax ' 

1r 
O<x<-. 

2a 
(5.38) 

A detailed discussion may be found in Refs. 8, 10, and 35. 
Here we just state that for () = 2ax, the Feynman ansatz 
reads 

N ( m )1I2N- 1l 
X II . 2 II -d()j' 

j= I 2mM € j= 1 2 
(5.39) 

with 

1985 J. Math. Phys .• Vol. 28, No.9, September 1987 

(5.40) 

For K, AeN the one-dimensional path integral can be trans
formed into that of the SU(2) propagator9

•
10

: 

K(xb,xa;tb - ta ) 

=!!... (sin ()b sin ()a) 1/2 exp{ - ifla
2 

(tb - ta)} 
4 8m 

X f1T r Q«()b,q:Jb,l/lb;()a,O,O;tb - ta ) 

Xexp {(A ;K q:Jb + A ~K l/lb)} dl/lb dq:Jb' (5.41) 

where Q«()b,q:Jb,l/lb;()a,O,O;tb - ta ) is indeed a path integral 
over SU(2), 

The integration can now be performed and yields 

00 

= a(sin ()b sin ()a) 1/2 I (2J + 1) 
J= (K+A.)/2 

X d ~A. + K)/2.(A. _ K)/2 «()b )d ~t + K)/2.(A. - K)/2 «() a) 

(5.42) 

(5.43 ) 

xexp { - ~ (2J + 1)2 ~2a2 (tb - ta)} . (5.44) 
~ 2m 

Here J is either an integer or a half-integer depending on 
(A + K)/2. Shifting the summation index yields the stan
dard form [in terms of Jacobi polynomials P ~a.P) (z)] 

K(xb,xa;tb - ta ) 

= i: exp{ - ~En (tb - ta )}'IIn (xb)'II:'(xa ), 
n=O ~ 

where 

En = (2n +K+A + 1)2(lfa2/2m), 

'lin (x) = [2a(2n +K+A + l)n!(n +K+A)!]I12 
(n +K)!(n +A)! 

(5.45) 

(5.46) 

X sinK + 112 ax cosA. + 112 ax P ~K.A.)( 1 - 2 sin2 ax). 
(5.47) 

Path integration in bispherical coordinates: The above 
solution of the Poschl-Teller problem now enables us to per
form the path integral in bispherical coordinates 
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Xl = r sin(O /2)sin a(n - I) ... sin a(1), 

xn = rsin(O /2)cos a(n-I), 

xn + 1= r cos(O /2)sinp (m - I) .. 'sin p{l), 

O";;r< 00, 

O..;;a(J), P (1) < 21T, 

O..;;a(i), P (i) ,0 < 1T(i i= 1 ). 
(5.48 ) 

xn + m = r cos(O /2)cosP (m-I), 

The Jacobian is 

d m + nr = ~ +n -I dr2- sinn - I.! cosm -I.! dO d n- 1!1(a)d m- 1!1 (tJ) , 
2 2 2 

(5.49) 

where d!1 is given similar to Eq. (5.4). 
The propagator of the free system in Em + n is 

J N {i} N ( m )(m + n)/2 N - I 
K(rb,fa;fb -fa) = lim II exp -Sj II --. - IT dm+nrj' 

N-oo j=1 " j=1 2mli€ j=1 

(5.50) 

s. = m !l.~ + !!!. r.r I (1 _ cos !l.Oj) 
j 2€ j € j j- 2 

m . OJ . OJ_I a a m O· O· I + -rjrj _ 1 SIn-SIn -- (1 -e'_I "e.) + -r.r·_1 cos2.cos~ (1 - f!J-1 . f!J), 
€ 2 2 "j"j € jj 2 2 

( 5.51) 

where ea and ff3 are the unit vectors in the subspaces En and Em' respectively. 
Guided by the group chain SO(m + n) :JSO(m) XSO(n) the integration over the anglesa(i) andp(i) can be performed 

analogously to Sec. V A. We find 

(5.52) 

where 

J N { i - } N ( m ) N-I 1 
X lim IT exp -Sj IT -.- II rj drj -dOl' 

N-oo j=1 "j=1 2mli€ j=1 2 
(5.53 ) 

S. = - !l.~ + - r.r· I 1 - cos -- - + 4 
- m m ( !l.Oj ) [ ,u2 - ! v _ I ] ,,2€ 

j 2€ j € j j- 2 sin(0/2)sin(Oj_I/2) cos(Oj/2)cos(Oj_I12) 2mr
j
rj _ I ' 

(5.54) 

with,u = I + (n - 2)/2 and v = A. + (m - 2)/2. The 0 integral is now formal identical with the Poschl-Teller problem 
leading to 

X L (2J + 1) 
J= (I' + v)/2 

Xd ~I' + v)/2,(v _ 1')/2 (Ob )d~! + v)I2,(v - 1')12 (Ob) 

(5.55 ) 

where K J (rb,ra;tb - ta ) is given by Eq. (5.37). Note that 
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(5.53) can only be transformed into a SU(2) integral for 
evenm and n. 

VI. EXAMPLES FOR NONCOMPACT GROUPS 

Up to now we have dealt only with compact groups, 
where the final results were already known by other meth
ods. However, the general theory of Secs. III and IV was 
formulated in such a way that noncompact groups can also 
be treated. Here we will choose as examples the n-dimen
sionalLorentzgroupSO(n -1,1) and SU(1,1).These non
compact groups are often used for scattering problems in 
quantum theory. Both can be viewed as analytical continua
tions ofSO(n) and SU(2), respectively. Therefore we will 
keep close to the calculation of the previous section. 
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A. Path integration on G=SO(n-1,1), Ka CSO(n-1,1)/ 
SO(n) 

As already mentioned, the space En _ 1,1 having the met-
ric 

(r,r) = (XI)2 + ... + (Xn-I)2 - (xn)2 (6.1) 

consists of topologically different subspaces. Here we will 
perform the path integralonK _IET_ I = {rl (r,r) <O}, the 
spacelike subspace. The polar coordinates on T -I may be 
introduced via 

Xl = r sinh t/J(n - I) sin t/J(n - 2) •• 'sin t/J(l), 

x2 = r sinh t/J(n - I) sin t/J(n - 2) •• 'cos t/J(1), 
O<r, t/J(n - I) < 00, 

O<t/J(l) < 21T, (6.2) 

O<t/J(k)<1T (k#l,n-1). 

The Feynman ansatz reads 

K(rb,ra;tb - ta ) = lim f IT exp {~Sj} 
N-oo j=1 ." 

N ( m )(n- 1)/2 XII -. 
j= 1 2mfzE 

ml II d n ( 
. )112 N-I 

X -- rj , 

21TfzE j = 1 

with 

Sj = - (m/2E) Arf - (m/E)rjrj _ 1 [1 + (ej,ej _ 1 )], 

d n - In = sinhn - 2 t/J(n - I) sinn - 3t/J(n - 2) •• 'sin t/J(2) 

X dt/J(n- I) .. ·dt/J(l). 

(6.3) 

(6.4) 

( 6.5) 

Before proceeding we have to recall some properties of 
the SO (n - I, I) representations.20 

The n X n matrix representation may be given by prod
ucts of hyperbolic and ordinary rotations: 

g =g(n-I)h, (6.6) 

where h is a n X n representation of the maximal compact 
subgroup H = SO(n - 1) given by Eq. (5.5), and 

g( /J - I) = g I ( 0 7 - I ) ... g k (0 k - I ) ... g n _ I (0: = I ), ( 6.7 ) 

wheregd8 k - I) (k #n - I), is a rotation in the (k,k + I) 
plane [see Eq. (5.6)]. Here gn _ I (8: = :) is the Lorentz 
transformation 

(
X"'-I) = (C~Sh 0:= I sinh 8:= I) (xn

-
I
). (6.8) 

x'/J smh 0 ~ = : cosh 8: = I xn 

The parameter 0: =: is in the interval 0<0: =: < 00 and all 
others are limited analogously to Eq. (5.7). The invariant 
volume element may be obtained by analytical continuation 
of (5.8): 

dg= r(n/2) sinhn- 2 8/J-I sinn-30n-I"'sinOn-1 
21T"/2 /J-I n-2 2 

Xd8~=:"'d87-ldh, (6.9) 

dh is the corresponding measure of hESO (n - I). 
Taking the northpole a = (0, ... ,0, + I) as stationary 

vector, each e on the spacelike hyperboloid JY -I may be 
obtained by the transformation e = gao The polar coordi
nates t/J(l), ... ,t/J(/J - 1) of e are given by the parameters 
87 - " ... ,0: =: of g(n - I) • The little group is SO(n - I). 
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Here JY _ I is also called the (n - 1) -dimensional Loba
chevsky space, denoted by An - I (see Ref. 20). Group theo
retically we have 

An - I CSO(n - 1,1 )/SO(n - 1), (6.10) 

where An - I is a model of a space of constant negative curva
ture, similar to the way sn - I represents a space of constant 
positive curvature. Quantum mechanics on spaces with neg
ative curvature is of interest. 26 For example quantum chaos 
is recently studied on such topologies. 36 

The normalized volume element on JY -I' in the sense 
of SK_, /(r)8(r)dr =/(0), is 

(6.11) 

The unitary irreducible representations Dl in the Hilbert 
space are continuous, 20 

fundamental series: 1 = - (n - 2)/2 + ip, 

- 00 <p< + 00, 

complementary series: - n + 2 < 1 < O. 
( 6.12) 

The zonal spherical functions depend only on the parameter 
0=0: =:. (e,a) = - cosh 0 (see Ref. 20): 

d 1 (g)=2(n-3)/2 r(n-I)/2) p(3-nJ/2 (cosh 0). 
00 sinh(n - 3)/20 1+ (n - 3)/2 

(6.13 ) 

Expressing the Legendre function P '!' (z) in terms of Gegen
bauer functions shows the analytical continuation of (5.11) 
explicitly: 

dix, (g) = (n - 3)!r(l + I) Cin- 2)/2(cosh 0) (6.14) 
r(l + n - 2) 

The associate spherical functions d ~o (g) may be written as 
a product due to Eq. (6.6): 

(6.15 ) 

with 

K = (k,m\> ... ,mn _ 3)' 

M= (m\> ... ,mn _ 3 ), 

K' = (k,O, ... ,O), 
k = 0,1,2, .... 

Actually, d ~ 0 (h) is the associate spherical function of the 
subgroup SO(n - 1) [see Eq. (5.25)]. Here d~.o (g(n -I» 
again depends only on 0 and is given by20 

M. BOhm and G. Junker 1987 



                                                                                                                                    

d~'o(g(n-I» 

= (_1)k2(n-5)/2 rUn - 3)/2)rU + 1) 
r(n-3)rU-k+ 1) 

x [(n + 2k _ 3{(n - 2)rk(~ + k - 3) f/2 

X sinh(3 - n) /20 P;~ (:~3;j2k( cosh 0), (6.17) 

For the expansion in zonal spherical functions only the fun
damental series in (6.12) has to be considered, Vilenkin 20 

distinguishes between even and odd dimension [e = ga,j( e) 
being invariant under SO (n - 1) transformations]: 

n =2m +2: 

fee) = [( - 1)m22m+ 11T"'+ 1/2r(m + 1/2)]-1 

xf+ 00 ru + 2m) /U)d l ( )d 
_ 00 r(/) 00 g p, 

n=2m+l: 

fee) = [( -1)m+122m1T"'r(m)]-1 

xf+ 00 ru + 2m - 1) 

- 00 ru) 
X cot( 1T/)/U)d ~ (g)dp, 

with / = - (n - 2) 12 + ip and 

I(/) = JW'/(e)d~ (g-I)dn-In. 

(6.18 ) 

( 6.19) 

Using some group properties one finds the shorter formula
tion 

( 
n-2)~ I X 1 ± i -2 -p fU)d 00 (g )dp, (6.20) 

I(/) = { f(g)d ~ (g-I )dg, 
JSO(n -1,1) 

(6.21 ) 

where the upper sign has to be taken for even dimensions and 
the lower one for odd n, respectively, However, as the Le
gendre function P '"- 112 + ip (z) is symmetric in the index p 
(see Ref. 36), i.e., p a

_ 1I2 + ip (z) = P,"- 112 _ ip (z), the sepa
ration between even and odd n is obsolete. The integration in 
(6.20) is reducible to one along the positivep axis and the 
substitution 

f(cosh 0) = 2(n - 3)/2 r(n/2) sinh(n - 3)/2 0 f(g) (6.22) 
[iT 

leads to the generalized Mehler transformation37: 

ji-U) = 1r(n-2)/2+ipW roo c(p)P<2- n)/2 (t)dp, 
tr Up W Jo 112+ Ip 

(6.23 ) 

(6.24) 

Here n may be an arbitrary complex number. 
In the following we consider the Fourier analysis on 

SO(n - 1,1) in the reduced form 
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f(g) = roo 2 Ir(n - 2)/2 + ipWji~(/)dl ()d (6.25) 
Jo IrUpWr(n - 1) 00 g p, 

with/(l) given by (6.21). Comparison with Eq. (2.8) leads 
to the definition of the dimension 

dl = 2[ Ir(n - 2)/2 + ipW/lrUpWr(n - 1)]. 
(6.26) 

Indeed analytical continuation of the dimension d ~O(n) for 
SO(n) in /-+ - (n - 2)/2 + ip gives 

dso(n)-+dl( _1)(n-2)/2{1, forevenn, (6.27) 
I coth 1TP, for odd n. 

The above definition for dl is confirmed by the orthogonality 

( d~o(g)dk~(g)dg= o(p-p') 0KL' (6.28) 
JsO(n-I,I) d l 

For the expansion of the short time propagator we re
write the action (6.4) using (ej,ej _ l ) = (gja,a) 

= - cosh 0. Note, that now 0 is the parameter 8 ~ =: of 
the group element gj = gJ'~- \ gj' Again only the factor 
exp{z cosh 0} with z = imrj ri _ I 1 fIE has to be considered. 
For the Fourier coefficient we have (v = (3 - n)/2) 

ji~(/) = r(n/2) 100 

ezt(t2 _ 1) -v/2pv . (t)dt . r= - 1/2 + Ip • 
2\11T I 

(6.29) 

WithRev< 1(:::::}n> 1) andRez<O (:::::}Imm>O) the in
tegral can be performed (p. 194 in Ref. 32): 

ji~(l) = r(n/2) 2(n - 2)/2( _ z)V- I12K ( - z) (6.30) [iT Ip , 

where Kip ( - z) is the modified Bessel function of the third 
kind. Using the asymptotic form for Izl-+ 00 and 
larg zl < 31T/2, 

~ { p2 + 1/4 ( 1 )} 
Kip ( - z) = -V _ 2z exp z + 2z + 0 Z2 ' 

the path integration results in 

K(rb,ra;tb - ta ) 

(6.31 ) 

l oo r(n/2) d d l -I K d = I 00 (ga gb) p (rb,ra,tb - ta ) p, 
o 2~/2 

(6.32) 

with 

(6.33 ) 

The propagator on a space of constant negative curvature: 
For r=. 1 we set lO 

~ {-imar} -V 21TftE exp 2fIE J = o(rj - rj _ I)' (6.34) 
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The radial path integral can be performed immediately. The 
final integration over the end position rb yields the propaga
tor on a space of constant negative curvature: 

K(eb,ea;tb - ta ) 

= 1"0 dp exp{ - ~ Ep (tb - ta ) } 

X f Zpk (,pkn-I»Z;k (,p~n-I» 
k=O 

X r(n -1)/2) ~ Y (e )y* (e) (6.35) 
( -1)/2 ~ kM b kM a' 21T n M 

where 

Z (A.) = r(n - 2)/2 + k + ip) 
pk 'f' r(ip) 

X sinh(3 - n)/2 A. p (3 - n)/2 - k(cosh A.) (6.36) 
'f' -1I2+.p 'f" 

The Y kM (e) are the hyperspherical harmonics of the 
(n -1)-dimensional compact subspace [see Eq. (5.25)]. 
The Zpk (,p ), already discussed by Bander and Itzykson,3s 
obey the orthogonality relation 

100 

Zpd,p)Z;k (,p )d,p = 8(p - pi). (6.37) 

Finally we remark that the energy spectrum is continuous, 

Ep = (p2 + !)(If/2m). (6.38) 

It is, up to the additive constant, identical with that of a free 
particle having the momentump = -lip. Therefore the above 
treatment may be a useful tool for solving scattering prob
lems via path integration. The constant energy shift fi2 /8m 
has also recently been obtained by Balazs and Voros. 26 

The path integral on the timelike hyperboloid JY' + I can 
be performed similarly and has been done in Ref. 8. 

B. Path Integration over the SU(1, 1) manifold 

As a last application we consider the Feynman propaga
tor on the group manifold of SU ( 1,1 ). The unitary irreduci
ble representations of SU (1,1) have been constructed by 
Bargmann39 for the first time. In recent years the group 
SU ( 1,1) has attracted much attention in the group theoreti-

cal approach to scattering theory.40 In path integral formal
ism there exists much interest on SU ( 1,1) symmetries.35 A 
first explicit path integral has been performed by the auth
ors,s.l3 where the SUe 1,1) manifold has been realized on the 
upper sheet (Xl> 0) of a timelike hyperboloid JY' + I' In this 
section we consider quantum mechanics in E 2,2 with metric 
(4.8). 

The spinor representation is in analogy to SU(2) para
metrized in the following way: 

g(,p,(),1/!) = (ei~/2 e-~q>I2) 

(
cosh () /2 sinh () /2 ) 

X sinh () /2 cosh () /2 

0.;;;~<21T, O.;;;()< 00, 0';;;1/!< 41T. 

The associate invariant measure is 

dg = (1/16r)sinh () d() d~ d1/!. 

(6.39) 

(6.40) 

Comparison of Eq. (6.39) with (4.11) yields the following 
explicit identification of the parameters with coordinates in 
E 2,2: 

Xl = r sinh«() /2)sin( (1/! - ~)/2), 
x 2 = r sinh«() /2)cos(1/! _ ~)/2), O.;;;~ < 21T, 

O.;;;()< 00, (641) 
x 3 = r cosh«() /2)sin(1/! + ~)/2), . 
X4 = r cosh«() /2)cos( (1/! + ~)/2), 0';;;1/! <41T. 

The Feynman ansatz is then 

K(rb ,ra ;tb - ta ) 

. f N {i} N ( m )( im ) = hm IT exp -Sj IT -.- --
N-oo j= I Ii j= I 2mIiE 21T1iE (6.42) 

N-I 

X IT rJ drj 2r dgj , 
j=1 

Sj = m IlrJ + m rjrj _ 1 [1 _ J.. Tr(gj)], 
2E E 2 

where we have made use of the results of Sec. IV A. 
As is well known, the unitary irreducible representa

tions D1,a (g) in the Hilbert space may be divided into two 
fundamental and one supplementary series. The fundamen
tal ones are (Bargmann's notation is k = I + 1) 

. . I 1. ~;;.O, m = 0, ± 1, ± 2, ... , 
contmuous senes: = - - + Ip 0 1 3 

2 > , m = ± 2' ± 2"'" 

foru=O, 

foru= !, 
foru= +, 
foru= 

(6.43) 

d
. . I 1 1 {m = 1+ 1,1 + 2, ... , 
Iscrete senes: = - - ,0, - ,1,... _ 

22m - - 1- 1, - 1-2, ... , 
(6.44) 

The matrix elements are given by the multiplier representation 

d~(g) =e-imq>d~«()e-in"'. (6.45) 

The functions d ~ «() are called Bargmann functions and may be viewed as an analytical continuation of the Wigner 
polynomials d;"n «()ESU(2). Explicitly they are given by hypergeometric functions for m;;.n: 

d 1,+«()- 1 [r(1+m+l)r(m-l)]112 h-m-n()' hm- n() - cos -sm -
mil (m-n)! r(1+n+l)r(n-/) 2 2 

X~I(1 - n + I, - n -1;1 + m - n; - sinh2 «() /2»), (6.46) 
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d "-(O)- 1 [r(1-n+/)r(-n-/) ]112 hm+nO. hm- n 0 mn - cos -SlO -
(m-n)! r(1-m+/)r(-m-/) 2 2 

X 2F I (1 + m + I,m -1;1 + m - n; - sinh2(O 12»). ( 6.47) 

The functions with n < m may be obtained via the relation d ;:" (0) = ( - 1) m - n d ~':" (0). For the continuous series one finds 
d ;;;n1l2 + iP'u(O) by analytical continuation of Eq. (6.46) or (6.47) in [ ..... - ! + ip. Note that for m = n we have d ~-:;, (0) 
= d~-;;. (0). 

According to a theorem of Bargmann,39 the Hilbert space of square integrable functions on SU ( 1,1) is spanned by the 
fundamental continuous series and the discrete series with 1">0. The representations D - 112. ± (g) are excluded. 

From the orthogonality41 

--D ,D " fOflT= (+, -), r U 1 - ~ 

{ 

DII' 

Js d~·,~,(g)d;:"*(g)dg= + , 
suo.\) D(p-p) D ,D, foru=(O,!), 

2p tanh 1T(p + iu) mm nn' 

(6.48) 

follows the explicit Fourier decomposition 

I(g) = ~ {L~o (21 + 1) + LX> dp 2p tanh 1T(p + iU)] 

X~fmn (/)d~':" (g)}, (6.49) 

fmn (/) = r I(g)d~':,,*(g)dg. 
JSU(\.I) 

(6.50) 

A ~ A ~ -1 
Let rpj,Oj,'1h be the parameters of gj = gj _ Igj' then !he 

trace in Eq. (6.42) is given by ! Tr<,~j) = cosh(Ojl 
2)cos(~j + ¢j )/2). Therefore we have to consider the ex
pansion of the term exp{ - iz cosh(O 12)cos(rp + ¢)/2)} 
with z = mrj rj _ I/fz£. The calculation, given in the Appen
dix, leads to 

fmn (/) = (211Tz){K21 + I (ze i1T12 ) 

+ ( -1)2mK2/+ I (ze- i1T12 )}Dmn' ( 6.51) 

The complete expansion reads 

exp{ - ~ Tr(g) } 

= ~ L~o (21 + 1) + LX> dp 2p tanh 1T(p + iU)] 

X~[K2/+ I (iz) + ( - 1)2mK2/+ I ( - iz)]X'·"(g)· 
1TZ 

(6.52) 

For the path integration we do need only the asymptotic 
form for large Izl of the expression 

Ff(z) = (2/1Tz) [K21 + I (iz) + ( - I )2mK21 + I ( - iz)]. 

(6.53 ) 

For this we have to distinguish between the discrete and 
continuous case. 

As the continuous series is a consequence of the non
compact nature of E 2.2 we associate this series with the inte
gration over the noncompact coordinates (Xl ,x2), where the 
mass has to be regularized by a negative imaginary part 
( :::} 1m z < 0). If we look at the asymptotic behavior of 
Ky (iz), 
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Ky (iz) = C!!;. exp { - iz + V -:- A + 0 (~)}, (6.54) '\j 2iz 2lZ z 
we realize, that in Eq. (6.53) the first term is increasing 
exponentially for Iz I ..... 00 with 1m z < 0 and the second one is 
damping out. Therefore we may drop the last term for con
tinuous I [a similar argument has been used for the asympto
tic form (5.22) in Ref. 16.]: 

(6.55) 

The discrete series, however, may be associated with the 
compact subspace (X3,X

4
) and the regularization requires a 

positive imaginary part of the mass (:::} 1m z> 0). Using the 
identity32 

Kv (iz) = e - i1TVKy ( - iz) - i1Tly ( - iz) 

we find 

Ff(z) = (211Tz){(e - 21Tim _ e - 21Til) 

(6.56 ) 

XK2/ + I ( - iz) - i1TI2/ + I ( - iz)}. (6.57) 

In the discrete case m and I are both integer or half-integer 
and therefore 

(6.58) 

For 1m z > 0 the asymptotic formula (5.22) is applicable. 
Explicitly we have in both cases 

Ff(z) = _1_ ~1T (21Ti)1I2 
2r IZ z 

X { 
. . (21 + 1)2 -! + 0 ( 1 )} exp -IZ-1 --

2z Z2 ' 

(6.59) 

wherelmz>Oforu= (+, -) andlmz<Oforu= (O,!). 
The expansion (6.52) may be now applied to the short 

time propagator. Using the orthogonality (6.48) the angular 
integration can be performed and we find 

K(rb,fa;tb - ta ) 
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with 

(6.6}) 

The above SUO,}) propagator has been recently ap
plied to the one-dimensional modified Poschl-Teller poten
tial 

(6.62) 

This case can be treated similarly to the ordinary Poschl
Teller problem of Sec. V B. Namely, for e = 2ax the Feyn
man ansatz 

(6.63) 

(6.64) 

may be converted into a SU (1,1) path integral for K,).EN. Note that we have used the time reversal trick of Ref. 13: 

The integration gives 

where (J" = 0 (P for K + A. even (odd). With k = 2ap we find the standard form 

(A - K)/2 - 1 1'" 
K(xb,xa;tb - ta) = I e-i/IiE/(rb-tO)'II/(Xb)'II1(xa) + dke-ilIiEk(tb-ta)<I>dxb)<I>r(Xa)' 

/=cr 0 

where the bound and scattering states are found simultaneously via path integration: 

[ k . (k. )]112 -i/2+i(k/2a)cr 
<l>k(X) = 2asmh2axtanh1T 2a+ 1(J" d(A+K)/2,(A_K}/2(2aX). 

The energy eigenvalues and eigenfunctions are identical with that obtained by the algebraic method.42 

The above technique is also applicable to the Coulomb problem in a space of constant positive curvature. 14 

(6.65) 

(6.66) 

(6.67) 

(6.68) 

(6.69) 

(6.70) 

Path integration on SO(n,m) in bispherical coordinates: The path integral solution of the modified Poschl-Teller problem 
may be used for the calculation of the Feynman propagator in En•m • Choosing the subspace T + 1 with the parametrization 
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Xl = r cosh.!?.. sin a(n - 1) •• 'sin a(1) 
2 ' 

xn = rcosh ~cos a(n-I) 
2 ' 

xn + 1= r sinh ~ sin [J (m - 1) •• 'sin[J(J), 

xn + m = r sinh ~ cos [J (m - I), 

2 

the Jacobian is 

O<;r,O< 00, 

O<;a(I),/3(1) < 21T, 

O<;a(i),/3(i)<1T U=lI), 

d m + nr = ~ + n -I dr~ sinhm - 1 ~ coshn -I ~ dO d n - In(a)d m -In([J) 
2 2 2 ' 

and the propagator reads 

J N {i} N ( m )n12 ( mi )m/2 N - I 
K(rb,ra;tb -ta) = lim II exp -Sj II --. - --- II dm+nrj' 

N-eo j~1 fz j~1 21Tlfz£ 21Tfz£ j~1 

s. = m Ar + m r.r 1(I-COSh AO
j

) 
j 2E j E j j- 2 

m OJ OJ - I a am. OJ. OJ - 1 _8_8 
+-rjrj _ 1 cosh-cosh--(1-ej_10ej ] --r/j _ 1 smh-smh--(1-e:;_l o e:;]. 

E 2 2 E 2 2 
After integration over thea(i) 's and[J(i) 's using SO(n,m) ::>SO(n) XSO(m) we have 

eo 
K(rb,ra;tb - ta ) = I KI,A (rb,Ob;ra,Oa;tb - ta ) 

I,A~O 

x r(n/2) "\." y ( a)y* (ea ) r(m/2) "\." y (~)Y* (t!!) 
21Tn12 7t IN eb IN a 2~12 f:t AM b AM a' 

with 

J N { i -} N ( m )112 ( mi )112 N - I 1 
X lim II exp -Sj II -.- -- II rj drj -dOj' 

N-eo j~1 fz j~1 21Tlfz£ 21TfzE j~1 2 

(6.71) 

(6.72) 

(6.73) 

(6.74) 

(6.75) 

(6.76) 

s. = - Ar + - r.r. I 1 - cosh -- + 4 - 4 
- m m ( AOj ) [ J..l2 - 1 V_I] rzzE 

j 2E j E j j- 2 sinh(O/2)sinh(Oj_I/2) cosh(O/2)cosh(Oj_I/2) 2mrj rj _ I ' 

(6.77) 

where we have defined J..l = A. + (m - 2)/2 and v = 1 + (n - 2) /2. The remaining 0 integration may be transformed into an 
SU(1,1) path integral. Indeed,it is formally identical with the modified P6schl-Teller problem. Using this result leads to 

KlA (rb,Ob;ra,Oa;tb - ta ) = 2 rbra sinh _b sinh _0 rbra cosh _b cosh_a ( 
0 0 )(2 -m)12( 0 0 )(2 -n)/2 

, 2 2 2 2 

X[(V-%:-I (2J+l)+ leo dp2Ptanh1T(P+iU)]KI(rb,ra;tb-ta) 

xdZ~+f')/2'(V-f')/2 (Ob )d~~+f')/2'(V-f')/2 (Ob)' (6.78) 

whereKI (rb,ra;tb - ta ) is given by Eq. (5.37) for J = I and u = Oor ~ for (v - J..l) even or odd, respectively. For r= 1 we have 
the spectrum KI (1, l;tb - ta ) = exp{ - U/fz)EI (tb - ta )} with 

E 
_ {[ (2[ + 1)2 - !](fz2/2m), for [ discrete, 

,- -Cp2 +!)Crzz/2m), for 1= -~+ip. 

Vllo DISCUSSION AND OUTLOOK 

In the present paper we have discussed the path integral 
on compact and noncom pact rotation groups. The group 
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(6.79) 

I 
manifold has been embedded into Euclidean and pseudo
Euclidean spaces, respectively. For this we had to generalize 
the usual path integral formalism, where the construction is 
very much similar to that of Feynman. Especially the regu-
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larizing scheme had to be modified in order to get well-de
fined Feynman integrals. Restricting the discussion to a con
nected subspace of the pseudo-Euclidean space the 
introduction of polar coordinates leads to a separation into a 
radial and angular part. 

Application of group theory enables us to perform the 
angular integration, where group theory is introduced 
through identification of coordinates with group param
eters. Writing the short time propagator as a function of 
group elements, the Fourier analysis on the group leads to an 
expansion of the propagator in unitary irreducible represen
tations. We have found two methods. For dim G = dim J¥' a 

the short time action may be written in terms of the charac
ter of the fundamental representation, X(g(/) ) = Tr g(/) . 

Note that the short time action is formally identical with the 
Wilson action in lattice gauge theories. The character expan
sion, which has been already used extensively in lattice gauge 
theories, is applicable. The angular integration reduces to an 
application of the orthogonality relation of group char
acters. The only simple Lie groups that may be treated in 
this way are SU(2) and SU(1,1). In the general case 
dim G;>dim J¥'a and the short time action is, by construc
tion, invariant under transformations of the subgroup H as 
J¥' a = G 1 H. Here the expansion in zonal spherical func
tions is a proper treatment and the application of their ortho
gonality relation enables us to perform the angular integrals. 
In both cases the remaining radial path integral is expressed 
in terms of modified Bessel functions of the first and third 
kind for compact and noncompact groups, respectively. 

The formalism has been applied to the physically most 
important groups. For the compact groups SO(n) and 
SU (2) we have recovered known expansion formulas, which 
have found many applications in path integration in the 
recent years. For noncompact groups such an expansion has 
been applied in path integration only by the authors. 13 Here 
we have chosen the n-dimensional Lorentz group 
SO(n - 1,1) andthegroupSU(1,I). TheSO(n - 1,1) pro
pagator is found to have the continuous spectrum of a free 
particle and therefore may become an important tool in scat
tering theory via path integration [e.g., Rutherford scatter
ing has a SO(3,1) symmetry]. The spectrum generating 
property of the SU (1,1) algebra, which has numerous appli
cations in group theory, has been used in path integration, 
too. With the SU ( 1,1) propagator the bound and scattering 
states of various problems (here the modified Poschl-Teller 
potential has been taken) may be found simultaneously. 

Besides nonrelativistic quantum theory the proposed 
expansion methods may also be very useful in quantum field 
theories. For pure Yang-Mills lattice gauge theories the 
character expansion has already been used for a long time. It 
would be interesting to know whether the expansion in zonal 
spherical functions still works in theories with matter fields 
like the symmetry breaking Higgs field. Another area of ap
plications is the path integral formalism of statistical phys
ics. Here the partition function is given as a functional inte
gral over the Boltzmann factor exp{ - pH}. Especially for 
scalar theories the expansion in zonal spherical functions 
seems to be successful. How far both techniques may be ap
plied in field theories of elementary particle and solid state 
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physics is under present investigation by the authors.43 
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APPENDIX: DERIVATION OFTHE SU(1,1) FOURIER 
COEFFICIENT 

The formula (6.50) of the Fourier coefficient reads, for 
I(g) = exp{ - (izI2)Tr(g)}, 

Imn (l) 

= l:r [" f" i oo 

exp { - izcosh (~) cos q;; tP} 

Xe-im"'e-in.p d~ (O)sinh OdOdq; dtP. (AI) 

Using the generating function of Bessel functions, 

exp{ - iz cosh ( ~ ) cos q;; tP } 

i: eiP(",+.p)e-i"PJ2p(ZCOSh(~)), (A2) 
~=-oo 2 

the integrals over q; and tP may be performed and yield 

Imn(l) = t5;n e-i"mi
oo 

J2m (ZCOSh(~))cosh2m(OI2) 
X 2F1(1 + m + I,m -1;1; - sinh2(O 12») 

X sinh o dO, (A3) 

where we have used the explicit form (6.47) of the Barg
mann functions. Writing the Bessel function in terms of the 
Meijer G function we find with x = cosh2 (012): 

/,A (I) " - i"m (00 mG lo(xr I ) mn =umne JI X 02 4 m,-m 

This integral is a special case of the integral formula #7.831 
in Ref. 44. The second set ofintegrability conditions gives for 
Rei;> -~, 

/,
A (I) = t5 - i"mG 30 (r 1

m, - m ) mn mn e 24 4 I I 1 . ,- - ,m,-m 
(AS) 

Using some properties45 of the G function the order may be 
reduced in three steps and the final G functions can be identi
fied with modified Bessel functions of the third kind: 

Imn (l) = t5mne-i"mGi~ (: I/~_~ _ 1, _ m) 
= t5mn. e-i"m {e-i"m GU (Z2 e-i"l- m ) 

2m 4 I, - 1- 1, - m 

_ ei"mGU(z2 ei"l- m )} 
4 I, -1-1, - m 

= ~:: {e-2"imG~~(: e-i"l/, -1- 1) 

- G ~~ (: ei
" II, - I - I)} 

= ~ {K (zei"/2) + e - 2"imK (ze - i"I2)}t5 21+ 1 21+ 1 mn' 
1T'Z 

(A6) 
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Formulas for the transformation matrix between the canonical and noncanonical SU (3) bases 
in both A >1'- and A <I'- cases are derived. An expression for the isoscalar factor of the SU(3) 
coupling coefficient, in the noncanonical basis, with one symmetric representation is also 
derived. Both expressions are put in a polynomial-type form suitable for coding computer 
programs to obtain explicit and exact algebraic expressions. 

I. INTRODUCTION 

Despite the considerable progress during the last two 
decades in the field of developing the algebraic technique of 
compact groups, many problems connected with both analy
tical and numerical calculations still remain unsolved. For 
example, the general theory of SU (N) coupling coefficients 
is far behind the stage reached by angular momentum the
ory. The main problems connected with the generalization 
of the SU (2) group-theoretical quantities to higher rank 
groups can be explained by the example of the SU (3) group, 
largely used in both nuclear and elementary particle physics. 

The Kronecker product (Aft) X (A '1'-') ofSU (3 ) irredu
cible representations is not simply reducible, thus the exter
nal multiplicity problem is involved. There are at least two 
types of bases considered, the canonical one, suitable for ele
mentary particle physics applications and the noncanonical 
one, labeled by the chain SU(3) ::> SO(3) and suitable for 
applications in nuclear physics. In the last basis an internal 
multiplicity label is present; thus the isoscalar factor of the 
general SU (3) coupling coefficient depends on nine param
eters, five labeling the irreducible representations and four 
labeling the multiplicity. 

The last ones are not uniquely defined, which makes it 
essentially more difficult to find analytical expressions as 
well as to perform numerical calculations. 

Similar problems exist for the group-theoretical quanti
ties of higher rank groups, such as coupling and recoupling 
coefficients, transformation matrices between bases labeled 
by different chains of subgroups, and so on. Due to the great 
complexity, even in the cases when the explicit expressions 
are known, it is difficult to use them in practical applications. 
One meets an additional problem in the case of large values 
of the parameters needed, in particular, in nuclear physics 
theory, namely the uncontrollable growing of rounding er
rors when calculations are done in floating point numbers. 

One way of handling these problems is to derive expres
sions for the Wigner-Racah algebra quantities in a polyno
mial-type form. For example, it is well known that the 
SU(2) coupling coefficients forj)Xj2-+j, in the case ofnu
mericalj2 = a, m2 = a, andj = j) + b, with numerical b can 
be presented as a polynomial inj) and m 11 with integer coeffi
cients, multiplied by the square root of the ratio of two fac
torized polynomials also in j) and m) and with integer coeffi-

cients (see, for instance, Ref. 1). We will refer to expressions 
with such structure as "polynomial-type expressions." For 
the SU (2) group, polynomial-type expressions in three vari
ables are known for 6j and 9j coefficients (see, for example, 
tables in Refs. 2 and 3). Polynomial-type expressions are 
useful in several aspects: they can help to disclose the analy
tical dependence of the mean value of operators representing 
physical quantities on the quantum numbers; they are useful 
in the study of asymptotic properties of physical quantities; 
by their use one can obtain exact values of the quantities that 
they represent in much shorter computing time as compared 
with the one spent by the standard crude expressions. 

The question of what polynominal-type expressions ex
ist for higher rank groups, and what methods must be used to 
obtain them, has never been studied properly. At the present 
stage of our knowledge it seems impossible to give a definite 
answer in a general form. 

Intuition in this direction can be obtained by consider
ing particular typical examples. In this paper we shall start a 
project aimed towards the development of the algebraic ma
chinery of the compact groups, mainly unitary and orthogo
nal groups, based on the polynomial-type decomposition of 
Wigner-Racah algebraic quantities. Our first goal is to con
vert the available expressions into polynomial-type expres
sions, simple to inspect and easy to use. We shall do it via 
composing the explicit expressions and developing both the 
special algorithms and the computer programs. Sometimes 
the known expressions of group-theoretical quantities can
not be put into a polynomial-type expression. In such a case, 
new expressions for those quantities must be derived. As the 
next step we plan to apply them in physics, in particular, in 
collective phenomena of strong interacting particle systems. 
We shall start with the SU (3) group. 

Some details of this project are given in the next section, 
where the publications on the SU (3) group-theoretical 
quantities are summarized briefly, and also some general re
lationships between them are presented. In Sec. III the poly
nomial-type analysis of the transformation matrix between 
the canonical and the noncanonical bases is carried out. In 
Sec. IV the explicit expressions of the isoscalar factor of the 
SU (3) coupling coefficients with one symmetric representa
tion are derived and presented in a polynomial-type form. In 
the last section some properties of the quantities considered, 
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as well as the orthogonalization procedure, are described. In 
the Appendices the explicit expressions and the notation 
used are presented. 

II. REVIEW AND SOME RELATIONSHIPS BETWEEN 
SU(3) GROUP· THEORETICAL QUANTITIES 

The noncanonical basis of the SU ( 3) irreducible repre
sentation (A,j-t) labeled by the angular momentum L and its 
projection M, as well as by the inner multiplicity index K, 
having the meaning of the L projection in the "intrinsic" 
(body-fixed) z axis has been introduced by Elliott.4 Another 
possibility of classification of the multiple appearance of L in 
(A,j-t) was proposed by Bargmann and Moshinsky, 5 ~ing the 
eigenvalues of a Hermitian SO (3) scalar operator n. More 
details on the internal labeling of the SU (3)::> SO (3) basis 
and the transformations connecting it with the canonical one 
SU ( 3) ::> SU (2) ::> U (1) can be found in the review arti
cles (Refs. 6 and 7). 

As far as we were able to trace, the first publications on 
the systematical studies of the SU ( 3) coupling coefficients 
appeared in 1962. In Ref. 8 the explicit expression of the 
SU (3) coupling coefficients for the simply reducible Kron
ecker product [h i h ; ] X [h i'] -+ [hlh2h3] in the canonical 
basis has been obtained. (We will use labels inside parenthe
ses ( ) to indicate noncanonical basis and labels inside 
brackets [ ] for the canonical.) The explicit expression of 
the matrix element (ut'T(A,j-t )qLM) of the matrix A (Ap) in 
the case of M = 'T/2 = L, connecting the canonical basis 
SU (3) ::> SU (2) ::> U (1 ) labeled by ut'T, and the 
SU(3) ::> SO(3) basis labeled by qLM, where q denotes a 
multiplicity index taking some definite value, was also ob
tained there. In Ref. 9 a recurrence procedure has been pro
posed and some numerical tables were presented for the 
SU (3) coupling coefficient in the basis SU (3) ::> SO (3) for 
the case of the Kronecker product (EO) X (E'O) -+ (A,j-t). 

Further developments in this field went on in several 
stages and directions. Some publications l

O-
I9 related to 

SU (3) or to more general context have been aimed towards 
the external multiplicity problem. Many papers20-39 have 
been devoted to the SU (3) coupling coefficients in the ca
nonical basis. In some of them26.27.3o.31.35 more general 
SU(N) coupling coefficients have been considered. For the 
simply reducible case [h ih;] X [h i'] -+ [hlh2h3], an 
expression of the isoscalar factor containing only a double 
sum has been obtained by Alisauskas29 and then generalized 
to SU (N) (in Refs. 20 and 31 ) and presented in few different 
forms, convenient for specific applications (for details see 
also the review paper, Ref. 40). 

In the general case [h i h;] X [h ;'h n -+a[h lh2h3] a 
closed expression for the isoscalar factor, in canonical basis, 
containing a sum over six indices has been obtained32 and 
considered34-39 from the point of view ofthe external multi
plicity problem. Some classification schemes for the external 
multiplicity problem have been used. One of them, giving 
orthogonal states, proposed and developed in Refs. 11, 13, 
14, 17, and 18, rests on the structure of the unit tensor opera-
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tors. Following this line, in Ref. 33 a polynomial-type 
expression was obtained for the denominator function of the 
SU ( 3) isosca1ar factors in a canonical basis. The bior
thogona1 basis has been introduced34 (see also Ref. 40) and 
used for a classification leading to simple expressions, espe
cially convenient for applications in the Wigner-Eckart 
theorem. In numerical calculations the external multiplicity 
index classified by means of the eigenvalue ofSO(3) isosca
lar Hermitian operators have been used. IO

•
12,24.36.39 This 

question was also investigated from a more general point of 
view in Ref. 16, and in Ref. 19 the matrix representation of 
most general classification operators has been obtained. 
Convenient classification operators have been introduced 15 
leading to simple symmetry properties similar to those for 
the SU (2) coupling coefficients. Summarizing, we conclude 
that at present the expressions for the SU (3) coupling coeffi
cients in the canonical basis are known in a form suitable to 
adapt the classification of the multiplicity index to both ana
lytical consideration or numerical calculations. 

The isoscalar factors ofSU (3) in the noncanonical basis 
SU(3) ::> SO(3) have been considered9.41-53 for more than 
twenty years, but a closed form has not yet been derived. In 
some particular cases polynomial-type expressions have 
been obtained, some properties including phase convention 
analyzed,41-47 and some special direct product cases consid
ered. The general SU (N) isoscalar factors in the noncanoni
cal basis SU(N) ::> SO(N) have also been investigated.49-52 

A few algorithms and programs for numerical calcula
tions have been developed based on the formulas presented 
in Refs. 37 and 39 for the canonical basis and in Refs. 54-56 
for both canonical and noncanonical bases. Due to the irra
tional eigenvalues of the classification operators, some of 
them, for example, those mentioned in Refs. 39, 54, and 55 
give the answers only in floating point numbers. As a result, 
accumulation of rounding errors occurs, which makes it dif
ficult to carry out precise calculations with large values of 
the parameters, as well as in cases when the quantities con
sidered are internal blocks of more complex expressions. 

We will avoid these problems by employing the polyno
mial algebra technique with only integers involved. 

We will use two expressions relating known SU (3 ) 
quantities with unknown ones. The first gives the isoscalar 
factor for the SU (3) coupling coefficients in the noncanoni
cal basis in terms of the same quantities in the canonical basis 
and the transformation matrices between the bases. The sec
ond relates recoupling coefficients and isoscalar factors in 
the canonical basis. Before presenting the results let us set up 
the notation. 

Let y,J', andl denote the U (3) irreducible representa
tions [YI Y2 Y3], [Ii 1;1;], and [/dd3], respectively, 
and KoLo, K 'L', andKL denote their bases in the noncanoni
cal chain U( 3) ::> SO( 3) with "intrinsic" projections 
Ko, K I, and K, and finally {3 denotes a multiplicity index in 
the Kronecker product yxf' -{3/in some arbitrary classifi
cation. Letm = [m 2m 3 ] betheU(2) irreduciblerepresenta
tion labeling the canonical basis of y, and similarly h I 

= [h;h 3] for f' and h = [h 2 h3] for f Then the general 
isoscalar factor of the U (3) coupling coefficient in the non
canonical chain can be presented in the following form: 
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C [y, Y2 y,][/i/if3]p[f.f,f,1 - (A (f. -f,J; -f,)K ) - I " A (y, - y"y, - y,)M, A Ui -/iJi -I,)M, 
Ko4, K'L' KL - KL(h,-f"h,-I,) k.. K.,Lo(m,-y"m,-y,) K'L'(hi-li,h,-I,) 

MIM2m2m)h ih 3 

xC Lo L' L C (112) (m, - m,) (1/2) (h i - h ,) (I12)(h, - h,) C [y, y, y,l [li/i/3] P [/,f,f,1 
M,M,K (I/2)M, (l12)M, (1I2)K [m,m,1 (hih,] [h,h,J (2.1 ) 

In this result [h2 h3] denotes [/2h] in casesll - h>12 -/3' and [/lh] in casell -12 <fz - h. The C's depending on L 
projections M I , M 2, K and M 1/2, M 2/2, K 12 are the usual SU(2) coupling coefficient often called Clebsch-Gordan coeffi
cients. The other C 's are the isoscalar factors ofSU (3) coupling coefficients. TheA's are matrix elements of the matrix A (AJL)M 

which transforms the SU (3) canonical basis into the noncanonical one: 

t/J(Ap,)KLM) = pto qto t/J( (Ap,)pq ¥) A jf&~ , (2.2) 

where M and K denote the usual projection and the "intrinsic" projection of L. In (2.1 ) use was made of the special correlation 
between the U( 1) and SO(2) bases proposed by Elliott.4 Due to this correlation, Mis related to the Gel'fand labels [m 2 m 3 ]n 
for the chain U (2) ::> U ( 1) by M = m2 + m3 - 2n. This choice simplifies the expression for the isoscalar factor in the 
nonncanonical basis and, as a result, the transformation (2.2) appears only twice under the sums of (2.1 ). 

The scalar product off unctions (2.2) with different values of K defines an overlap given by 

B (-<I')L == «All )KLM 1 (AII)K 'LM) = " (A (-<I') ) * A (-<I')M KK' r' r' k.. KL(pq) K' L(pq) , 
p,q 

which is symmetric in K and K'. 

(2.3) 

The nonorthogonality of Elliott's basis t/J( (Ap, )KLM) with respect to K makes it possible to introduce the so-called dual 
Elliott's basis, orthogonal to Elliott's basis, by the relation 

t/JD(Ap,)KLM) = L t/J(Ap,)K'LM)D ~-<fiL, (2.4) 
K' 

where the D 's are the inverse of the B 's, namely 

" B (-<I')L D (-<I')L - 1: 
k.. K'K KK" - uK'K" . (2.5) 
K 

If one follows the Engeland42 procedure for coupling two Elliott's bases to a resultant Elliott's basis one arrives to an 
equation similar to (2.1) to which the A's inside the summations are replaced by their inverse. Equation (2.1) is obtained 
when a resultant Elliott's basis is obtained by coupling two dual Elliott's bases, namely, 

t/J(y/,)PjKLM) = L r(yKoLoMo)t/JD(/,K'L 'M') Ck.,Lo~'L'~ C!t;~M' 
KoLoMo 

(2.6) 

K'L'M' 

Not all the coefficients involved in (2.6) are orthogonal with respect to the "intrinsic" projections K of L. Nevertheless we 
will refer to the lhs of (2.1) as the isoscalarfactor ofSU(3) coupling coefficients in the noncanonical chain SU(3) ::> SO(3). 
More details on this question will be given in Sec. V. 

The second expression that we will use in the development of the SU (3) algebra technique involves both recoupling 
coefficients and isoscalar factors of coupling coefficients in the canonical basis. We will use it in the form 

~I + Yoh + Yoh + YO]] 
fJ C [y, y, y,l (Ii lif3] P [f, + Yo/, + Yo/, + Yol 
[I; 1;1;] [m,m,1 [hih3] [h,+yo,h,+Yol 

[YI Y2 Y3] 

[E + Yo Yo Yo] 

x C [<>.I, <>.I, <>.1,1 [E + Yo Yo Yol [[, + Yo/, + Yo/, + yol C [<>.I, <>.I, <>.1,1 [E' 001 [/ilill] C [y, y, y,l [E' 001 [E + Yo Yo Yol 
[n, n,J [q + Yo YoJ [h, + Yo h, + Yo I [n, n,l [q' 01 (h i h; 1 [m, m,J [q' 01 [q + Yo,Yo I 

1/2 { q/2 
X [ (h ~ - h ~ + l)(q + 1)] (h; _ h ; )/2 

(hz - h3 )/2 (n 2 - n3)/2 } 

q'/2 (mz - m 3 )/2 ' 
(2.7) 

which is adapted (see Refs. 56-58) to the density matrix technique in nuclear theory. 
The first factor in the lhs of (2.7) denotes the matrix element of recoupled SU (3) basis functions, 

«(( [0], [Cd]) [Cd], ( [y],[E']) [E])[f] 1« [0],[ y]) [y],( [Cd], [E']) [/'])/3 [I]) , (2.8) 
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where [UJ] = [UJ 1 UJ2 UJ3 ], etc. The last factor in the rhs is the 
standard 6j coefficient of SU (2). 

We will see later that all the quantities in the rhs of (2.7) 
are available. Thus iffor each value of{3, one of the factors in 
the lhs is known, Eq. (2.7) gives a system oflinear equations 
which allows us to obtain the other factor. Suppose, the 
SU (3) isoscalar factors in the canonical basis, for some defi
nite classification scheme {3, are known. Then, from (2.7) 
we can find the recoupling coefficients (2.8) and from (2.1) 
one obtains the isoscalar factors in the noncanonical basis. 
Thus Eqs. (2.1) and (2.7) provide explicit relations for the 
most important quantities of the SU (3) algebra: the isosca
lar factors in the noncanonical basis and the recoupling coef
ficients. 

We will follow this line of research. As the first step we 
examine the building blocks in (2.1 ) and (2.7), in particular 
their polynomial structure in order to develop the algo
rithms and computer programs for both numerical calcula
tions and polynomial-type analysis of the SU (3) quantities 
mentioned above. We intend to carry out this project in the 
following sequence. 

( 1) Polynomial-type analysis and corresponding com
puter programs for the usual coupling coefficient, 6j and 9j 
symbols of the group SU (2). This part of the project is al
ready finished and reported in Ref. 59. 

(2) Study of the matrix element A (AIl)M in (2.2). We 
will find out that the same quantity can be presented in var
ious forms showing different features when treated from the 
point of view of polynomial-type analysis. This property of 
theA's requires special efforts in order to adapt them to our 
purposes. 

(3) Due to the wide field of applications of (2.1 ) with/ ~ 
= /; = 0 in nuclear theory, we will carry out the analysis of 

the isoscalar factors in noncanonical basis in this external 
multiplicity-free case. Some particular isoscalar factors in 
polynomial-type form have been derived from (2.1) in Ref. 
48. 

(4) The explicit polynomial-type expressions of the 
SU (3) isoscalar factors will be used in a special density ma
trix representation. We also intend to give some applications 
along this line in the many-body problem in microscopic 
nuclear theory. 

(5) As the next step we plan to develop in the polynomi
al-like form the general isoscalar factors of the SU (3) cou
pling coefficients in noncanonical basis using some definite 
classification{3 as well as the recoupling coefficients adapted 
for this classification. 

(6) We intend to continue the studies of the polynomial
type analysis of the group-theoretical quantities of higher 
rank compact groups. 

In this paper we will cover the second and third items of 
the plan above. 

III. POLYNOMIAL-TYPE EXPRESSIONS FOR THE BASIS 
TRANSFORMATION COEFFICIENTS 

Besides the two SU(2) coupling coefficient, the general 
SU ( 3) isoscalar factor in the noncanonical basis, defined by 
the rhs of (2.1), depends on the general SU(3) isoscalar 
factor in the canonical basis and on the matrix elements of 
A (AIl)M. We shall start with the last ones. First we will dis
cuss their features and then we will derive a polynomial-type 
expression for them. Explicit expressions for the matrix ele
ments of A (AIl)M have been obtained using the Hill-Wheeler 
integral method54 as well as the projection technique in an 
infinitesimal form. 60 

In the last approach an operator P, which projects from 
the maximum weight basis state of the SU (3) irreducible 
representation (1iJ.l) a general basis state of the noncanonical 
basis, has been constructed. For the case Ii >J.l the matrix 
elements of A (AIl)M and the overlap (2.3), respectively, are 
written, in terms of the matrix elements of this operator, as 

A (AIl)M - P (All) M /[P (All) K ] 1/2 (3.1) 
KL (pq) - KL (pq) KL (00) , 

B (AIt) L _ P (AIt) K' / [p (AIt) K P (AIt) K' ] 1/2 (3.2) 
KK' - KL (00) KL (00) K'L (00) , 

where, according to Elliott4 

K = J.l,J.l - 2, ... ,0 or I, 

L =K,K + 1, ... ,K + Ii, for K:;;60, (3.3 ) 

L = Ii,li - 2, ... ,0 or 1, for K = 0 . 

The notations used in (2.1) and (3.1) are related by 

Ii = Yl - Y2' J.l = Yz - Y3 , 

p = m 2 - Y2' q = m3 - Y3 . 
(3.4 ) 

The branching rules for the labels of the canonical chain 
require 

p = 0,1, ... ,Ii, q = 0, 1, ... ,J.l , 

(J.l + p - q ± M)/2>0 and integer. (3.5) 

An expression for the matrix elements of the projection 
operator, valid for 1i>J.l, is given by Eq. (27) of Ref. 60. 
(There is a misprint in this expression. The fifth factor in the 
numerator under square root has no factorial symbol.) The 
particular case J.l = 0, however, can be written in the closed 
form6 

P(AO)M=8 8 (_)(p-M)/Z (2L+1) [1i!(p+M)/2)!(p-M)/2)!(L+M)!(L-M)!(Ii-p)!]1/2 
KL (pq) KO qO 2M 12 (Ii + L + 1 )!! 

( _ )x 
X I (3.6) 

x 2Xx!(x + M)!(L - M - 2x)!( (p - M)/2 - x)! (Ii - L - P + M + 2x)l! . 

Expressions for the matrix elements of the A (AIt)M and the overlap, valid for the case Ii <J.l have been found in Ref. 61, by 
projecting the basis states of the noncanonical Elliott's basis from the lowest weight basis state, namely, 

( )(A+It+p-q-K-M)/2 p(j<A.)M 
A(AIt)M_ - KL(It-q.A-p) Ii <II B(AIt)L=(_)(K-K')/2B(ItA~L A<J.l. (3.7) 

KL(pq) - [p(j<A.)K ]1/2 ' r' KK' KK ' 
KL (00) 

1998 J. Math. Phys., Vol. 28, No.9, September 1987 J. A. Castilho Alcaras and V. Vanagas 1998 



                                                                                                                                    

(The phase factor recommended in p. 90 of Ref. 62 is not 
correct.) 

It follows from (3.1), (3.2), a~d (3.7) that the matrix 
elements of the projection operator P are the only quantities 
needed in order to perform the basis transformation (2.2), as 
well as to orthogonalize the Elliott's basis states. 

The expression for the matrix elements of the operator P 
obtained in Ref. 60 is not convenient for a polynomial-type 
analysis for the following reasons. Expressions under sums 
can be converted into explicit polynomials only when the 
ranges of indices that control the sums can be put in terms of 
definite numerical quantities. In the applications of the 
SU(3) noncanonical basis in nuclear theory it is convenient 
to treat L asa variable. From the analysis ofEq. (27) of Ref. 
60 one concludes that there is no possibility of keeping both 
A and,u as variables. Since (27) is valid for A>,u, we will keep 

A as a variable and take,u as a numerical parameter. Ascrib
ing numerical values to K, M, p, and q, three sums can be 
taken, leaving only one with algebraic bounds depending on 
A and L. For each value of ,u this sum can be rearranged 
using recursion relations of hyper geometric functions. These 
relations however become more and more complicated for 
increasing,u and it is impossible to implement then in a sys
tematic way in computer programs. 

From this analysis we decided to search for more con
venient expressions for the matrix elements of P. Alisauskas 
suggested that we use an alternative formula composed from 
some building blocks following from Eqs. (4.1) and (4.10) 
of Ref. 7 and (4.23b) of Ref. 6. Taking also into account the 
relationship between different analytical expressions for the 
basis states of the noncanonical basis,7 the following expres
sion can be derived: 

PC:ll!> = L BZ,.7, (A,u) KL) L O(PI + P2',u + P + q) C;",7:"~M 
12 m 1m 2 

PoP, 

xC ('" + p - q)12 (A - p, - p, + 2",)/2 A 12 C p,/2 p,/2 (", + p - q)12 A (,!. + ",.O)m, A (",O)m, 
(p, - p,)/2 (A - p, + p,)IZ A 12 m,12 m,/2 M 12 OL, (p,O) 07, (p,O) • (3.8) 

In (3.8) the C's denote the usual SU(2) coupling coefficients, II = /2 + L - A, and the B coefficient is defined by 

B-- (A )KL)= (_ )(",-K)/2+<5 [1 + (- )7,-A-05) X [1 +sgn(!2-A-0)] 
L,I, ,u 2 2 

[ 
A !(JL - /2)!!(L + K)!(L - K)!(A + JL + 1 )!(2L + 0 + 1 )!(2I1 + 1 )!! 

X (L + 1)05 (2L )!(A + 1 )!(2L - A)!(A + JL - LI )!!(A + JL + LI + 1 )!!(JL + K)!! 

(,u + /2 + 1)!!/~2z, -05 ]112 K 05 (K - 0 - A)!! 

X (,u - K)!!(/2 - A)!(2/2 + I)! (K -/2)!! 

X {o + (1 _ 0 ) (K + /2 - 2)!! }, 
KO KO (K+0+A-2)!! 

(3.9) 

with A = 17'(,1 - L), 0 = 17'(,1 - L + ,u). Here 17' is a parity balancing function defined as 

[ ) { 
= 0, for n even, 

1T(n) = 1 - ( - )n /2 _ 1 fi dd -, or no. 
(3.10) 

Expression (3.9) has been obtained from Eqs. (4.1) and (4.10) of Ref. 7 with the help of the summation formula 

L ( - ) (/'0- K)/2 +<5 (/20 - 0 - ~)!!(72 + 120 - 2)!! 

1,0 (/20 + K)!!(/20 - K)!!(,u -/2o )!!(/2 + /20 -,u - A - o)!! 

( - )('" -K)/2 +05 (K - 0 - A)!!(,u - /2)!!(,u + A + 0 - 2)!! 

- (,u + K)!!(,u - K)!!(!2 - A - o)!!(K - /2)!! [ 
(K + /2 - 2)!! ] 

OKO + (1-0KO) . 
(K +0 +A -2)!! 

(3.11 ) 

Although Eq. (27) of Ref. 60 and our Eq. (3.8) represent the same quantity, from the point of view ofthe polynomial
type analysis, the latter is substantially better since all bounds on the sums are numerical when we ascribe numerical values to 
,u, K, M, p, and q and keep A, L, and A as variables. 

The structured form of (3.8) allows one to find the range of summations by simply taking into account the branching 
rules involved in its explicit building blocks. Using the symmetries of these blocks one finds the existence of the following 
symmetry relation 

P(A",) -M _ ( _ )A +q p(A",) M (3.12) 
KL (pq) - KL (pq) , 

which, in particular, explains the appearance of some unexpected zeros in the matrix elements of P. 
In the analysis of (3.8) it is convenient to use the following generalization ofPochhammer's symbol (from now on refered 

to as POCH for short) 

P(x;k;d) = x(x + d) (x + 2d)" '(x + (k - l)d), for k = 1,2'00' , 

= 1 for k = 0 , (3.13) 
introduced in Ref. 59. The P(x;k;d) is a product of k factors of an arithmetic series with starting term x and increment d. 
Obviously, when x is a variable, P(x;k;d) is a polynomial of degree k in x. From its definition it follows that 
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P(xla;k;d) = P(x;k;ad)/a\ a=t=O. (3.14) 

Many commonly used quantities are particular examples of POCH's. For example, 

n!=P(1;n;I), xn=P(x;n;O), (x + n)!/x!=P(x + l;n;I) , (3.15 ) 
(x + 2n)!!/x!! = P(x + 2;n;2), r(xla + n)/r(xla) = P(x;n;a)lan

, a=t=O. 

The POCH (3.13) is defined only for non-negative k. However, in order to present some formulas below in a more compact 
form we will use the following formal extension ofPOCH for negative second argument: 

P(x;k;d) = [P(x + kd; - k;d)] -1, k = - 1, - 2, ... , (3.16) 

in analogy to the extension of powers to negative exponent. Returning to Eq. (3.8), substituting the explicit expressions for its 
internal blocks, canceling factors and rearranging in terms of POCH's, one gets, for M>O the following expression which is 
suitable for algebraic calculations via the computer: 
p(AI')M KL(pq) 

( - ) (p-q-K+M)/2 (K - 8 - A)/2)!(2L + 1) (A - p)! 

1fL+ 2/H /j+ (p+q)/2 (K - 8)!(2K)![,u!(,u + p)!f(L +M)d 

XB(K,A) R <fr~~ [(A + L +,u +K + 1 - A)!!(A -L +,u +K + A)!!P(A +L +,u -K + 2 - A;k;2)]-1 

X [q!(,u + p - q + I)P(L - M + I;M -K;I)P(L + K + I;M - K;I)P(A - P + 1;p;I)P(A +,u - q + 2;q;l) ]112 , 
(,u + K)/2)!(,u - K)12)!p!P(,u - q + 1;p + q + 1;1 )P(,u + p - q - M)/2 + I;M;I) 

( 3.17) 

where 

B(K,A) = {(K + (2 - ~)A)/2, 
I, otherwise, 

for ,u even and K> 2 , 
(3.18) 

and R is a polynomial in A, L, and A. Its explicit expression is too long and inconvenient to print. For this reason we give below 
only a schematic expression of it that shows its polynomial structure: 

K 

R <ftc.~ = ( - )1' _ I' NIPI (A + L - A)P2 (L)P3(A - L + A)P4 (A + L - A) 
I, = ..-(1') 

p + I' 7, 
X I N2P5 (A) I'_N3[I+A(2Lm2+27~-I)]P6(L-A)X(A,L,A)YW, 

p,=p+q m 2 = -12 

(3.19) 

(p,-m,)/2 (PI-m l )/2) 
X(A,L,A) = n~o ( - 2)n n P«PI - m l )/2 - n + I;n + (PI - m l )/2;1) 

XP7 (L - A)Pg(A - L + A) . (3.20) 

The Pj's are polynomial POCH's Pj (x + nj; k j ; d j ) of their arguments x, while the Nj's, Y, and Ware numbers. The 
reader interested in the explicit expression for R will find its pieces listed in the Appendices. This same printing strategy will be 
used for other quantities in this paper. We will use also the convention that sums with a prime have their indexes running in 
steps of2. 

Expressions (3.17)-(3.20) are adapted for A>,u and M>O. For negative M one simply uses symmetry relation (3.12). 
WhenA <,u we must treat,u as a variable X, while A will be a number ji. Using then (3.7) for (jiX), we will see that we need an 
analogous expression for P <fr~~ in whichp will be no longer a number but will have the formp = A - a, with a = 0,1,2, .... 
By rearranging terms differently in (3.8), one obtains another expression for (3.8) which is adapted again to the case M>O: 

p(AI')M _ (- )(K+I') /2K/j( - )(A-L+d)/2 (2L + I)(A +,u - a - q -M)!! 

KL (A-a,q) - 2a(a _ q +,u - v - q + 2)/2)!(,u + K)!(,u!)2(A - L +,u - 8)!! 

X (L + M - A + /3 - 1 )!![ (L + K - A - M +,u - v - q + 2)!!(A + L - A +,u + K + 1)!! 

XP(L +M - A + 2 -/3;(K +,u - V-q+ 2 +/3)/2;2)]-1 1 
PIA +L +,u + 2 +8;(K - A -8)/2;2) 

X[ q!(A+,u-a-q+ I)P(A+,u-q+2;q;I)A! 
21'(,u - q)!a!(,u + K)/2)!(,u - K)/2)!P(L - K + 1;2K;l) 

X P(A+,u-a-q-M+2;M;2) ]1I2 R (AI')M 
peL - M + 1;2M;1)P(A - a + l;,u + 1;1) KL (J.-a,q) , 

(3.21 ) 

where 

v=1r(q-,u), q=1r(a), /3=1r(v+q) , 

a = A - q + 2v + 3,u + (A + 8 + a - q + v + q)12 + (,u - A - 8)/2 . 
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Again, R is a polynomial in A, L, and ~ with the following structure: 
K 

R kt~~a,q) = _ I' N4P9(A + L - ~)PlO(L)Pll (A - L + ~)PI2(L - ~)PJ3(L - ~)PI4(A + L - a) 
I, = 1T(I') 

x i N5 {PI5 (L - a)PI6 (L - ~)} I' NJ'19(L - ~)P2o(L - a)P21 (L - a)p'(L,~) 
p,=q P17(L - ~)PI8(L - a) m,m,=M 

XX(A,L,~)YW(A) , (3.22) 

where 

, { - ilz, for m2 = - 12 and ~ = 1 , 
P (L,~) = - - . 

peL -M + 1;/2 + m2 - a; 1) [1 + ~(2IzM + 2Lm2 -1)], otherwtSe, 
(3.23 ) 

a-q-"I 

X(A,L,a) = I N7P22(L - ~)P23(A -L + MP24 (L - a), 
r= -pz 

WeAl =prq (- )k(P2;q)p25 (A)P26 (A), 7/=1T(a-q+P2)' 
k=O 

As before, the P; 's are polynomial POCH's in their arguments and are listed in the Appendices together with the N; 's and 
Y. The quantity between braces in (3.22) means that one should pick the upper row when 1T(P2 - q) = 0 and the lower row 
when 1T(pZ - q) = 1. 

Equations (3.17 )-( 3.20) and (3.23), together with their pieces listed in the Appendices, provide explicit expressions of 
the matrix elements needed to evaluate the A (}'I')M 's and B(AI')L 's in a polynomial-type form. 

IV. NONCANONICAL SU(3) ISOSCALAR FACTORS WITH ONE SYMMETRIC REPRESENTATION 
We will now cover the third item listed in Sec. II. The only quantity in the rhs of (2.1) not yet discussed is the SU(3) iso

scalar factor in the canonical basis with the special values of [h2h3], tied to the left [h2h3] = [/lfz] or tied to the right 
[hZh3] = [fzA]. When [/;lifi] is symmetric, i.e., equal to [ji 0 0], and [hZh3] is tied, one can obtain from the general 
expressions given in Ref. 30, the following results with no sums at all: 
C[UJ,UJ,,,,,] LpOO] [f.!'!,] 

[n,n,] [qO] [f,f,] 

= ( - )"" -w, - n, - n, {(n2 - n3 + 1 )(/1 - nz)!(h - n3 + 1)![ (.0 - q)!(lVl - n2)!(lVl - n3 + 1)!]-1 

X (fz - n 3)!(lVl - fz)!(n 3 - l(3)!(fz -A + 1)!(/1 -A + 2)! 

X (A - l(3)!(n2 - l(2)!(n2 - lV3 + 1)![ (lV2 - 13)!(lV l -A + 1)!(h - lVI)!(/1 - lVz + 1)!(fz - lVz)! 

X (II - lV3 + 2)!(fz - lV3 + 1)!(n2 - fz)!(lVz - n3)!] -1}1/2, (4.1 ) 
C[w,w,w,] [.0 0 0] [f,f,f,] 

[n, n,] [q 0] [f,h] 

= ( - )f, +h- n, -n, {(nz - n3 + 1)(.0 - q)!(/1 -12 + 1 )![ (II - lVI)!(/1 - lVz + 1 )!(/I - lV3 + 2)!]-1 

X (II -13 + 2)!(lVl - nz)!(lVl - n3 + 1)!(lV2 - n 3 )!(nZ - 13)! 

X (fz - l(2)!(fz - lV3 + 1 )!( A - l(3)![ (nz - l(2)!(n2 - lV3 + 1)!(n3 - l(3)!( fz - nz)!(fz - n3 + 1)! 

X (A - n3)!(lVl - fz)!(lVl -A + 1 )!(lVz - A)l] -1}1/2 . (4.2) 

In both (4.1) and (4.2) the rules of the Kronecker product 
require .0 = (h + fz + A) - (lVl + lVz + l(3) and q = (h2 
+ h3) - (n 2 + n3 )· 

Now all the building blocks are known and (2.1) with 
I~ = Ii = 0 gives a closed expression for the noncanonical 
SU (3) isoscalar factor with one symmetric representation. 

The first question to be discussed is what kind of polyno
mial-type expressions can be developed from (2.1). When 
I~ =/i = 0, the SU(3) isoscalar factors for tied [hz h3 ] 

have no sums. The sums over indices M I .M2 ,mz,m3 and h i 
(h i = 0) are restricted by relations MI + M2 = K and 

m 2 + m3 + h ~ = h2 + h 3. Thus only three summation in
dices are free. Their values must be determined by numerical 
bounds, consequently either Al =YI - Y2' /-LI =Y2 - Y3 are 
numbers and A2 is variable or Az and one of AI' /-LI are 
numbers and the other is variable. For convenience of future 
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applications in nuclear theory, we choose the first possibil
ity, keeping Az as a variable. 

Let us examine, with this choice, the polynomial-type 
structure of (2.1) when/~ = Ii = O. From the last section it 
is already known that the transformation brackets A can be 
presented as polynomial-type expressions inA andL for A"~/-L 
orin/-LandL forA </-L, withnumericalentriesM,K,p, andq. 
In order to restrict M I , we take La as a number. With this, all 
the parameters of the first representation are numbers and 
consequently the first A inside the summation is purely nu
merical. For the second A, since the second representation is 
symmetric, only the case A~1l is needed. To compute this A 
and the one outside the sums we need to have both hz and h3 
as numbers. The sum in the SU(2) coupling coefficient de
pending on the L 's can be performed taking La and MI as 
numbers. The other SU (2) coupling coefficient is purely nu-
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merical. 
From this analysis one concludes that our formulas pro

vide polynomial-type expressions for the SU (3) isoscalar 
factors in the variables 11.2=1;, L, and L2. In case 
11.=/1 - A;.p=/2 - h one has 11.= 11.2 + (AI + 2PI - 2h2 

- h3) andp = h2 - h3. In case A <P one has A = hi - h2 
and P = - 11.2 + (h2 + 2h3 - A I - 2p I)' The polynomial
type expression that one obtains from (2.1) after replacing 
all the terms in the rhs, simplifying, and rearranging factors 
in POCH'sis 

I 

[ 
N9 (A + 1)(p + 1)( II - 13 - h2 + h3)! 

ck~t,)~i~O)itt) = ( - )L, -L,+L Ng(A2 - h2 - h3 + PI)! 
(AI +PI -/3 + 1)!(/I-AI -PI)! 

X (A +p + 2)!(2£2 + 1)(2£ + 1) 

(11. 2 + L2 + 1 )!!(A2 - L2)!!P27(L)P2g(L2 + L)(/I - ILl + I )!(/I + 2)!(ILI - 13)!(L2 - L + L I)! 

I ]112 { (ILI-/3)!O(A-IL) 
X (L I _ L2 + L)! P ~t,(~) P ftr.~) [(AI + ILl - 12)!(/2 - ILI)!!J!(/2 + 1 )!P/2 

[ 
(AI+ILI-/2)! ]112 O(A-IL) }R(AtfLl 11.2 AIL) 

+ (/2 - ILI)!(/2 + 1)!/3! (AI + PI)!(A I + ILl + I)! \KILl L2 KL ' 
where 

1l { = 1, for x>O, 
!7(x) 

= 0, for x<O, 
O(x) = 1 - O(x) , 

The polynomials Z are defined as 

Z =I [Z>O(MI) +Z< O(MI)) 
M, 

m 2 - rn3 

= I' N I4P33 (L2)P34 (L2) 
M. = - (m 2 - m 3 ) 

(4.3) 

(4.4) 

( 
L2 L LI) (h2 - h3)/2 (m2 - m3)/2 P2/2) R (A.,u,)IM,IR ('<,0) M, (4.6) 

X f?jJ deb _ M2 K MI f?jJ deb K /2 _ MI/2 M2/2 K,L,(p,q,) OL, (p,O) , 

wherep2 = h2 + h3 - m2 - m3, MI + M2 = K, f?jJ Cleb is the polynomial part ofthe SU(2) coupling coefficient defined as 

f?jJ 11 h J = (_)1J ~ (_ )J+m+z J P(j_jl +j2- Z + 1;z;1) (
. . . ) }+m ('+m) 

deb ml m2 m z~O Z 

XP(j1 - m l + l;z;1)P(j1 - j2 - m +Z;j + m -Z;l)P(j2 - m2 + 1;j + m -z;1) (4.7) 

and 

(p, - M,)/2 (P M )/2) 
R 6i~~~-70i = k~O (- 2)k 2 -k 2 P(P2 + M2)/2 - k + 1;k + (P2 - M2)/2;1) 

XP(L2-P2+2k+ 1;P2-M2-2k;1)P(A2-L2-2k+2;k;2). (4.8) 

The constants N; 's and the parameters of the polynomial 
POCH's P; (x; + n; ;k; ;d; ) are given in the Appendices. De
spite the presence of a polynomial in the denominator, the R 
given by (4.5) is really a polynomial since the numerator is 
exactly divisible by the denominator. 

The isoscalar factor given by (4.3)-(4.8) depends on 
two extra numerical parameters h2,h3' whose ranges are de
termined by the rules of the Kronecker product in U (3); for 
A>IL, one has h2 = h, h3 = 13' and for A <IL, h2 = II, h3 = 12' 
To make a one-to-one correspondence between the U (3) 
parameters used in (2.1) and those ofSU(3) used in (4.3), 
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one lets r3 = ° and, for symmetric [I; J; I;] obtains 

rl =11. 1 +PI' rz =PI' r3 = 0, 

I; = 11.2, I~ = Ii = ° , (4.9) 

II = (AI + 2ILI +11.2 + U +IL)/3, 

12 = (AI + 2jL1 +11.2 -A +p)/3, ( 4.10) 

13 = (AI + 2jL1 +Az -A - 2jL) . 
The rules of the Kronecker product, when applied to 

[I; I~ In = [11.2 ° OJ give us 

[AI + PI"uI'O] X [11.2 00] 
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AI JlI 

L L [AZ +..11 + J.lI - s - k;.ul + k;s]. (4.11) 
k~O S~O 

k +S<A, 

By fixing hz and h3 one has, in the case when k~J.l, 

A =Az + (AI + 2J.lI - 2hz - h3), J.l = hz - h3' 

II =Az + (AI + 2J.lI - hz - h3), Iz = hz, 13 = h3 
(4.12) 

and, in the case when A <J.l, 

A=hz-h3, J.l= -Az + (hz+ 2h3- AI-2J.lI)' 

II = hz, Iz = h3' 13 = ..12 + (AI + 2J.lI - hz - h3) . 
(4.13) 

In the case when A >J.l, Eqs. (4.12) fix J.l and the differ
ence A - ..12' The variable ..12 is restricted from below by 
A2>k + s and remains entirely free from above. 

In case A <J.l, Eqs. (4.13) show that A and the sum 
J.l + Az are fixed. Here, however, ..12 besides being restricted 
from below by A>k + s is also restricted from above by 
Az<hz + 2h3 - A I - 2J.lI' since one must have J.l >0. This re
stricts severely the allowed values of ..12 making compara
tively rare the occurrence of cases A <J.l. For low-dimension
al multiplets (A IJ.lI) this implies that all entry parameters in 
(4.13) by numerically fixed. For multiplets (A IJ.lI) with 
J.lI = 0, Eqs. (4.13) fix the value of Az. Only for high-dimen
sional multiplets (A IJ.lI) with J.lI > 0 does the formula (4.3) 
allow several possibilities for Az and L. 

V. OVERLAP FOR THE COUPLED FUNCTIONS AND THE 
ORTHONORMALIZATION PROCEDURE 

Assuming that the classification scheme is such that the 
composite functions are orothogonal in {3, the overlap for 
functions (2.6) is related to the overlap (2.3) by 

B(A,I',),(A,JL,) )/;/(AI') L = ~ D (A,I',)L, D (A,JL,)L, 
KK' L KIK) K2Ki 

KIKjLI 

K').KiL2 

xC (A,I', )(A,JL,)/;/(AI') C (A,I', )(A,JL,lt/(AI') 
KILl K2L2 KL KiLl KiL2 K'L . 

(5.1 ) 

Formally (5.1) depends on (AIJ.lI)' (A:zJ.l2) , and {3. 
However, if the isoscalar factors possess some well defined 
symmetry properties, one can expect that (5.1) is indepen
dent of (A IJ.lI ), (A:zJ.lz)' and is identical to the usual overlap 
B ir~L. It is very difficult to prove this proposition analyti
cally. In order to confirm it for the isoscalar factors that we 
obtained in the previous section, we derived a polynomial
type expression for the rhs of (5.1) in the special multiplic
ity-free case J.l2 = 0 and coded a computer program to evalu
ate it algebraically. For all cases that we have examined, the 

I 

proposition was confirmed. This is a powerful test of the 
consistency of the transformation basis coefficients and the 
isoscalar factors here obtained. The polynomial-type analy
sis allowed us to make this test algebraically. 

Isoscalar factors with this property have many advan
tages. One of them is manifested in the orthonormalization 
procedure. Let M(AI')L be the matrix that transforms the 
noncanonical basis into an orthonormal one, namely, 

¢J(AJ.l)l>LM) = LM~t)L ¢J(AJ.l)KLM). 
K 

The orthonormality property requires then that 

(M (AI')L) t B (AI')L M (AI')L = I . 

(5.2) 

(5.3 ) 

Consider now the linear combination of composite states in 
the nonorthogonal basis 

¢J«((AIJ.lI)' (A:zJ.lz)){3(AJ.l)l>KL) 

= L M~t)L ¢J«((AIJ.lI)' (A:zJ.l2)){3(AJ.l)KLM). (5.4) 
K 

The scalar product of such states with labels rand r' gives 

[(M(AI')L)t B(A,I',). (A,JL,»)f3(AI')L M(AI')L] ,. (5.5) 
1'1' 

Then, due to the identity of the overlap matrices, those linear 
combinations are also orthonormal, that is, the matrix that 
orthonormalizes the single states also orthonormalizes the 
composite states. 

The orthonormalization procedure that will procedure 
the matrices M(AI')L can be carried out by using the Gram
Schmidt orthonormalization procedure and presents no ad
ditional difficulties. 

Based on Eqs. (3.17)-(3.23) and (4.3)-(4.13) com
puter programs were coded to procedure explicit algebraic 
formulas for the matrix elements of the projection operator P 
and for the isoscalar factors (2.1) in the Elliott's basis. A 
tabulation of these formulas will be published elsewhere. 
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APPENDIX A: INTERNAL COMPONENTS OF R<:rJ,~), EQ. (3.19) 
We have 

NI = 27, PICK + a + l> - 2)12 + 1;(72 - p)12;l)P((K - /2)/2 + l;(K + /z)/2;1)P(2/2 + 1;2(K -/2);1), (AI) 

Nz = (PI - q)![P(PI + l;p + J.l - PI;l )P(J.l + P + q - PI + l;PI - P - q;l) ]2, P = 1T(J.l) , (A2) 

N3 = ( - )(P, +m,)/2 P(PI - m l )/2 + l;(PI + m l )/2;1)P(pz - mz)/2 + l;(pz + m2)/2;1) 

(A3) 
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TABLE I. Parameters n,k,d, of P,(x + n,;k,;d,). 

2 3 4 5 6 7 8 

n, Jl + 72 + 2 12 + I Jl+2-72 Jl-K+2 I-p M+I 12 -p, + 2n + I Jl-72 - 2n + 2 
k, K-72 K-72 (K + 72)/2 (K + 72)/2 72 - m2 P+Jl-P, p,-m,-2n 
d, I I 2 2 I I I 

(p, - m,)/2 . ((P _ m )/2) 
Y = I ( - 2)J 2 • 2 P((P2 + m2)/2 - j + I;j + (P2 - m2)/2;1) 

j=O } 

XP(/2 - P2 + 2j + 1;P2 - m2 - 2j;1 )P(J.l -/2 - 2j + 2;j;2) , 

(I' +p- q+M)/2 ((J.l + P - q + M)/2) 
W= ,,~O (-)" u P{J.l-p)+p-u+l;(p,-m,)/2;1) 

XP(p, - (J.l + P + q + M)/2 + u + 1;(p2 + m2)/2;1). 

See Table I. 

APPENDIX B: INTERNAL COMPONENTS OF ~:rl~a,q), EQ. (3.22) 
We have 

N4 = ( - )(1'+ 1,) /2 21, P((K + 8 + ~ - 2)/2 + 1;(/2 - 8 - ~)/2;I)P((K -/2)/2 + 1;(/2 - ~ - 8)/2;1) 

n 
2 

(A4) 

(A5) 

XP(/2 + J.l + I;K -/2;1) , (B1) 

N = {2
S

(1' + v-p,)/2 Plea - q + u + P2)12 + 1;(J.l - v - P2)/2 + (1 - u);I) } P 1. '1 
5 25(I'+v-'-P,)/2+a+ 2P((a-q-u+l+P2)/2+1;(J.l-v+l-P2)/2;1) (p+ ;J.t-P2,) 

XP(P2 - q + 1;J.t - P2;1) [P(P2 + 1;J.t - P2;1) f P(/2 + P2 + 1;J.t - P2;1) . (B2) 

In the braces one should use the first row for 1T(P2 - q) = 0 and the second for 1T(P2 - q) = I, 

N6 = P((P2 - m2)/2 + 1;(P2 + m2)/2;I)P(/2 + m2 + 1;P2 - m2;l)P((P2 + m2)/2 + 1;(P2 - m2)/2;1) , (B3) 

N7 = ( - )(r- p,)/2 2(a -q+'7- r)/2 Pea - q - r + I;r + P2;I)P((r + P2)/2 + I;(a - q + 1] - r)/2;1) , (B4) 

(p, - m,)/2 ((P _ m )/2) y= 'I' (_)y2P,-m,-2y 2 2 P(/2 -m2+2y+I;2(y+m2);I) 
y=O y 

XP(y + m 2 + 1;(P2 - m 2 )/2 - y;1)P((J.l-/2 - P2 + m 2 )/2 + y + 1;(P2 - m 2)/2 - y;I). (B5) 

See Tables II-IV. 

TABLE II. Parameters n"k"d, of P, (x + n,;k,;d,). 

9 10 11 12 13 14 15 

n, Jl + 12 + 2 12 + I Jl-/2 + 2 12 + M + Jl - v - u + 4 72 - M + Jl - v - u + 4 Jl+~+8+2 72 - M + P2 + u + 2 
k, K-72 K-72 (72 - ~ -8)/2 
d, I I 2 

TABLE III. Parameters n" k" d, of P, (x + n,; k,; d,). 

n, 
k, 
d, 

2004 

16 

12 + M + P2 + u + 2 
(Jl-V-P2)/2+ I-u 

2 

17 

72 - M + P2 - u + 3 
(Jl-v+ I-P2)/2 

2 
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(K -72)/2 
2 

18 

12 + M + P2 - u + 3 
(Jl- V+ I-P2)/2 

2 

(K -72)/2 (72 - ~ -8)/2 (Jl- V-P2)/2 + 1- u 
2 

19 

72 -m, + 1] + 2 
(P2 - m2)/2 

2 

2 

20 

12 + m, + 1] + 2 
(P2 + m2)/2 

2 

2 
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M+I 
72 - m2 

I 

2004 



                                                                                                                                    

TABLE IV. Parameters ni , R i , d i of Pi (x + ni ; R i ; d i ). 

22 23 24 25 26 

ni 

k i 

di 

r - a + 12 - m, + q + 2 
(a - q + 11- r)!2 

Il - r - 12 - P2 + 2 
(r+P2)!2 

r - a + 12 + m, + q + 2 Il - a - q + M - 2k + 2 Il- a + q - M - 2P2 + 2k + 2 
(a - q + 11- r)/2 (P2 - m2)!2 (P2 + m2)/2 

2 2 2 2 2 

APPENDIX C: INTERNAL COMPONENTS FOR EQS. (4.3H4.6) 
We have 

N
s
= (2L I + l)(KI -01- X I )/2)!(A I +,ul-KI +LI - X I )/2)! 

(AI +,ul +LI +kl-~I + l)!(AI +,ul +KI-LI +~I)/2)!(KI-OI)!(2KI)!(,uI!)2 

1 
X , 

21l , + 3a, -L, + K, +15, [(AI + ,uI)!F (AI +,ul + 1 )!(2L I )!(h2 + h3 - ,ul)! 

N. _ (L I - KI)!(A I +,ul + 1 )!(h2 - h3 - K)/2)! [2A, + 3Il 'O(A I - ,ul) + 8(AI - ,ul)] 

9 - AI!(L I + K I )!(h2 _ h3 + K)/2)!(,u1 + K I )/2)!(,u1 _ KI)/2)!2hz + h, +A, + 21l, ' 

NIO = P(1;,u1 + Al - m 2;1 )P(m2 + 2;A.I +,ul - m 2;1 )P(P2 + 1;m2 + m3 - ,u1;l)(m2 - m3 + 1) 

X {P~~2m~,u1 + 1;A.1 +,u.1 -.m2;1) [P(m2 + 1;A.I +,u.1 -.m2;~)]2, AI>,uI, 
2 ·P(,ul - m3 + 1,m3,l) [P(AI +,ul - m3 + 1,m3,1)], Al <,ul' 

Nil = P(m2 - m3 + 1;A.1 +,ul - m 2 + m 3;l) , 

N12 = ( - )pz P(,ul - h3 + 1;m2 - ,u1;l) (,ul - m 3)!P(h2 - m 2 + 1;m2 - ,u1;l) 

XP(h3 - m3 + 1;m3; l)P(h2 - m3 + 2;m3; 1) , 

NI3= (- )A,-m,-m'm3!(,u1 + l)!P(A I +,uI-m2 + 1;m2;l)P(A I +,uI-m3 +2;m3;1) 

X (m 2 -,ul )!P(,ul + 2;m2 - ,u1;l) , 

N 14 = (- )(P,-ii,-K,+IM,I)/2 (L I + iMli-XI)!P(L I +MI + l;LI-MI;l) [O(AI-,ul) 

+ ( - )(A, +Il, +p, -q, -K, -M,)/2 8(AI _ ,ul)] [O(MI ) + ( _ )x, +ii, (m2 - m3 + M
I
)/2)! 

XP(m2-m3-MI )/2+ 1;(m2-m
3
+MI )/2;1)8(MI )] (_ )(M,-K+p,)/2, 

See Table V. 

TABLE V. Parameters n i , ki' d i of Pi (x + n i ; k i ; d i ). 

27 28 29 30 31 32 33 34 

n, I-K l-L, I-A,-Il, rn2-m.'l+1 1'-,+ I-h,-h., I-p, 1 - m1 + m J 1 + M. - K 

(Cl) 

(C2) 

(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

(C9) 

k, 2K 2L, + I A.+PI- rn2+ m l A1+J.lI-rn2+rnJ m2 +m J -1l1 A.+4t.- rn2- mJ K+m2 -mJ -M. K+ml-mJ-M. 
d, I I I I I I I 
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The supertableaux of the orthosymplectic group OSP (m 14) are analyzed and interpreted as 
representations of the corresponding superalgebras. An extension of the results to the general 
case OSP (mI2p) is proposed. 

I. INTRODUCTION 

The orthosymplectic group OSP(m 12p) leaves invar
iant an even bilinear form G in a Z2-graded vector space Vof 
dimension m + 2p. The associated superalgebra is basic and 
simple) and its Bose sector is the ordinary Lie algebra of the 
direct product SO(m) ® Sp(2p). Whenm = 2 this even sub
algebra contains a U ( 1) factor and we have a class I superal
gebra C(p + 1). When m =1'2 the even subalgebra is semi
simple, or simple for m = I and we have a class II 
superalgebra. 

The starting point of the present investigation is a paper 
by Farmer and larvis2 where orthosymplectic supertableaux 
have been discussed. A full analysis is given here by using the 
notion of generalized atypical supertableaux already intro
duced for the superunitary case by Delduc and the author.3 

The problem is the following. To a supertableau T of the 
orthosymplectic group OSP(m 12p) we associate a superten
sor Y of the general graded linear group PL(mI2p) whose 
indices have the supersymmetry properties as indicated by 
the supertableau T. This supertensor is an irreducible repre
sentation of PL(mI2p). Because of the existence of G for 
orthosymplectic transformations Y is not, in general, an 
irreducible representation of OSP (m 12p). In order to isolate 
the irreducible parts we must subtract traces in all the possi
ble ways and we now write symbolically 

Y = Y IRR + I G Yf~k. + I GGYfik. + .. , . 
1 Trace 2 Traces 

If r is the rank of the tensor :Y, the irreducible components 
Y IRR , Y IRR (1), Y 1RR (2), ... , are, respectively, of rank r, 
r - 2, r - 4, .... When all the traces can be separated Y is a 
fully reducible tensor representation of OSP (m 12p). The su
pertableau Tis called an irreducible supertableau and it cor
responds to Y IRR • We shall say that the supertableau T 
describes a reducible-or a fully reducible-representation 
of OSP (m 12p). This situation occurs, in particular, for typi
cal supertableaux. 

When some trace terms cannot be separated from 
Y IRR , then Y is a nonfully reducible supertensor. The su
pertableau T is called nonirreducible and, with the other 
supertableaux corresponding to the nonseparated parts of 
the trace, the supertableau T belongs to what we define as a 

a) Postal address; Vniversite Pierre et Marie Curie, Tour 16-ler etage 4, 
place Jussieu, 75252 Paris Cedex OS, France. 

b) Laboratoire associe au CNRS VA 280. 

generalized atypical supertableau (OAST). Such an object 
describes a nonfully reducible representation of 
OSP(mI2p). 

In order to recognize if an atypical supertableau T is 
irreducible or nonirreducible we can use the following em
pirical rule. 

(a) Compute the dimension d ST of the supertableau T 
as given by the determinant of Balentekin and Bars.4 For a 
legal supertableau2 d ST is a positive integer. 

(b) Compute the Kac-Dynk in parameters of the high
est weight AST of the supertableau T. 2 This highest weight is 
also the highest weight of an atypical irreducible representa
tion R ofOSP(mI2p). 

(c) By analyzing the SO(m) ® Sp(2p) content of the 
representation R compute the dimension d R of R (Ref. 5) 
and introduce the integer q R with q R = 1 if R is a self-con
tragradient representation and q R = 2 if it is not. 

Then 

The equality occurs only when T is irreducible. 
Notice that, whereas the leading supertableau of a 

OAST is always nonirreducible by definition, the other 
atypical supertableaux participating to the OAST are either 
nonirreducible or irreducible. Such a feature plays a central 
role in the counting of the atypical components forming the 
associated non-fully-reducible representation. 

Let us keep in mind an important result of the theory of 
Young tableaux for the orthogonal group 0 (m) (Ref. 6). In 
the restriction to unimodular orthogonal transformations 
Oem) ~SO(m) each irreducible representation of Oem) 
remains irreducible unless the corresponding Young tableau 
t is a self-associate tableau. The representations correspond
ing to different associate Young tableaux t and t' become 
equivalent and no other equivalence appears. When t is a 
self-associate Young tableau-this case occurring only when 
m = 2v-the representation splits into two inequivalent rep
resentations ofSO(2v) of same dimension. We shall refer to 
this phenomena as the O(2v) ~SO(2v) reduction and it 
will affect the supertableaux of OSP(2vI2p). In particular 
this fact is at the origin of the factor qR previously intro
duced. 

The case m = 1 is trivial and the Young supertableaux 
of the orthosymplectic group OSP ( 112p) are all typical and 
irreducible.) The case m = 2 has been considered in a pre
vious paper7 and we restrict ourselves now to orthosymplec-
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tic tableaux ofOSP(m 12p) with m:;;'3. With a particular em
phasis to the case p = 2, which might be relevant for 
supersymmetry and supergravity. The paper is made self
consistent by briefly discussing in Sec. II the main features of 
the orthosymplectic superalgebras and of the orthosymplec
tic supertableaux. Then come two sections with a detailed 
study of the orthosymplectic supertableaux of OSP (m 14): a 
discussion of the irreductibility in Sec. III, a description of 
the general atypical supertableaux and of the atypical com
ponents of the corresponding non-fully-reducible represen
tations in Sec. IV. A relation between the size and the degen
eracy of atypically of supertableaux is proposed in Sec. V in 
the form of three theorems analogous to those previously 
obtained for the supertableaux of the superunitarily groups 
SU(mln) (Ref. 3). 

II. GENERAL RESULTS ON ORTHOSYMPLECTIC 
SUPERTABLEAUX 

A. Definitions 

Let us call as v the integer part of m/2. In Kac's nota-
tion 1 the superalgebras of the orthosymplectic groups are 

m=2v+l, B(v,p), v:;;. 0, p:;;.l, 

m = 2v, D(v,p), v:;;. 2, p:;;'l, 

m = 2, C(p + 1), v = 1, p:;;.l. 

The supertableaux of the orthosymplectic group OSP (212p) 
have been studied in a previous publication 7 and they will 
not be considered here. General results concerning the su
peralgebras B ( v,p) and D ( v,p) are brought in mind in Ap
pendix A. 

B. Legal orthosymplectic supertableaux 

The supertableaux of the orthosymplectic group 
OSP(mI2p) havep columns and v rows of arbitrary length2 

as shown in Fig. 1. The row and column parameters are 
constrained by the usual inequalities of positivity 

I 

AU 

1-

)JI )J2 ., ..)Jp 

FIG. 1. General supertableau ofOSP(2vI2p) and OSP(2v + 112p). 
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Al :;;.,.1,2:;;' ... :;;.,.1,2:;;.0, /-ll :;;'/-l2:;;' ... :;;'/-lp :;;.0 . 

As a consequence we have the legality conditions in one of 
the two equivalent forms: (i) the number of boxes of the 
(v + 1 )th row is less or equal to p, (ii) the number of boxes 
of the (p + l)th column is less or equal to v. 

C. Highest weight of an orthosymplectic supertableau 
(m;t2) 

The highest weight AST of an orthosymplectic supertab-
leau is defined by a set of Kac-Dynkin parameters2 

and 

aj = /-lj - /-lj+ I' j = 1,2,oo.,p - 1 , 

ap =/-lp +,.1,1' 

ap+ y =,.1,1' -,.1,1'+1> r= 1,2,oo.,v-l, 

ap+ v =A v _ 1 +Av, for D(v,p), 

ap+ v = lAv' for B(v,p) . 

The eigenvalues b of the hidden Sp (2p) Cartan generator k is 
given by 

b =/-lp . 

In this language the necessary consistency conditions of 
Kac1 are trivial if 

/-lp =j<v, then Aj + 1 = '" =Av =0. 

Let us point out that the correspondence between the 
(p + v) supertableau parameters (A,p) and the (p + v) 
Kac-Dynkin parameters of its highest weight AST is bijec
tive. 

D. Atypical supertableaux 

The Kac-Dynkin parameter ap of an irreducible repre
sentation R of OSP(mI2p) can take 2vp possible atypical 
values which are linear functions of the other p + v-I 
Kac-Dynkin parameters (see Appendix A), 

j = O,I, ... ,p - 1, a = O,I,oo.,v - 1 . 

ap = Bja , 

The highest weight AST of a supertableau is atypical when 
one or several relations between the row and the column 
parameters are satisfied: 

atypicity ap =Aja , /-lp-j +A I + a =a-j, (1) 

atypicity ap = Bja , /-lp-j -AI +a = m - 2 - j - a, 

(2) 

with 

O<a<v - 1, O<j<p - 1 . 

Let us notice that in the case m = 2v when Av = ° the atypi
cities A jv _ I and Bjv _ I become equal for every j as a conse
quence of the equality ap _ I + v = ap + v' 

The degeneracy of atypicity of a supertableau is the 
number of relations (1) and (2) which are fulfilled by the 
row and column parameters of the supertableau. Using the 
inequalities of positivity of the row and column parameters it 
is straightforward to derive an upper bound on the degener
acy of atypicity 8, 
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0<8<L 

with 

L = min[m - l,p] . 

E. Comment on the atypical supertableau AJ 

(3) 

(4) 

Using again positivity arguments it is straightforward to 
obtain the following results. 

(a) The atypicitiesAjQ with}> a cannot be realized for 
the highest weight of a supertableau. 

(b) The atypicities Aja withj<a have only one possible 
realization for a supertableau 

AI+a=O, pp_j=a-j. 

For instance the atypicity Aoo = ° corresponds to supertab
leaux with only (p - 1) columns and no row (pp = 0). Of 
course such supertableaux may have, in addition, other 
atypicities of type A or B. 

III. IRREDUCTIBILITY OF THE SUPERTABLEAUX OF 
OSP(mI4) 

( I ) The consideration of the supertableaux of 
OSP{mI4) with only two columns gives valuable informa
tion on the behavior of more complicated supertableaux. Let 
us first study the atypicity of the two column supertableaux. 
Using Eqs. (1) and (2) we obtain 2{m - I) relations of 
atypicities presented on Table I. Of course by positivity the 
atypicity A to cannot be realized for a supertableau. We then 
obtain a first classification of the two-column supertableaux 
of OSP (m 14) accordingly to the degeneracy of atypicity 8 of 
their highest weight 

(a) 8 = ° typical, Pl>P2>m - I , 

(b) 8 = I atypical, PI>m - 2>P2' 

(c) 8 = 2 atypical, m - 3>PI>P2' 

The next problem of interest is that of the irreducibility of 
these supertableaux and we shall use for that purpose the 
language of supertensors introduced in Sec. I. The even bilin· 
ear form G being supersymmetric the removing of one trace, 
2 traces, etc., for a two-column supertableau is realized in the 
following way: 

one box in each column for one trace, 

two boxes in each column for two traces, 

n boxes in each column for n traces. 

Of course such a truncation is possible if and only ifO<n <P2' 
As a direct consequence the one-column supertableaux 

of the orthosymplectic groups being associated to fully su
perantisymmetric tensors are irreducible. 

TABLE I. Atypicity for the two-column supertableaux of OSP (m 14). 

Aoo AOI A02 BOI Boo 
1t2 = 0 1t2 = 1 1t2 = 2 1t2 = m - 3 1t2=m-2 

AIO All AI2 BII BIO 
Itl = -1 Itl =0 Itl = I Itl = m - 4 Itl =m - 3 

2009 J. Math. Phys., Vol. 28, No.9, September 1987 

An algebraic study of the reduction of a supertensor Y 
ofPL (m 12p) under orthosymplectic transformations shows 
that the relevant parameter for the irreductibility is the su
perdimension N = m - 2p. In our case p = 2 we have 
m = N - 4. The result of our investigation of the two-col
umn supertableaux T(PI,J.l2) is the following. In the tensor 
space Y (p 1,J.l2) the term with n traces cannot be separated 
from the irreducible part when m takes the value 

m = PI + P2 + 3 - n . (5) 

The number of traces n being upper bounded by P2 we ob
tain, from Eq. (5), the characterization of the subset of non
irreducible two-column supertableaux ofOSP(mI4) as 

Pl+P2>m-2, PI<m-3. (6) 

From Table I these supertableaux have a degeneracy of 
atypicity 8 = 2. Let us call such a supertableau T I • The trun
cation of n traces gives a supertableau T2 simply related to 
TI : 

T I (PI,P2)' T2(Pl - n, P2 - n) . 

Let us point out that, for a given supertableau of the subset 
( 6) and a fixed value of m, Eq. (5) produces only one solu
tion for n and the pair (TI ,T2 ) called a two-generalized 
atypical supertableau is then uniquely defined by T I • We 
observe that T2 has also a degeneracy of atypicity (j = 2 but 
contrary to T I, T2 does not belong to the subset (6). 

The two-GAST (TI ,T2 ) describes a non-fully-reducible 
representation of OSP(m 14) with three atypical compo
nents given by 

\ul -P2Ip210, .. ·,0} + 2\u1 -PZlp2 - nIO, ... ,O}. 

The results concerning the degeneracy of atypicity and the 
irreductibility of the two-column supertableaux of 
OSP(mI4) are summarized in Table II, where the empty 
squares are trivial consequences of the positivity constraint 

PI >P2' 
(2) As pointed out in Sec. I a supertableau is either 

irreducible or nonirreducible. In the later case it is the lead
ing supertableau of a set of p atypical supertableaux of same 
degeneracy of atypicity 8 forming a p-GAST. It is trivial to 
check, by elementary counting, thatp is non-negative integer 
power of 2. At fixed value of 8 by positivity the maximal 
value of p is PM = 26 

• We can distinguish two cases: (a) the 
normal case where p =PM' and (b) the abnormal case 

TABLE II. Irreductibility and nonirreductibility of the two-column super
tableaux of OSP (m 14). 

~ Itl 

A IP,{3>a 

{3>a 

B IP 
{3<a 

Typical 

AOa 

8=2 
IRR 

8=2 
IRR 

8=2 
two-GAST 

8=1 
IRR 

8=2 
two-GAST 

Typical 

8= 1 8=0 
IRR IRR 
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where P <PM' Of course in this language a one-GAST is an 
irreducible supertableau. The typical supertableaux, 8 = 0, 
are irreducible, P = 1, and normal. The zero-box and the 
one-box supertableaux are atypical, irreducible, and abnor
mal. 

In order to define the size of a supertableau we make a 
partition of the full set So of legal supertableau of 
OSP(m 12p) in L + I classes 

/=L 

So = Ell t:./. 
/=0 

The typical and the atypical supertableaux of the normal 
case belong to the class t:.o. An atypical supertableau of the 
abnormal case with the two associated parameters 8 and p 
belongs to the class t:./ with the positive integer I defined by 

2/=PM/P 

or, equivalently 

p=2(15-/). (7) 

(3) Coming back to OSP (m 14) we easily see that the set 
of atypical two-column supertableaux considered in the first 
paragraph of this section belongs to the abnormal case, the 
typical two-column supertableaux being of course normal. 
In the normal case we have three possibilities: 

typical 8 = ° irreducible P = 1 , 

atypical 8 = 1 two-GAST P = 2 , 

atypical 8 = 2 four-GAST P = 4 . 

For the abnormal case we have again three possibilities: 

atypical 8 = 1 irreducible P = 1 , 

atypical 8 = 2 irreducible P = 1 , 

atypical 8 = 2 two-GAST P = 2 . 

The study of the properties of a general supertableau of 
OSP(mI4) with two columns and at most v rows is conve
niently made starting from the associated two-column su
pertableau of same f-t, and f-t2' The detailed discussion is giv
en in Appendix B and the results are summarized in Table 
III. 

For the orthosymplectic groups OSP(mI4) with m:>3 
we have three classes of supertableaux t:.o, t:." t:.2. Using the 
results of Appendix B we obtain a simple characterization of 

TABLE III. Irreductibility and nonirreductibility of the supertableaux of 
OSP(mI4). 

~ 
Boa Boa 

/ll Aoa A. 1 +a =0 A.I +a #0 Typical 

0=2 
A op ,/3>a IRR 

/3> a 0=2 
IRR 

B ,p 
.1. 1 +13 =0 0=2 0=2 

f3<a two-GAST two-GAST 

B ,p 0=2 0=2 0=2 0=1 
.1.1+13#0 two-GAST two-GAST four-GAST two-GAST 

Typical 0=1 0=1 0=1 0=0 
IRR IRR two-GAST IRR 

2010 J. Math. Phys., Vol. 28, No.9, September 1987 

these classes with the three column parameters c, =f-t" 
c2 = f-t2' and c3, which is the number of nonvanishing rows. 
The result is 

class t:.o: C2 + c3:>m - 1 , 

class t:.,: c, + c2:>m - 2:>c2 + c2 , 

class t:.2: c, + c2,m - 3 . 

(8) 

A technical remark is now in order. Because of the positivity 
we have 

C,:>C2' c3 ,min[c2'v], 

and in the X = c, + c2, y = C2 + c3 plane the allowed do
main for legal supertableaux is limited by three straight lines 
and given by 

Y:>O, Y,X, Y,v+X /2. 

We have represented on Figs. 2 and 3 the diagram of classes 
for the two cases m = 2v and m = 2v + 1. 

IV. GENERALIZED ATYPICAL SUPERTABLEAUX OF 
OSP(mI4) 

When the atypical supertableau T, is not irreducible it is 
the leading supertableau of a generalized atypical supertab
leau describing a non-fully-reducible representation of the 
orthosymplectic group. The partners of T, in the GAST and 
the atypical components of the associated non-fully-reduc
ible representation are completely determined by T,. 

We now discuss in details these problems for the sim
plest case oftwo-GAST ofOSP(mI4). The analysis of four
GAST is only more complicated in the details but non-fun
damentally-different. The various situations are those 
described in Table III. 

(1) The supertableau T, belongs to the class t:., and its 
highest weight has a degeneracy of atypicity 8 = 2. The 
f-t2 atypicity is A Oa ( 1 'f-t2 = a, v-I) or BOa 
(v'f-t2=m-2-a,m-2) with A'+a =0. The f-t, 
atypicity isB 'P (0,/3 <a). We then have 

f-t,=m-3-/3+A,+p. 

It is convenient to study separately the two cases A , + P :> 1 
and A '+P =0, 

a-A,+p:>1. 

Let us define as (7 the largest non-negative integer such that 

A, +p = '" =,1., +p +<7' O,(7,a - 1-/3. 
The supertableau T2 is deduced from T, by suppressing 
2 + 2(7 boxes as follows: 

{

ill = f-t, - 1 - (7, il2 = f-t2 , 

T2 ~j = Aj , for l,j,/3, 2 -: /3 + (7,j,v, 

Aj = Aj - 1, for 1 + f3'J' 1 + f3 + (7 . 

The new column parameter ill can be rewritten as 

ill = m - 3 - f3 + A, +p - 1 - (7 

= m - 3 - (f3 + (7) +.x, +P + <7 , 

and the supertableau T2 has the ill atypicity B ,p+ <7 

(f3 + (7 < a) and the same f-t2 atypicity as T,. Therefore the 
supertableau T2 has a degeneracy of atypicity 8 = 2 and it 
belongs, like T" to the class t:." 
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2u 
Ll a 

2u-l ------------------------------',---------------
FIG. 2. Partition in classes of the supertabJeaux of 
OSP(2vI4). 

, . ----------------------.r---------------------------

2u-4 

A 1 

o .~ __________ _1_ __ _'__ ____ __'_ _________________________ ___;~ C 1 +C
l 

2U-32u-2 2u 

b-A.I+p=O. 

The supertableau TI has at most f3 non vanishing rows that 
do not play any role in the III and 112 atypicities_ We then 
introduce the two-column supertableau T~ obtained from 
TI by suppressing the possibly nonvanishingf3 rows, Like TI 
the supertableau T? has ~ = 2 and it belongs to the class !:J..I_ 
We have a two-GAST (T?, T~) and the supertableau T~ 
has been determined in Sec. III, 

iii =PI - n = m - 3 -P2' ii2 =P2 - n = m - 3 -PI' 

The supertableau T2 forming with TI a two-GAST is now 
obtained from T~ by reintroducing the possibly non vanish
ing f3 rows of T I • We get 

(
ii I = m - 3 - P2' ii2 = m - 3 - PI = f3 , 

T2 - . 
A.j = Ai' for 1 <. J<.f3 _ 

Like T~ the supertableau T2 has ~ = 2 and belongs to the 
class !:J..2' It is irreducible. 

2u -- ---- ----- - -------- ---- - --F-----------
2u-l 

2u-2 

a 

2011 

._-- -- --- - -------- ----- --;.--------------------

j, 1 

FIG. 3. Partition in classes of the supertabJeaux of 
OSP(2v+ 114). 

~--_________ _'__~ __ ~ _______________ ~~Cl+C 

2u-? 2u-l 2u 
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(2) The supertableau TI belongs to the class Ao and its 
highest weight has a 112 atypicity /j = 1. This 112 atypicity is 
Boa (O<a<v - 1) with A I +a >1 and we have 

112 = m - 2 - a + Al + a . 

As previously we define as a the largest non-negative integer 
such that 

AI + a ='" =A I+a+a, O<a<v-1-a. 

The supertableau T2 is deduced from TI by suppressing 
2 + 2a boxes as follows: 

{
~I =111' fi2 =112 - 1- a, 

T2 Aj =Aj , for l<j<a, 2+a+a<j<v, 

~j = Aj - 1, for 1 + a<j< 1 + a + a. 

The new column parameters fi2 can be rewritten as 

fi2 = 112 - 1 - a = m - 2 - a + A I + a-I - a 

=m-2- (a+a) +~I+a+a' 

and the supertableau T2 has the fi2 atypicity Boa + a and no 
111 atypicity like T I • When ~ I + a + a > 1 or A I + a >2 the su
pertableau T2 is irreducible and it belongs to the class A I' 

Remark: When m = 2v,a = v-I - a, and A I +a = 1 
the atypicity B Ov _ I ,~v = 0 becomes A Ov - I . 

(3) The supertableau TI belongs to the class Ao and its 
highest weight has a I1I-atypicity /j = 1. The I1I-atypicity is 
B la with A I + a > 1 and we have 

I1I=m-3-a+A I+a · 

The column parameter 112 <111 being typical, at fixed 111 and 
A's, it can only take A I + a typical values located in the range 
V<112<111' Let us now define as a the largest non-negative 
integer such that 

AI + a = ... =AI+a+a, O<a<v-1-a. 

The largest allowe~ typical value of 112 is then 

(112) max = m - 3 - a - a + A I + a 

and it corresponds to the minimal value of the difference 

r =111 -112' 

(r)min = a. 

When A I + a > 2 we have other typical values of 112 for which 

r> 1 + a. 

It is now convenient to distinguish the two cases r> 1 + a 
andr= a, 

a-r>l+a implies AI + a >2. 

The supertableau T2 is obtained from TI by suppressing 
2 + 2a boxes as follows: 

{

fil = 111 - 1 - a, fi2 = 112 , 

T2 ~j =Aj , for l<j<a, 2 + a + a<j<v, 

Aj = Aj - 1, for 1 + a<j< 1 + a + a . 

The new column parameter fi I can be rewritten as 

fil = m - 3 - a +..1.1 +a - 1 - a 

=m-3- (a+a) +~I+a+a 

2012 J. Math. Phys., Vol. 28, No.9, September 1987 

and the supertableau T2 has the 11)-atypicity B la + a with 
~ I + a + a > 1 and no 112-atypicity. Like T) the supertableau 
T2 has /j = 1 and it belongs to the class Ao, 

b-r=a. 

The two-column parameters 111 and 112 of the supertableau 
TI are given by 

111 = m - 3 - a + A I + a' atypical, 

112 = m - 3 - a - a + A I + a + a' typical, 

and we have, in addition at least 1 + a + a nonvanishing 
rows. It is convenient to study separately the two cases 
A I + a >2 and A I + a = 1, 

b - 1, r = a, A I + a > 2 . 

We define as a l the smallest non-negative integer such that 

AI+a -A2+a+(7+a,>2, O<a+al<v-l-a. 

The supertableau T2 is obtained from TI by suppressing 
2 + 2a + 2al boxes as follows: 

fi2 =112 - 1 - aI' 

~j=Aj' for l<j<a, 2+a+a+al<j<v, 

~j = Aj - 1, for 1 + a<j<a + a, 

2+a+a<j<1 +a+a+al, 

~j = Aj - 2, for j = 1 + a + a. 

The two-column parameters of the supertableau T2 are now 
rewritten in the form 

fil=m-3-a+A I+a -I-a 

= m - 3 - (a + a) + ~I + a + a + 1 , 

112 = m - 3 - a - a + A I + a + a-I - a I 

= m - 2 - (a + a + a I) + ~I + a + a + a, . 

The value of fi I is typical and the value of fi2 is atypical 
Boa + a + a . The supertableau T2 has again /j = 1. When 
~ I + a + a ~ a > 1 or A I + a >3 the supertableau T2like TI be
longs to the ~lass Ao· When ~ I + a + a + a, = 0 or A I + a = 2 
the supertableau T2 belongs to the class Al and it is irreduci
ble. 

Remark: When m = 2v, a + a l + a = v-I, and 
A I + a = 2 the atypicity B 0" _ I ,~" = 0 reduces to A Ov - I , 

b - 2, r = a, Al + a = 1 . 

The two-column parameters 111 and 112 of the supertab1eau 
TI are given by 

111 = m - 2 - a, atypical B la , 

112 = m - 2 - (a + a), typical, 

and we have, in addition 1 + a + a rows, 1 + a of which at 
least heaving only one box. Using Kac's consistency condi
tion 112> 1 + a + a we derive an upper bound for the sum 
a + a, 

a + a<m - v - 2 . 

As a consequence for m = 2v the maximal value of non van
ishing rows is v-I and therefore Av = O. 

The supertab1eau T2 is obtained from TI by suppressing 
2 + 2a boxes as follows: 
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{

fil = Ill' fi2 = 112 - 1 - 0', 

T2 Aj = Aj' 1 <:j<:a , 

Aj = 0, 1 + a<:j<:v . 

The value of fi I becomes typical and that of fi2 atypical. Re
writing fi2 in a more transparent way we get 

fi2 = m - 2 - (a + 0') - 1 - 0' 

= m - (3 + a + 20'»m - 3 - a. 

The parameter fi2 is atypical either of the A O{3 type or the B O{3 

type with /3>a + 1. Of course the supertableau T2 is irredu
cible and it belongs to the class ~I. 

(4) We now study the atypical components of the non
fully-reducible representations associated to the generalized 
atypical supertableaux. 

Let us call Rj the irreducible representation of the orth
osymplectic group whose highest weight is the same as the 
highest weight of the supertableau Tj. We have two possibili
ties for Rj : a - Rj is self-contragradient;~r /3-Rj is not self
contragradient and its contragradient is R j • The tensor rep
resentations of the orthosymplectic group OSP (2v + I12p) 
are self-contragradient. For the orthosymplectic group 
OSP(2vI2p) onlytherepresentationswithap + v _ 1 = ap + v 

or, in the supertableau language, Av = 0 are self-contragra
dient. If ap + v _ I =l=ap + v the representation Rj is obtained 
from R j by exchanging only the two Kac-Dynkin param
etersap + v _ 1 andap + v · 

As an illustration consider a typical irreducible super
tableau T. If the typical irreducible representation R is self
contragradient it is uniquely associated to T and we have 

dim T=dimR. 

If R is not self-contragradient then T describes the direct 
sum of two contragradient typical irreducible representa
tions R $ R of same dimension and we have 

dim T=2dimR. 

Let us come back now to the case where Tis atypical and 
nonirreducible. The discussion of the atypical components 
of the nonfully reducible representation of the orthosym
plectic group described by a GAST can be formulated in a 
rather general way. Consider an atypical supertableau TI 
belonging to the class ~/ with a degeneracy of atypicity 
(j = 1 + 1. We have a two-GAST (TI ,T2 ) and the following 
possible cases may occur for T2 : 

(a) T2 belongs to the class ~/ , 

(/3) T2 belongs to the class ~/ + I • 

In the first case T2 can be considered as the leading su
pertableau of a second two-GAST (T2,T3 ). In the second 
case T2 is irreducible. 

We are now in position to give the results concerning the 
atypical components of the non-fully-reducible representa
tion described by the two-GAST (TI ,T2 ). 

(a) T2E~/ the supertableau T3 exists. 

(a-I) RI=I=RI then R 2=1=R2 , 

(TI,T2)::::} (R I + 2R2 + R 3) 

$ (R I + 2R2 + R 3 ) , 

the representation R3 mayor may not be self-contragra-
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dient. 
(a-2) RI = RI then R2 = R2 and R3 = R 3 , 

(TI,T2)::::} (R I + 2R2 + R 3) . 

(b) T2E~/ + I T2 is irreducible. 

(b-l) RI=I=RI with R 2=R2 , 

(TI,T2 )::::}(R I +2R2+RI )· 

(b-2) RI = RI with R2 = R 2 , 

(T1,T2)::::}R 1 + 2R2 · 

The number of atypical components of the non-fully-reduc
ible representation described by the two-GAST ( T 1, T2 ) var
ies between 3 and 2 X 4. 
v. SIZE AND ATYPICITY FOR ORTHOSYMPLECTIC 
SUPERTABLEAUX 

( 1) In this section we intend to make conjectures for an 
extension to OSP (m 12p) of the results obtained in Sec. III 
for OSP (m 14). The size of a legal supertableau of 
OSP(mI2p) is determined by p + 1 quantities, the column 
parameters cj =Ilj,j= 1,2, ... ,p, and cp + 1 measuring the 
number of non vanishing rows, cp + I <:v. The natural exten
sion of Eqs. (8) is the following: 
class ~o: cp + cp + I >m - 1 , 

class ~/: cp_ 1 +cp_/+I>m-l-I 

(9) 
I<:/<:L-l, 

class ~L: C1 + c2<:m - 1 - P if P < m - 1 • 

Cp + 2 _ m =0, ifp>m-I. 
(2) By analogy with the case of superunitary supertab

leaux3 we formulate the relation between the size and the 
atypicity in the form of three theorems. 

Theorem I: When a legal supertableau Tbelongs to the 
class ~/, O<:/<:L, then the degeneracy of atypicity t> of its 
highest weight AST is lower bounded by 1 and we get 

1<:t><:L. 

Two trivial consequences of this theorem are (i) the typical 
supertableaux all belong to the class ~O, (ii) the atypical 
supertableaux of the class ~L have t> = L. 

Theorem II: When a legal supertableau Tbelongs to the 
class ~/. 0<:1 <:L and has a degeneracy of atypicity t> = 1 then 
T is irreducible. Calling as R the irreducible representation 
of highest weight AST we have the correspondence (i) for R 
self-contragradient T::::}R, and (ii) for R not self-contragra
dient T::::} R $ R. 

Theorem III: When a legal supertableau T belongs to 
the class ~/, 0<:1 <L, and has a degeneracy of atypicity t>, 
1 < t><:L, then Tis nonirreducible and it is the leading super
tableau ofap-GAST given by Eq. (7). 

The p-GAST describes a non-fully-reducible represen
tation ofOSP(mI2p). 

(3) Comment on the theorems: Theorem I has been 
obtained in Appendix C for orthosymplectic supertableaux 
ofOSP(mI2p) withp columns only. Its extension to more 
complete supertableaux with at most v non vanishing rows 
can be made as it has been done in Sec. II for p = 2. The 
general proof is straightforward although a little tedious. 
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On the other hand for Theorems II and III we only have 
plausibility arguments and examples of particular situations 
where these theorems are satisfied, 
m = I, p;;.l, L = 0, OSP(l12p). 

One class ao of irreducible supertableaux 
m=2, p;;.l, L=I, OSP(212p). 

Two classes ao, a l of supertableaux already studied in 
(Ref. 7): 

class a I: Cp = 0, irreducible atypical supertab

leaux, 

class ao: Cp ;;' I, irreducible typical supertableaux and 

two-generalized atypical supertableaux, 
m;;.3, p = 2, L = 2, OSP(mI4). 

Three classes of supertableaux studied in Sec. III. 

VI. CONCLUDING REMARKS 

The exhaustive study of the supertableaux of the ortho
symplectic groups OSP(212p) (Ref. 6) and OSP(mI4) 
make plausible the conjectures proposed in Sec. V concern
ing the classification and the interpretation of any legal orth
osymplectic supertableau. We notice the similarity of the 
results obtained in the superunitary case3 and in the ortho
symplectic one. In fact the partition in classes of the set of 
legal orthosymplectic supertableaux made in Sec. III was 
designed for that purpose and in this respect the key equa
tions are Eqs. (8) and (9). 

Let us now end this paper with a remark concerning the 
topology of the set So oflegal supertableaux of the orthosyrn
plectic group OSP (m 12p). Let us call.AI the total number of 
boxes of a supertableau TESo: 

Such a quantity is obviously conserved mod 2 by tensor 
product. As a consequence the set So has a Z2 structure with 
two classes S 0+ and S 0- whose direct sum is So: 

.AI =0(2) if TES 0+ , 

.AI = 1 ( 2 ) if TES 0- • 

Only the subset S 0+ is closed under the tensor product oper
ation and it is generated by the superantisymmetric two-box 
supertableau describing the adjoint representation. Of 
course S 0+ contains the zero-box supertableau of the scalar 
representation. The subset S 0- is not a subgroup and it con
tains, in particular, the one-box supertableau of the funda
mental representation. 

The Z2 structure obviously extends to the generalized 
atypical supertableaux where two atypical supertableaux en
tering in the GAST always differ by an even number of 
boxes. 

Such a topology has already been pointed out for the 
supertableaux of OSP (212p). 
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APPENDIX A: SUPERALGEBRAS B(v,p) and D(v,p) 

Definitions: The Z2 graded algebras B( v,p) and D( v,p) 
have the decomposition L = Lo Ell L I' The Bose sector Lo of 
the even generators is simple for B(O,p) and semisimple in 
all the other cases 

Lo=ByEllCp for B(v,p), v;;. I, p;;.l, 

Lo=DyEllCp for D(v,p), v;;. 2, p;;.l, 

where By, Dy, and Cp are the familiar Cartan simple Lie 
algebras. The dimension of Lo is 

dim Lo = P (2p + I) + ~ m (m - I) . 

The Fermi sector L 1 ofthe odd generators is irreducible and 
it has the dimension 

dimL 1 =2mp. 

The orthosymplectic superalgebras B( v,p) and D( v,p) are 
basic, simple graded Lie algebras and the Cartan subalgebra 
H of mutually commuting generators is the maximal Abe
lian subalgebra of Lo and it has the dimension p + v. 

Canonical basis: It is possible to extract a system of 
p + v simple positive generators a/and their conjugate a;
involving only one odd generator a p+ = {3 + and its conju
gate ap- = {3 - and such that 

(I) [a;± ,a/ ] = ± Dijh;, h;Elf 

(of course the commutator becomes an anticommutator 
wheni=j=p, {j3+ ,f3-} = hp, hpElf); 

where aij is the Cartan matrix. Let us notice that the diag
onal elements of this matrix but app are aii = 2 and app = ° 
excepted for B (O,p ) . 

Irreducible representations: The highest weight A of a 
finite-dimensional irreducible representation is annihilated 
by any simple positive generator 

a/ IA) = 0, i = 1,2, ... ,p + v. 
The Kac-Dynkin parameters are the eigenvalues of the Car
tan generators h; for the highest weight A, 

h; IA) = a j IA), i = 1,2, ... ,p + v, 

and we shall use the following notation of an irreducible 
representation of the superalgebra: 

A~{al , ... ,ap_1Iap lap+ 1 , ... ,ap+ y}. 

The parameters a I'" .,a p _ 1 are the Dynkin parameters of a 
SU(p) subgroup ofSp(2p) and consequently they arep - 1 
non-negative integers. The parameters ap + 1 , ... ,ap + yare the 
Dynkin parameters of the SO (m) group and they are v non
negative integers. 

The Cartan generator hp corresponding to the simple 
odd generators {3± combines orthogonal and symplectic 
Cartan generators. The hidden Sp( 2p) Cartan generator k is 
related to the h;'s by 
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for B(v,p) , 

v-2 1 
k =hp - I hp+y -- (hp+v _ 1 +hp+v) 

I 2 

for D(v,p) . 

The eigenvalue b of k for the highest weight A is also a non
negative integer and we get 

v- I 1 
b=ap - I ap+y --ap+2 for B(v,p), 

I 2 
v-2 1 

b=ap - I ap+y--(ap+v_l +ap+v ) 
I 2 

for D(v,p) . 

The parameters ai-but ap -and b being non-negative inte
gers it follows that the Kac-Dynkin parameter ap is either a 
non-negative integer or a positive half-integer. We then de
fine two types of representations: 

(1) the tensor representations where ap is integer 

ap+v is even for B(v,p) , 

ap+v_ 1 +ap+v is even for D(v,p); 

(2) the spinor representations where ap is half-integer 

ap+ v is odd for B(v,p) , 

ap+v- 1 +ap+v is odd for D(v,p) . 

Of course only the subset of tensor representations is closed 
under the operation of tensor product and we have a Z2 
structure in the set of representations. Notice that the tensor 
representations are the only one realized in supertableaux. 

Atypical representations: For specific values of the Kac
Dynkin parameter ap the irreducible representations be
come atypical. We have 2vp such values 1 

a p = A ja , A p = Bja , 

with j = 0,1 , ... ,p - 1 and a = 0,1..., v - 1. The expression 
Aja and Bja are the following: 

a j 

Aja = I (1 +ap+ y ) - I (1 +ap_ k ), (Al) 
I I 

(1) m = 2v + 1: 

NSYMP (a1, .. ·,ap_ I ,b) 

m-v-2 v 

Bja = I (1 + ap+ y ) + I (1 + ap+y ) 
I a+ I 

j 

-I(1+ap - k )' 
I 

The atypical values Aja and Bja are, in order, 

A j + I a < A ja < A j a + I , Bj + I a < Bja < Bj a - I 

(A2) 

and the difference Bja - Aja is strictly positive for any 
j = 0, 1, ... ,p - 1 and any a such that 2a<,m - 3. When 
m = 2v and a = v-I we have 

Bjv _ 1 -Ajv _ 1 =Ap+v -Ap+v _ 1 

and the difference is either positive, or negative, or zero for 
any j = O,I, ... ,p - 1. 

The degeneracy of atypicity () of an irreducible represen
tation 

{a l,· .. ,ap _ I lap lap + I , ... ,ap + v} 

is the number of time the value of ap enters in the set of the 
atypical values {Aja ,Bja } constructed from the other Kac
Dynkin parameters by using Eqs. (A 1) and (A2). Because 
of the positivity of these last Dynkin parameters we obtain 
the two relations 

O<,O'<,L, L = min[m - l,p] . 

Kac's consistency conditions I are written for O<,b<,v - 1, 

ap + b + I = ... = ap + v = 0 

excepted on the case m = 2v, b = v-I where we have 

ap+v_l=ap+v' 

The corresponding value of ap is atypical A Ob' 

Typical representations: When ap does not take one 
atypical value the irreducible representation is typical. No
tice that from Kac's consistency condition a neeessary con
dition for a representation to be typical is b>v. For an irredu
cible typical representation the dimension is independent of 
ap and it is given by 

22vp X N SYMP (a1, .. ·,ap_ 1 ,b) X NORTH (ap+ I , ... ,ap+ v) , 

where b = b - v. The symplectic and orthogonal factors are 
as follows. 

( 
2 ~f - I a k + 2b ) II ( ~f - I a k + ~'J - I a k + 2b) [ ~{- I a k ] II 1+ . 1+ .. 1+ .. , 

I "';"'P 2p + 1 - 2j I ",i<j<;;p 2p + 1 - I - J J - I 

NORTH (ap + I , ... ,ap + v) 

II (1+2~~-lap+y+ap+v) II (1+~~-lap+y+~p-lap+y+ap+V)(I+~~-lap+y). 
I ",a "'v 2v+I-2a l",a<p",v 2v+l-a-{3 {3-a 

(2) m = 2v: 

NSYMP (al, .. ·,ap_ l,b) 

( ~[J - I a + b) (~[J - I a + ~[J - I a + b) ( ~! - I a ) II 1 I k II 1+ I k J k 1+ I k, 

I ",;",p + p + 1 - i I ",i<j",p 2p + 2 - i - j j - i 
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NORTH (ap + I , ... ,ap + v) 

IT (1 + ~~-2ap+r +ap+ v_ l ) (1 + ~~-2ap+r +ap+ v ) 

I<a<v v-a v-a 

X IT (1+~~-2ap+r+~p-2ap+r+ap+v_I+ap+2)(1+~~-lap+r). 
l<a<lkv 2v-a-f3 f3-a 

APPENDIX B: SUPERTABLEAUX OF OSP(mI4) 

Starting from the results of Table II for the two-column 
supertableaux of OSP(m 14) we construct more general su
pertableaux keeping J-li and J-l2 fixed and adding rows. 

Case I: 0<J-l2';;;V - 1, J-li + J-l2<m - 3. Here J-l2 is 
atypical A Oa' J-l2 = a, A I + a = 0, J-li is atypical A 1f3 

(a <f3<v - 1) or B 1f3 (a<f3<m - v - 2). The two-col
umn supertableau has 8 = 2 and is irreducible 
p = 1 = 28

-
2

• 

To this two-column supertableau we can add up to a 
rows of arbitrary length without changing 8 and p. 

Case II- 0<J-l2<V - 1, J-li + J-l2>m - 2. Here J-l2 is 
atypical A Oa' J-l2 = a, A I + a = 0, J-li is either atypical 
B 1f3 (0<f3 < a) or typical. When J-li is atypical the two
column supertableau has 8 = 2 and we have a two-GAST; 
when J-li is typical the two-column supertableau has 8 = 1 
and is irreducible. In both cases the relation between 8 and p 
isp = 28

-
1

• 

To this two-column supertableau we can add up to a 
rows of arbitrary length without changing the J-l2 atypicity. 
However, the J-li atypicity can be modified, J-li atypical B 1f3 

may stay atypicalB Ir (f3<r < a) or become typical,J-l I typi
cal may stay typical or become atypical B Ir (O<r <a). In 
both situations the relation between p and 8 is not modified. 

Case III: v<J-l2<m - 2. Here J-l2 is atypical Boa, 
a = m - 2 - J-l2' A I + a = 0, J-li is typical or atypical 
B 1f3 (0<f3 < a). The properties of these two-column super
tableaux are as in Case II and, in particular, we have 
p=28

-
1

• 

Let us add to this two-column supertableau r rows of 
arbitrary lengths (r<J-l2)' When r<a (A I + a = 0) the dis
cussion proceeds as in the case II and the relation p = 2{; - I 

is preserved. When r>a + 1 (A I +a #0) we change both 
atypicities in J-l2 and J-li' For J-l2 we obtain either an atypicity 
B Or (a < r<m - v - 2) with A I + r #0 or no atypicity; for 
J-li we obtain either an atypicity B I{; (f3 < 8<m - v - 2) 
with A I + {; #0 or no atypicity. Of course 
f3<8 < r<m - v - 2. Now the supertableau becomes of the 
normal type and we have the relation p = 2{; . 

TABLE IV. Atypicity for the p-column supertableaux of OSP (m 12p). 

Case IV: The two column supertableau is typical 8 = 0 
and irreducible p = 1. Adding at most v rows of arbitrary 
length it may stay typical or become atypical 8 = 1 or 8 = 2 
of the normal type p = 28

. 

APPENDIX C: SUPERTABLEAUX WITH p COLUMNS OF 
OSP(ml2p) 

We study the supertableaux of OSP (m 12p) with at most 
p columns (AI = 0). Using Eqs. (1) and (2) of Sec. II we 
write the relations of atypicity in the form 

J-lj = j + k - (p + 1) 

with j= 1,2, ... ,p, k = 1,2, ... ,m - 1 . 

These relations are presented in the (m - 1 )xp Table IV. 
Taking into account the positivity properties of the column 
parameters we easily see that for a supertableau, only few 
values of k are allowed: 

p + 1 - j<k<m - 1 . 

By inspection of the Table IV it is straightforward to obtain 
the degeneracy of atypicity for the p-column supertableau: 
( 1) 8 = 0 typical, 

J-lp>m-1; 

(2) 1 <8 <L, 

J-lp_l»m - 1 - 8>J-lp-H I ; (Cl) 

(3) 8 = L maximal degeneracy of atypicity, 

J-lI<m -l-p for p<m - 1, 

J-lp+Q-m =0 for p>m -1. 

Let us now consider the partition in classes defined by Eq. 
(9). The typical p-column supertableaux obviously belong 
to the class ao' Consider now a p-column supertableau with 
a degeneracy of atypicity 8, Tl), and 8 < L. From Eq. (C 1 ) 
we have 

Cp+l) + Cp_l)+ I >Cp_l»m - 1 - 8. 

With the definitions of classes given in Eqs. (9) this inequali
ty implies that the supertableau Tl) belongs to one of the 

IIp = 0 IIp = 1 IIp =a IIp = m - 3 IIp = m - 2 

2016 

IIp-I =-1 
Ilj =j-p 
III = I-p 

IIp - I = 0 
Ilj =j-p + 1 

III =2-p 
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IIp- I = a-I 
Ilj =j-p+ a 
III = 1 +a-p 

IIp-I =m-4 
Ilj = j - p + m - 3 
1l,=m-2-p 

IIp - I = m - 3 
Ilj = j - p + m - 2 

III =m -l-p 
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classes AI with 0<.1<.8, 
T,sEAo E9 AI E9 - -' E9 Ali _ (C2) 

The relation (C2) is just the Theorem I for p column super
tableaux_ The case 8 = L is trivial and the supertableau TL 
belongs to any class AI_ 
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Generalizations of the N-wave, Oavey-Stewartson, and Kadomtsev-Petviashvili equations 
associated with homogeneous and symmetric spaces are presented. These equations are 
(2 + 1 )-dimensional generalizations of those presented by Fordy and Kulish [Commun. 
Math. Phys. 89, 427 (1983) 1 and Athorne and Fordy [J. Phys. A 20,1377 (1987)]. Examples 
are explicitly presented that are associated with the simplest spaces. In particular, a single 
component, (2 + 1) -dimensional generalization of the KdV equation is presented. 

I. INTRODUCTION 

In a recent series of papers we have presented a number 
of systems of equations associated with Hermitian symmet
ric spaces and reductive homogeneous spaces. The list of 
equations includes generalizations of the NLS and N-wave 
equations,1 the ONLS equation,2 and the KdV and MKdV 
equations. 3 All of these equations are isospectral flows of the 
linear spectral problem: 

(1.1 ) 

where constant matrix A and potential Q(x,tN ) are related 
to any of the Hermitian symmetric spaces (sometimes ex
tended to reductive homogeneous spaces) in a way described 
in Sec. II. The matrix A is diagonal, but usually highly de
generate: ad A has only three distinct eigenvalues in the sym
metric space case. This is in contrast to most other discus
sions of linear problems of the form (1.1), which usually 
assume A to be regular (see, for example, Ref. 4). 

The above equations are all in (1 + 1) space-time di
mensions. In the present paper we generalize these equations 
to the case of (2 + 1) space-time dimensions. This is 
achieved by the usual method5

-
7 of replacing the spectral 

parameter A. by a new "spatial" derivative J / Jy in (1.1): 

( 1.2) 

where A is the same constant matrix and the potential Q 
(x,y,tN ) now also depends upon y. Solutions ",(x,y,tN ) of 
(1.2) can be simply related to those of (1.1) by Fourier 
transform. ThetN dependance (foreachN= 1,2, ... ) of1J!is 
defined by the linear evolution 

N 
.1. = "S(N-1lJ1.1. 
~~ ~ y~, 

1=0 

( 1.3) 

where J ~ =. ca / Jy) I. The calculation of the coefficients 
S(N - I) is much more complicated here than in the (1 + 1)
dimensional case corresponding to (1.1). In the latter case 
the coefficients would lie in the ring of polynomials ofQ and 
its x derivatives whereas in the present case we must intro
duce some potentials with nonlocal definitions. This prob
lem arises because Jy does not commute with the functions Q 
and S(N - /), whereas A. does. Furthermore, the calculation 
here is not purely within the context of Lie algebras, since the 
associative matrix product is explicitly used. This causes 

problems in the case of class BOI symmetric spaces, which 
are thus omitted from our discussion. 

In this paper we specifically discuss the cases N = 1, 2, 
and 3. These correspond respectively to N-wave, Oavey
Stewartson, and (in reduced form) KP-Iike equations. The 
case N = 1 is only nonlinear in the homogeneous space case. 
The case N = 3 is rather complicated, so we only present 
results in the simplest symmetric space case. 

In the Appendix we derive generalizations of the Calo
gero-Oegasperis boomeron equation8 and further general
izations of the KP equation. 

II. SYMMETRIC AND HOMOGENEOUS SPACES AND 
THE SPECTRAL PROBLEM 

First we review some of the basic facts concerning Her
mitian symmetric and reductive homogeneous spaces. More 
details can be found in Refs. 1 and 9. 

A homogeneous space of a Lie group G is any differen
tiable manifold M on which G acts transitively 
(Vp"P2,EM, 3gEG: g'P, = P2).The subgroup of G that 
leaves a given point PoEM fixed is called the isotropy group at 
Po and is defined by 

K=.Kpo = {gEG: g'po = Po}· 

It is a theorem that each such M can be identified with a coset 
space G / K for some subgroup K and that this K plays the 
role of isotropy group of some point. There are many topo
logical and differential geometric subtleties, but we have no 
need of them in this paper. We are only interested in the 
decompositions of the corresponding Lie algebras. 

Let g and k be the Lie algebras of G and K, respectively, 
and let m be the vector space complement of k in g. Then 

g=kEllm, [k,klCk, 

and m is identified with the tangent space Tpo M of M = G / K 
at point Po. At the moment we have [k,kl Ck, but know 
nothing of [k,m 1 and [m,m]. 

When g satisfies the more stringent conditions 

g=kEllm, [k,klCk, [k,mlCm, 

then G / K is called a reductive homogeneous space. These 
spaces possess canonically defined connections with curva
ture and torsion. Evaluated at fixed point Po, the curvature 
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and torsion tensors are given purely in terms of the Lie 
bracket operation on m: 

(R(X,Y)Z)Pn = - [[X'Y]k'Z], X,Y,ZEm, 

T(X'Y)Pn = - [X'Y]m' X,YEm, 

where the subscripts k and m refer to the components of 
[X, Y] in those vector subspaces. 

When g satisfies the conditions 

g = kEllm, [k,k] Ck, 

[k,m] Cm, [m,m] Ck, 

then g is called a symmetric algebra and G / K is a symmetric 
space. For these spaces the above mentioned canonical con
nection is derived from a metric, which is itself given by the 
restriction of the Killing form to m. This connection is tor
sion free. Evaluated at fixed point Po, the curvature is given 
by 

(R(X,Y)Z)Pn = - [[X,Y],Z], X,Y,ZEm, 
where we now automatically have [X,Y]Ek. 

A special feature of Hermitian symmetric spaces is the 
existence of an element AEk such that k = Gil (A) 
= {BEg: [A,B] = O}. The element A can (and therefore 

will) be chosen to be diagonal: AEhCkCg, where h is the 
Cartan subalgebra of g. This element is highly degenerate; 
indeed, ad A (which is a dim gXdim g matrix) has only 
three distinct eigenvalues: 0, ± a. Specifically, we have 
m = m+ EIlm- and [A,k] = 0, [A,X±] = ± aX±, with 
a being the same value for all X ± Em ±. For any 
XEg, X = Xo + X+ + X- and X+ = ~aXaea' X
= ~aX _ a e _ a' where a is summed over a special subset 0 + 

of the positive root system <1>+. In particular, Q of (1.2) is 
given by Q = Q+ + Q- with Q+ = ~aqaea' 
Q- = ~ar-ae_a' 

In the case of reductive homogeneous spaces we still 
have m = m + Ell m -, but each of m ± is further split into 
blocks, each of which is an eigenspace of ad A. The subset 0 + 

of positive roots thus splits into a number of subsets 0/ on 
each of which a(A) takes a constant value: a(A) = aj, 
aEO/. WewriteQ± =~j~± with [A,Ql] = ±ajQ/-

In Hermitian symmetric spaces we have the convenient 
property that [X + ,Y +] = ° for all pairs of elements of m + , 
and similarly for m -. This is not true for the reductive ho
mogeneous spaces so that the calculations of Sec. III are 
much simpler than those of Sec. IV. In previous papers the 
nonlinear terms of the resulting differential equations have 
been written in terms of the curvature and (for homogen
eous spaces) torsion tensors. Although the equations of this 
paper could be similarly written we do not do this here. The 
(2 + 1) calculations of this paper involve the associative as 
well as the Lie product. For all the symmetric spaces other 
than class BDI we have the property X+Y+ = ° for all pairs 
of elements of m + (similarly for m - ). Since we use this 
property, the results of this paper do not apply to class BDI 
spaces. 

With A defined as above and Q(x,y,tN)Em consider the 
linear equation 

\fix = A\fIy + Q\fI (2.1 ) 

together with the time evolution 
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N 

\fI'N = L S(N - I) a ~ \fl. (2.2) 
I~O 

Equating coefficients of a;, m = 0, ... , N + 1 in the commu
tator, 

[ax - A ay - Q, a'N - ItoS(N-la~ ] = 0, (2.3) 

leads to a system of equations for the S(N -I) • The first two 
equations are 

[A,S(O)] = 0, 

S~O) - AS;O) - [Q,S(O)] = [A,S(i)], 

(2.4a) 

(2.4b) 

and correspond to the coefficients of a : + 1 and a:, respec
tively. The situation is immediately more complicated and 
less algebraically precise than the (1 + 1) case. Equation 
(2.4b) includes the associative product AS;O), which takes 
us out of the purely Lie algebraic context. 

In the (1 + 1) -dimensional case the equations corre
sponding to (2.3) can be solved recursively for S(I) , the so
lutions being purely in terms of Q and is x derivatives. In the 
present case we have to distinguish between the components 
S~) and S(I) lying, respectively, in the spaces m and k. All 
but two of the k components are defined nonlocally as solu
tions of differential equations involving the differential oper
ator ax - A ay. When all functions are independent of y 
these equations can be integrated with respect to (w.r. t.) x to 
give local expressions. In the (2 + 1) -dimensional case these 
components are best considered as additional potentials, 
which is a familiar feature of the Davey-Stewartson equa
tions. 7 

For our usual choice of S(O) there are (N - 1) such addi
tional potentials for the Nth-order flow. The m components 
S~) are still recursively defined in terms of Q and its x de
rivatives and previously defined k potentials. The final equa
tion of (2.3) is 

N 
Q = ~S(N-/)Q +(a -Aa )S(N)_[QS(N)] 

IN £..t Iy x y " 
1= 1 

(2.5) 

where Qly =a ~Q. In the case of symmetric spaces this equa
tion is easily decoupled into m and k components 

N 

Q,~ = (ax -Aay)S';.) - [Q±,s~t)] + LS&N-I)Q/~' 
1=1 

(2.6a) 

N 
_ ~(S(N-I)Q- +S(N-I)Q+) 

L + Iy - Iy' 
1= 1 (2.6b) 

We now explicitly construct some of the lower-order 
flows included in the above system of equations. 

III. SYMMETRIC SPACE CASE: SECOND- AND THIRD
ORDER FLOWS 

The first-order equation (n wave) is linear in the sym
metric space case, so we start with N = 2. 

Generalized Davey-Stewartson equations: N = 2: The 
simplest solution of (2.4) is 

S(O) = A, S(I) = Q. (3.1 ) 
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The remaining equations are then 

[A,8(2)] = (ax + A ay )Q, (3.2a) 

Q'2 = (ax -Aay )8(2)+AQyy +QQy - [Q,8(2)]. 
(3.2b) 

Equation (3.2a) determines the m component of 8(2), 

8(2) = 862) + (lla)(ax + A ay )(Q+ - Q-), 

and the k component of (3.2b) gives an equation for 82), 

(ax -Aay )862) = (l/a)(ax +Aay)[Q-,Q+]. 
(3.3a) 

If we write 862
) = (lla) [Q-,Q+] + (lla)Vy,wecaninte

grate, w.r.t. y, the resulting equation for V to obtain 

(3.3b) 

The m components of (3.2b) are 

aQ,7 = Qx~ - (N - aA)Qy; + [Q+,[Q+,Q-]] 

-[Q+,Vy ], (3.4a) 

- aQ,~ = Qx~ - (A2 + aA)Qy~ 
(3.4b) 

In this paper (since we exclude class BDI symmetric 
spaces) all linear problems are block diagonal in structure 

= (aim I 0 ) Q = (0 I q) V = (8 I 0) 
A ~O /lIJ' \rTQ7' \oTT7' 

where a = nal(m + n),/l= - mal(m + n), q, r, 8, and 
T are, respectively, m Xn, n Xm, m Xm, and n Xn matrices 
and 1m , In are identity matrices. Equations (3.4) and (3.3b) 
then take the form 

mna2 

aq'2 = qxx + 2 qyy - 2qrq + 8yq - qTy , (3.5a) 
(m + n) 

mna2 

- ar" = rxx + 2 ryy - 2rqr + r8y - Tyr, 
(m + n) 

(3.5b) 

(ax - a ay )8 = - 2aqr, (3.5c) 

(ax - /l ay)T = 2{3rq. (3.5d) 
In this paper we consider two reductions of the above 

general system, being, respectively, valid in hyperbolic and 
elliptic5 linear problems. 

Hyperbolic: Here the matrix A is real so that a* = a. If 
we set a lat2 -+i(a lat2 ) (corresponding to the choice 
8(0) = - iA instead of A) then we can make the reduction 

Qt = ±Q, vt =V 

corresponding to 
r = ± qt, 8 t = 8, Tt = T. 
Elliptic: Here the matrix A has imaginary eigenvalues, 

so that a* = - a. When m = n, so that q and r are both 
square matrices, we can make the reduction 

Q* = ± eQe, V* = eVe, 

where 

~
In 

e= I . 
- n 0 

This corresponds to 

r= ±q*, T= -8*. 

2020 J. Math. Phys., Vol. 28, No.9, September 1987 

Third-order flow: 2D KdV equation: The solution of 
( 2.4) can still be taken as 

8(0) = A, 8(1) = Q. 

The remaining equations are 

[A,8(2)] = 02Q, (3.6a) 

[A,8(3)] = °_18(2) + 3AQyy + 2QQy - [Q,8(2)), (3.6b) 

Q" = °_18(3) + AQyyy + QQyy + 8(2)Qy - [Q,8(3)], 
(3.6c) 

where OJ = ax + lA ay . The first equation determines the m 
component of 8(2): 

8(2) = 862) + (lla)02(Q+ - Q-) (3.7a) 

and the k component of (3.6b) gives an equation for 862): 

°_1862) = (l/a)02[Q-,Q+]. (3.7b) 

Similarly,the m component of (3.6b) gives 

8(3) = 863) + (lla2)020_IQ + (3Ia)A(Q+ - Q-)yy 

- (lla) [Q+ - Q-,862)] (3.8a) 

with 863
) given by the k component of (3.6c): 

°_1863
) 

= (l/a){[862 ),[Q-,Q+]] + (Q-Q/)x 

- (Q+Qy-)x + 4A(Q+Qy-; - Q-Qy;) 

+ 3A[Q-,Q+]yy - 4A[Qy- ,Q/]} 
+ (l/a2){[Q,Qxx ] + A [Q,QyX ] - 2N[Q,Qyy n· 

(3.8b) 

The time evolution of Q is then given by 

Q" = 0_18~) + AQyyy + 862 )Qy - [Q,863
)], (3.9a) 

where the k components 862) and 863
) are given nonlocally 

by (3.7) and (3.8), while the m component 8~) is given by 
(3.8a) as 

8~) = (lla2){a; + A ax ay + (3aA - 2A2)a;}Q+ 

+ (l/a2){a; + A ax ay - (3aA + 2N)a;}Q-

- (lla) [Q+,862)] + (lla) [Q-,862)]. (3.9b) 

After some manipulation the equations of motion take the 
form 

Q,~ = (l/a2){a! + (3aA - 3A2)ax a; 

+ (a2A - 3aN + 2N)a;}Q+ 

- (lla)0_d Q+,862
)] + 862)Q/ - [Q+,863

)], 

(3.1Oa) 

Q,~ = (l/a2){a! - (3aA + 3N)ax a; 

+ (a2A + 3aN + 2N)a;}Q-

+ (lla)0_I[Q-,862
)] + 862)Qy- - [Q-,863)]. 

(3.1Ob) 

Remark: If we take all functions to be independent of y 
then 

862
) = (lla)[Q-,Q+], 863

) = (Va2
) [Q,Qx]' 

and Q 4- satisfies the simple equation 
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a2Q+ = Q+ - 3(Q+Q-Q+ + Q+Q-Q+) 1.1 XXX X X • 
(3.IOc) 

This is identical to Eq. (3.1) of Ref. 3. 

IV. HOMOGENEOUS SPACE CASE: FIRST- AND 
SECOND-ORDER FLOWS 

In this case the commutation relations are more compli
cated. We still usually take (3.1) as the solution of (2.4). 
However, for the first-order equation this gives trivial re
sults, so we choose S(O) to be any constant, diagonal matrix. 

Generalized n-wave equations: N = I: First, we intro
duce an element PEm such that Q = [A,P]. Then the solu
tion of (2.4) is taken as 

S(O) = B, S(l) = [B,P], (4.1) 

where B is a constant diagonal matrix. The equations of mo
tion are then 

Q" = (ax - Aay)[B,p] + BQy - [Q,[B,Pllm , (4.2) 

where the k and m suffices signify components in the respec
tive subspaces. Here S6) has been chosen to be zero, as is 
always possible since [[A,P], [B,Pllk = 0, in general. 

Generalized Davey-Stewartson equations: N = 2: Once 
again we define P by Q = [A,P] and take the simplest solu
tion of (2.4): 

S(O) = A, SO) = Q. (4.3) 

The remaining equations are 

[A,S(2)] = (ax + A ay )Q, (4.4a) 

(Q" = (ax - A ay )S(2) + AQyy + QQy - [Q,S(2)]). 
(4.4b) 

Equation (4.4a) determines the m component of S(2): 

S(2) = S62
) + (ax + A ay )P. 

Now recall that Q ± = ~j Q/, with [A,Q/] = ± ajQ/. 
The k component of Eq. (4.4b) is 

j 

+ [Qj-,(ax +Aay)p/] -Q/Qj; 

- ~-~;}. (4.5a) 

Here we have used such properties as [ A,Q/ Qj; ] 
= (aj - aj)Q/Q;; so that Q/Q;;Ek iff aj - a j = 0, so 
thatj = i. Since we have Q/ = ± ajP/, Eq. (4.5a) simpli
fies to 

[n/(n + 1) lay 

-qT [-lI(n + I)Jay 

-q~ 

Here our potential V takes the form 
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(ax -Aay)S62l =I(ax +Aay)[Q/,Pj-]. (4.5b) 
j 

Defining V (x,y) by 

S62
) = I[~+ ,Pj -] + Vy ' 

j 

we find 

( 4.6a) 

(4.6b) 

Our normalization of V is slightly different here than in 
(3.3b). This gives rise to a factora j Vy in Eq. (4.7) below, so 
that it seems not to reduce correctly to (3.4). 

The m ± components of ( 4.4b) are then 

+ L~Q/, [Q/ ,Qj-]J - a j [Q/ ,Vy] 
j aj 

+ aj{(D)P)Q - Q(PO)} +i' (4.7a) 

a· 
+ I4Qj-'[~-'~+]] +aj [Qj-'Vy ] 

j aj 

- aj{(D)P)Q - Q(PO)} _0 (4.7b) 

where D)p = Px + APy and PO) = Px + PyA. We write 
{ } ± j to describe the components of these terms in the cor
responding subspaces. These terms are easily written down 
in terms of weight spaces but rather messy in general, so we 
content ourselves with our explicit example in the next sec
tion. The third-order flow contains even more complicated 
terms so we do not present it here. 

V.EXAMPLES 

The equations we derived in Sec. III can be classified 
according to the three symmetric space classes AlII, CI, and 
DIll (p. 518 of Ref. 9). As previously mentioned, our dis
cussion does not include class BDI symmetric spaces. In this 
section we only present the hyperbolic case with reduction 
Qt = -Q,correspondingtor= _qtorr-a = _ (qa)., 

which is the compact real form. We have 

AlII SU(m + n)/S(U(m) xU(n»). 

We consider two special cases. 
Vector equations: m = I: 

[ - lI(n + 1) Jay 

I 

(5.1) 

where S is just a scalar. We form the potential Uij 
= S8ij - Tij. Then 
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( a 2 + (!=-!)a a - n a 2
) ~k 

x 1 + n x y (n + 1)2 Y 

= -~1 x (qtqk -nlqI28jk ) 

n+ 

+ (n ~1)2 ay(qtqk + Iql28j d, (5.2b) 

which is a vector generalization of the hyperbolic Davey
Stewartson equation. 

We have calculated the full third-order vector equa
tions, but they are too complicated to present here. We con
tent ourselves with the much simpler case of n = I, starting 
with two real scalar potentials q and r and later reducing by 
taking r = 1. First, we define some new potentials, S~) _ , 
etc. by the following: 

S~2) = (~<;) - ~(2) +). S~3) = (~(~) - ~(3) +). 
Furthermore, the potential S ~3) only appears in the evolu
tion equations in the combination S <].) - S~) + . The re
sulting three potentials can be defined in terms of just two 
functions <I> and \II: 

S~)_ 

S(2) 
-+ 

= -(a;+~a"ay+!a;)<I>, 

= (a; -~ax ay +!a;)<I>, 

S<].) _ -S~\ = \II. 
These new potentials are defined non locally in terms of the 
functions q and r by 

( a; - !a; ) <I> = qr, 

(a 2 _la2)\11 
" 4 y 

(5.3a) 

= { - (qr)y + 2(qrx - rq;)}xx + i{qrx - rqxLy 

+ H - (qr)y + !(qrx - rqx) }yy. (5.3b) 

The time evolutions of q and r are then given by 

qt, = (a~ +ia"a;)q- (ax -!ay ){q(2a; +a;)<I>} 

.; -qy(a; +~aXay +ia;)<I>+q\ll, (5.3c) 

rt , = (a~ +iaxa;)r- (ax +!ay ){r(2a; +a;)<I>} 

+ry(a; -~ax ay +!a;)<I>-r\ll. (5.3d) 

It is possible to make a 2-D KdV reduction of the system 
(5.3) by setting r = 1: 

( a; -!a;) <I> = q, 

- (ax +!ay )(2a; +a;)<I>=\II, 

q" = (a~ +:ia" a;)q-2qx<l>"" -qx<l>yy 

(5.4a) 

(5.4b) 

- 4q<l>x"" - 2q<l>xyy - ~y<l>Xy. (5.4c) 

Equations (5.4a) and (5.4c) constitute our 2-D generaliza
tion of the KdV equation, and are considerably more com
plicated than the KP equation. When all functions are inde
pendent of y then (5.4c) reduces to the KdV equation and 
(5.4a) is just Hirota's substitution if we let <I> = - 2 In r. It 
is still possible to write the (2 + 1) -dimensional equations in 
Hirota form, 

D (2)r' [(l5D, - JjD 3 )r'r] 

+ Jj(2)r [(DD, - DJj3)rr] = 0, (5.5) 
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where D = Dx + (a/2)Dy; Jj = Dx - (a/2)Dy; Dp'O' 
= p' 0' - O"p, and D (2/), 0' = 2p' 0' - pO", and q is given by 
(5.4a). This is similar to (but cruciaHy different form) the 
Hirota form of the KP equation. This aspect was reported in 
Ref. to. 

Remark: In this case the linear problem can be written 
as a scalar, second-order equation 

(a; -!a;)\II=q\ll. (5.6) 

This scalar linear problem has been considered in Ref. 11, 
where an equation of the form similar to (5.4c) was derived. 

Square matrix equations: m = n: 

GJ -I-!-~-::-+-q---!I-n -ay~ (1J (5.7) 

where q is an n X n matrix. The matrices 8 and T are similar
ly nXn. The resulting equations are (3.5) with m=n, 
r= _ qt: 

iq" = qxx + !qyy + 2qqt q + 8yq - qTy' 

(a" - ! ay )8 = qqt, 

( ax + ! ay ) T = qt q. 

Example: m = n = 2: 

(5.8a) 

(5.8b) 

(5.8c) 

iql', = qlxx + ~IYY + 2ql* 1 qj 12 + 2qt(q2q4 - qlq3) 

+ (S1IY - T1Iy )ql + SI2yq4 - q2T21y' (5.9a) 

iq2', = q2xx + ~ZYY + 2q2* 1 qj 12 + 2q:(qlq3 - q2q4) 

+ (S1IY - T22y )q2 +S12yq3 -q j T I2y ' (5.9b) 

iq31, = q3xx + ~3YY + 2q3* 1 qj 12 + 2q1(q2q4 - qlq3) 

+ SZIyq2 + (S22Y - Tz2y )q3 - q4T12Y' (5.9c) 

iq4t, =q4xx +~4YY +2q4*IQjI2+2qr(Qlq3-qZq4) 

+ SZlyql + (S2ZY - T1Iy )Q4 - q3T21y' (5.9d) 

( ax - -21 ay) (S2111 S12) = (lqd
2 
+ IQ21

2 

Qlq: + Q2Qt) 
\s SZ2 q4Q1 + qrq3 Iq41 2 + IQ31 2 

' 

(5.ge) 

(
ax + ~ ay) (TIl T12) = (IQd: + Iq4~ Q1q2 + q:q3). 

2 T21 T22 Qlq2 + Q4Q3 IQ21 2 + Iq31 2 
(5.9f) 

CI and DIll: The compact real forms of these symmet
ric spaces are, respectively, Sp(n)/U (n) and SO(2n)/ 
U (n ). In the representations we use 12 they correspond to the 
linear problem (5.7) with the reductions qT = q and 
qT = _ q, respectively. The corresponding differential 
equations are similarly reduced. 

Since qt = ± q* and qq* = (q*q)* we have 

(ax -!ay )8*=(ay +!a,,)T. (5.tOa) 

Thus there exists a functon !l such that 

s=(ax+~ay)!l, T=(ax-!ay)!l*, (5.tOb) 
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where, from (S.8b), 0 = ot. Comparing (S.8a) with its 
transpose, we find that 0 must satisfy the further constraint 

qO!'y = OXyq. (S.lOc) 

The CI case with N = 2 is easily obtained from the system 
( S. 9) by setting q 4 = q 2 and defining Sand T in terms of 0 as 
above. Here 0 must satisfy equations (S.IOc) together with 
(S.ge): 

( 
a2 _ ~(2)o = ( lq1 12 + Iq21

2 
qlqt + qzqf) 

x 4 y q4qT + q1q3 Iq41 2 + Iq312 . 
(S.IOd) 

Homogeneous spaces: The simplest nontrivial example is 
associatd with SU (3) : 

SU(3)/S(U( 1) xU(l) XU( 1 »). 

The first-order flow in this case is just the standard 
three-wave interaction given in Ref. 7, so we only present the 
generalized Davey-Stewartson equation here. Referring to 
(4.3)-(4.7) we have 

c 0 

~). Q{-~ 
ql q,) 

A= ~ a2 0 ~3 , 

0 a 3 -qz -qf 

C-
O 

~). v= ~ Vz (S.l1) 

0 V3 
with a I + az + a3 = 0 and Vi being real functions. Equa
tions (4.6b) and (4.7a) are then 

( ax a l ay ) VI = 2a 1 [lqd z/a I2 + Iq2I z/a l3 J, 
( ax a z ay ) V2 = 2a2[ Iq3l z/aZ3 + IqI12/a2 t1, 
( ax a 3 ay ) V3 = 2a3[ Iqzlz/a31 + jq31 2/ a 32]' 

and 

- (qfx +azqry).i.L-qIV2IY' 
aZ3 

_1_(a
x
2 aZ ) a l a 3 y qz 

a 13 

(S.12a) 

(S.12b) 

(S.12c) 

(S.13a) 

+ (lqd
Z 

+ 21qzI
Z 

+ Iq31
2
)qz + (qlx + a IqlY)!h... 

a l2 a l3 a Z3 alz 

(S.13b) 

qT 
+ (q2x +a3qZy)--q3V3Zy, (S.13c) 

al3 

where aij = a j - aj and V;j = V; - Jj. 
It can be seen from the definitions of A and Q that by 

setting az = a 3 and q3 = 0 the linear problem reduces to that 
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of (S.l) with n = 2. This reduction corresponds to the sub
space relation 

SU(3) C SU(3) . 
S(U(1) XU(2») S(U(1) XU(1) XU( I» 
However, in terms of Eqs. (5.13) and of the definition 

(5.11)of V, the situation is a little more tricky. To achieve 
our goal we set at = 1, a z = - ~ - 8, a 3 = -! + 8, and 
q3 = 28U and let 8 .... 0. Equation (S.13c) gives us 

(ax -~ay)U=~q2qr, (S.14a) 

while (S.13a) and (5.13b) reduce to 

3....i(ql) =(a; +~a; +2(lqd 2 + IqzIZ») (ql) 
2 q2 '2 2 q2 

3 (V2 - VI +-
2 U 

Uv• V) (ql). (S.14b) 
3 - I y q2 

Thus the third component of Q has come to take the role of 
the off-diagonal part of the potential V. 

SU(4)/S(U( 1) XU( 1) XU(2»). 

Referring to (4.1) and (4.2) we have 

8= 
bz , 

a3 b3 
A = 1----=--1----1 

Ps PI pz 

0 P4 P3 

-pt 0 0 
, (5.1S) p = I----:,...J-_--:-+-_~, 

-pf 0 0 

with a l + az + 2a3 = bl + b2 + 2b3 = O. Equation (4.2a) 
takes the form 

apII, = /3Plx + rPly + 4rps P4' 

aP21, = /3P2x + rp2y + 4rps P3' 

a 'p3l, = P'p3x + rp3y - 4rptpI' 

(5.16a) 

(5.16b) 

(S.l6c) 

a'P41, =/3'P4x + rp4y - 4rptpz, (S.16d) 

[(a-a')/4]PSt, = [(/3-/3/)/4]psx -2rpsy 

- 4r(PlPt + pzpf), (S.16e) 

where a = a I - a3, a' = a3 - az, /3 = b I - b3, /3 I b3 
- b2, and r = ! (a'/3 - a/3 '). Corresponding to the inclu

sion 

SU(4) c SU(4) 
S(U(2) xU(2») S(U(1) xU(1) XU(2»)' 

we have the reduction a l = az, b l = bz, andp5 = 0 and our 
nonlinear five-wave equation reduces to a linear four-wave 
equation associated with a symmetric space. 

Note added in proof: Equation (SAc) was first studied 
by Novika and Veselov.13 

APPENDIX: MATRIX KP AND BOOMERON EQUATIONS 
IN (2+1) DIMENSIONS 

In this appendix we remark upon the (2 + 1 )-dimen
sional flows associated with the matrix Schr6dinger equa
tion: 
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"'y + "'xx - U", = 0, (AI) 

where U is an nXn matrix. However, U is not an arbitrary 
matrix but taken to be the product U = rq, where rand q are 
as in (3.5). This is a generalization of the matrix Schro
dinger equation considered in Ref. 3. However, in the pres
ent case there is not a direct connection between (2.1) and 
(AI). The t3 equation is given by the integrability conditions 
of (AI) and 

"'" = 4",xxx - 6U",x - 3 (Ux - V)", (A2) 

so that 

U" - Uxxx + 3(UUx + UxU) = 3Vy + 3[V,U], (A3a) 

Vx = Uy. (A3b) 

Note: We can use (A3b) to define a potential W such 
that U = Wx , V = Wy so that (A3a) can be written as an 
equation in one dependent matrix variable which is a simple 
generalization of the potential KP equation 

(W" - Wxxx + 3W; - HWy,W])x 

= (3Wy + HW,Wx ])y' (A4) 

In terms of the same potential W, we can write down a 
(2 + I)-dimensional "boomeron" equationS as the integra
bility conditions of (AI) and 
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"'" - 8",x - C", = 0 
so that 

(AS) 

2Wx" = {Wxx,8} + [Wx,C] + [Wy,8] - [Wx ,[W,8]], 
(A6) 

where {t,g} denotes the anticommutator tg + gt. 
It is a simple exercise to substitute the form ofU given in 

Ref. 3, to obtain explicit forms for Eqs. (A3) and (A6). 
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Periodic fixed pOints of BAcklund transformations 
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The discussion of the periodic fixed points of Backlund transformations for the Korteweg-de 
Vries equation is completed. It will be shown that the systems of equations defined by the KdV 
periodic fixed points are equivalent to the periodic Kac-Van Moerbeke systems. As a 
consequence, for even order fixed points, the KdV systems are equivalent to the periodic Toda 
lattice. The periodic fixed points of the Backlund transformation for the Boussinesq equation 
are found to have a Hamiltonian structure. The integrals of these systems are found. 

I. INTRODUCTION 

The (Schwarzian) KdVequation l 

tP'; tPx + {tP;x} =A 

In a previous work4 we have found that if 

Sj = tPj,X I tPj 

has the Backlund transformation I 

tP = (a'" + b)/(e'" + d) , 

ad - be = 1, tPx = "'x- I , 

where 

"'';'''x + {",;x} =A. 
The expression 

{tP;x} = ~ (tPxx) _ ~ (tPxx)2 
ax tPx 2 tPx 

(1.1 ) 

( 1.2) 

(1.3 ) 

(1.4) 

( 1.5) 

is the Schwarzian derivative, which is invariant under the 
Mobius group (1.2).2,3 

The effective Backlund transformation (BT) for (1.1) 
is the composition of (1.2) and (1.3). We find that4 

tP~ tPn + I,x = -;:- , 
'f'n.x 

( 1.6) 

is a BT for (1.1). The periodic fixed points of the BT are 
defined by Eqs. (1.6) and (1.7) with 

n = 1,2,3,4, ... (mod N) . ( 1.8) 

The periodic fixed points continue to define a strong BT for 
( 1.1 ). That is, the integrability conditions 

t/Jn + I,XI = tPn + I,IX ( 1.9) 

continue to imply that tPn satisfy (1.1), and, by the periodic
ity mod N, the set 

{tPn, n = 1,2, ... (modN)} (1.10) 

are solutions of ( 1.1 ). 

then 

Sj+ I,J Sj+ I + Sj,J Sj = Sj - Sj+ I . 

Define the N xN circulant matrices5 

1 0 

0 

A= 
0 0 

0 

1 

1 -1 

0 

B= 
0 0 

0 

-1 

Then with 

Eqs. (1.12) are 

AP,x =Bt· 

0 

1 

-. . 

0 

. . . 

0 

-1 0 0 

1 -1 
. . . . . . 

-1 

1 

(1.11) 

(1.12) 

(1.13) 

(1.14 ) 

(1.15) 

(1.16) 

( 1.17) 

(1.18) 

a) Current address: 6 Lockeland Ave., Arlington, Massachusetts, 02174. 

For all N the one-dimensional null space of B is spanned 
by the N vector 
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(1.19) 

While for N = 2k 

iAi=o (1.20) 

and A has a one-dimensional null space spanned by 

where 

-1 

1 
0= 

-1 

-1 

° 
-1 

-1 

° -1 

-1 

-1 1 ° -1 

-1 ° 

-1 

-1 

-1 
1 

-1 

-1 

For N = 2k + 1, A is invertible and 

A-l=~(l+O), 

-1 

-1 

(1.21) 

(1.22 ) 

( 1.23) 

° -1 
-1 -1 -1 

is a (2k + I,2k + 1) antisymmetric matrix 

0'= -0 

with 

(1.24 ) 

( 1.25) 

The one-dimensional null space of (1.23) is spanned by 
( 1.19) and it can be shown that 

0=A-1B. (1.26) 

In the notation for circulant matrices5 

A = circ[I,I,O,O, ... ,O] , 

B = circ[ 1, - 1,0,0, ... ,0] , ( 1.27) 

0= circ[O, - 1,1, - 1,1, ... , - 1,1] . 

When N is odd Eqs. (1.18) can be written as Hamilto
nian systems 

(1.28 ) 

where 

(1.29) 

In Ref. 4 we find that ( 1.28) is a completely integrable, 
k-dimensional, Hamiltonian system with one Casimir 

( 1.30) 
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° 

and k independent integrals 

H N - 2m =LmoHN , 

where 

N=2k+ 1 

and 

(1.31) 

( 1.32) 

(1.33 ) 

The above integrals (and Casimir) are in involution 
with regard to the Poisson bracket 

{G,H} = (Vj;G) 'Mj;Vj; H, (1.34) 

where the cosymplectic form 

(1.35 ) 

For all N the system ( 1.18), by contraction with ( 1.19), 
has the Casimir integral (1.29). For even N, 

N=2k+2, (1.36) 

contraction of ( 1.18) with the null vector of A, (1.21), ob
tains the constraint condition 

N 

C1 = L (- I)js/==O. (1.37) 
j= 1 

In Sec. II we find that, when N = 2k + 2, the system 
( 1.18) is a k-dimensional completely integrable Hamilto
nian system with Casimir (1.29) and k independent inte
grals (1.31) in involution. The integrals are in involution 
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with the constraint (1.37). That is, the constraint is pre
served by the flows. Furthermore, we find that systems 
(1.18) are equivalent to the periodic Kac-Van Moerbeke 
(KM) equations. 6 In effect, the KM flow commutes with 
( 1.18). This implies, by a known result, 7 that ( 1.18) is equiv
alent to the periodic Toda lattice when N is even. 

In Sec. III we find that the periodic fixed points of the 
BT for the Boussinesq equationS is of the form (1.18) and 
(1.28) for appropriate A , B, n. Again, the system is shown to 
have a Hamiltonian structure and the integrals are found by 
a method similar to that developed for the KdV systems. 
However, the Boussinesq systems are not equivalent to the 
KdV systems. 

In Sec. IV we define, by a generalization of the KdV and 
Boussinesq systems, a hierarchy of Hamiltonian systems of 
the form ( 1.18). Certain integrals are found. 

II. THE KORTEWEG-OE VRIES SYSTEM 

A. Even-order fixed points 

With reference to Ref. 4 and Sec. I, the KdV periodic 
fixed points are solutions of the system 

(2.1) 

wherej = 1,2,3,4, ... (mod N). For any N there is a Casimir 
invariant 

N 

HN = II 5j 
j=1 

and for any N 

H N- 2m =LmoHN 

are integrals of the system (2.1), where 
N 

L= I DjDj+I' 
j=1 

a 
D.=-. 

1 a5j 

Proof: The basic identities are, for eachj, 

5jDjLmoH N =LmoHN -mDj 

(2.2) 

(2.3 ) 

(2.4 ) 

(2.5) 

X (Dj _ 1 + Dj+ I)L m -loHN , (2.6) 

5jDj (Dj _ 1 -Dj + I)L moHN = (Dj _ 1 - Dj+ I)L moHN . 
(2.7) 

Then 

~ (LmoHN ) = ~ 5' (D.oLmoHN ) 
ax /=-I l,X 1 

= I 5;jX 0 5jDjL moHN . (2.8) 

By (2.6) and (alax)HN = 0, 

= -m" 5
j
,x oD.(D. I +D I)Lm-IoHN ~ 5j J J- J+ 
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By (2.1) 

By (2.7) 

N 

= -m I (Dj + 1 -Dj_I)Lm-IoHN 
j=1 

and by periodicity mod N, 

=0. 

Let 

N=2k+2. (2.9) 

Then for (2.1) we have one Casimir, HN ; k integrals 
{H2k + 2 _ 2m; m = 1,2,3, ... ,k} and one constraint 

N 

CI = I ( - 1) j5j = 0 . 
j= I 

(2.lO) 

We claim that (2.1) is a k-dimensional Hamiltonian 
system 

(5)Ai) (5' . )VIH., A : =B . . 
5N,x I 5N 5N 

(2.11) 

where 

N 
HI = I5j (2.12) 

j=1 

and A, B are defined in Sec. I. 
The higher-order flows 

for m = 1,2,3, ... ,k are in involution and consistent with the 
constraint (2.lO). 

Observation 1: Since A and B are circulant matrices they 
commute 

AB=BA. 

Also from (1.19) and (1.21) 

Then, contraction of (2.13) with 

Vl-CI = -0.0 

obtains the constraints 

(2.14 ) 

(2.15 ) 

(2.16) 
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Now, assume (for fixed rn) (2.13) and consider 

(2.17) a N 
ax L PoHN = /~I Sj,xDjL PoHN • (2.18) 

However, for even N, (2.17) vanishes identically [by 
(2.6)]. The constraint (2.10) is consistent [preserved by 
(2.13)] . 

fhen, using (2.13) and (2.6), (2.7) to raise and lower in
dices (p,rn), it is evident that (2.12) vanishes. That is, the 
flows commute. For instance, 

=p(p-l) ~{(D. -D. )LP-2oH }{DLm+loH} 
rn + 1 ~ J+ I J-I N J N • (2.19) 

It is useful to have a somewhat more explicit form ofEqs. (2.11) and (2.13). We define the circulant projection P onto the 
null space of A as 

P = circ[ 1, - 1,1, - 1, ... ,1, - 1] . (2.20) 

Then 

p 2 = P, PaD = 0.0' PA =AP=O. 

The conditional inverse G of A satisfies 

AG=GA =/-P. 

A nonunique solution to (2.22) is the antisymmetric matrix 

G' = (l/2N) circ[N, -N + 2,N - 4, -N + 6, ... , - 2 +N] . 

We require that GB = BG be antisymmetric and find that 

G=G'-!P 

satisfies (2.22) and 

GB = BG = Ok + I , 

where 

O~+I=-Ok+I' 

By evaluation 

0 

k 
-k+l 

1 k-2 
Jk + 1 =--

k+1 

-k k-1 
0 -k 
k 0 

-k+l k 
. . . . . . 

-k+1 
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-k+2 
k-1 
-k 
0 
. . . 
k 

-k+1 

k-3 
-k+2 
k-1 
-k . . . 
0 
k 

-k+l 

. . . 
-k 
0 
k 

k-l 
-k 
o 
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(2.22) 

(2.23 ) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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Applying G to (2.11) defines the equation to a scalar 
multiple of Qo. This is uniquely determined by requiring that 
the constraint (2.10) be preserved. This obtains 

A I (51 
5x =MtVtHI--{CI;HI} 

HI 

where 

N 

HI = L 5j' 
j= I 

N 

C I = - L ( - I) j5j , 

j= I 

{C;H} = (VtC)'Mt VtH. 

Equations (2.30) imply that 

a 
-CI=O, ax 
~HI= -~{CI'HI} ax HI" 

and CI =0, (a lax)HI = 0 if CI = 0 when x = O. 

(2.32) 

(2.33) 

(2.34) 

The corresponding equations for the higher-order flows 

using (2.31) and (2.32). By direct calculation, using most of 
the previous results, it can be shown that 

- mBA 'VtL m-IoHN 

=MtVtLmoHN 

where 

__ I {CI;LmoH
N

} (51 
HI 

BA I = A'B = circ[O, - 1,0, ... ,0,11 . (2.37) 

In effect, (2.36) is the (mth flow) dual-Hamiltonian 
formulation for the periodic fixed points when N is even. The 
dual-Hamiltonian structure for odd N is found in Ref. 4. The 
mth flow ofEq. (2.35) is dual to 

lx = - mO'VtL m-IoHN , 

where 0' = BA I. 
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(2.38) 

(_I)k+13 

( - 1)k2 

(_I)k+1 
(2.29) 

Observation 2: Both HI and CI are Casimir invariants of 
(2.37) and (2.38). Also, (2.36) does not determine a dual
Hamiltonian structure for (2.30) since HI #L moH N for any 
m. Here HI is an invariant of (2.30) and (2.35) ifand only if 
C1 vanishes. 

The periodic fixed points of the Backlund transforma
tion for the KdV equation are completely integrable (gener
alized) Hamiltonian systems. In the Appendix we show the 
transformation to canonical coordinates for these systems. 

B. The Kac-Van Moerbeke system 

The completely integrable, periodic Kac-Van Moer
beke (KM) system is6

•
7 

A () 

Ox = Okm VeH(e ) , (2.39) 

where 
N 

H= L e()j, (2.40) 
j=1 

Okm =BA I. (2.41) 

[See (2.37).] For any N let 

0= -AP, (2.42 ) 

i.e., OJ = - Pj - Pj+ I' Then, under this change of variable, 

Vp = -A 'Ve (2.43) 

and 

APx = BVjJH(e-{3r{3j+ I) , 

where 

Let 

where 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

H -- ~ I __ LoHN 
~ (2.48) 
j= 1 5j 5j+ 1 HN 

Comparing (2.47) and (1.18), the periodic KM system 
is, in a sense to be examined further, equivalent to the KdV 
periodic fixed point system. That is, the KM system is a 
higher-order flow of the KdV system [with Hamiltonian 
(2.48) an integral of these flows] . 

When N is even, the singularity of A requires that 
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N 

L ( - 1) jOj = 0 . (2.49) 
j=1 

Therefore. for odd N the KM and KdV systems are com
pletely equivalent. and for even N the KdV system (2.47) is 
equivalent to KM systems satisfying this condition. Note 
that 

N 

H'= L OJ. (2.50) 
j=1 

N 

H" = L ( - 1) jOj (2.51 ) 
j=1 

are Casimir invariants of the KM system and H " = 0 is the 
condition (2.49). 

On the other hand. it is well known that for even N. the 
KM system is equivalent to the Toda lattice.7 That is. for 
even N.let 

O=Bp 
and find that 

/}. I /}. 
Pj.x = e)- + e ) - a • 

where a is a constant. Then. using 

A 'O=A 'Bp 
and (2.39) find that 

(2.52) 

(2.53 ) 

(2.54 ) 

(2.55 ) 

wherej= 1.2.3 .... (modN). SinceNiseven. (2.55) shows 
that the even and odd components of p decouple. Therefore, 
if 

Q=( ~: ), Q'=(~:)' 
PN-I PN 

(2.56) 

the N 12 vectors (Q.Q') each satisfy the Toda lattice equa-
tions 

(2.57) 

wherej= 1,2,3, ... [mod (NI2)]. Note that the period of 
(2.57) is one-half of N, where N is the period of the KM
KdV systems. 

From the singularity of the transformation (2.52), 
N 

H'= L OJ =0. (2.58) 
j=1 

Previously, for (2.42), H" = O. Therefore, when both Casi
mirs vanish there is an equivalence between the KdV system 
and the Toda lattice. Condition (2.58) is trivial since it can 
be verified for an arbitrary solution of (2.39) by a suitable 
scaling in x and translation in O. The transformation be
tween (2.48) (KdV) and (2.55) (Toda) is 

_ A (In:SI) = Bp . 

InSN 

This requires 
N 

HN = II Sj = 1, 
j=1 
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(2.59) 

(2.60) 

N 

L (- 1) jPj = 0 . (2.61 ) 
j=1 

Again, by a suitable scaling (2.60) is trivial while the nontri
vial (2.61) is equivalentto (2.58). In terms of (2.56), (2.61) 
is 

NI2 NI2 

L Qj = L Q; . (2.62) 
j= I j= I 

Therefore (2.47) is equivalent to (two solutions of) (2.57) 
[which satisfy (2.62)]. 

To sum up: (1) For N odd the KM and KdV systems are 
completely equivalent; (2) for N even. the Toda lattice is 
completely equivalent to the system (2.47); (3) For even N, 
the KM system is, subject to the consistent condition (2.49), 
equivalent to the system (2.47); and (4) for N even, system 
(2.47) is, subject to the consistent constraint (2.10), a high
er-order flow of the KdV system. 

To put things somewhat differently, every solution of 
the KdV system is also a solution of the KM andlor Toda 
system. 

III. THE BOUSSINESQ SYSTEMS 

A. Existence of integrals 

The (completely integrable) Boussinesq equation 

U = _£(Uxx + U2
) 

II ax 2 3 
(3.1 ) 

has the Backlund transformationS 

a2 

U= 2--2 IntP + U2 , (3.2) ax 
where tP satisfies the Schwarzian Boussinesq equation 

~ (A) + ~~ ({ tP;x} + ~ (A)2) = O. (3.3) 
at tPx 3 ax 2 tPx 

For the definition of the Schwarzian derivative see (1.5). 
Equation (3.3) is invariant under the Mobius group 

tP = (atP + b)/(ctP + d), ad - bc = 1 (3.4) 

and has the Backlund transformationS 

tPxx 1 tPxx _ 3 tPI -=---+--, 
tPx 2 tPx 2 tPx 

(3.5) 

A= +~tPxx_~~. 
tPx - 2 tPx 2 tPx 

(3.6) 

Equations (3.5) and (3.6) are a strong BT for (3.3) in that 
the compatibility condition 

<Pxxt = tPtxx (3.7) 

is satisfied if and only if tP satisfies (3.3). Here tPXXI = tP,xx 
requires tP also must satisfy (3.3). 

The effective BT is the composition of (3.4 )-( 3.6). Say, 
in (3.5) and (3.6) 

tP =tPj+ I' tP= -l/tPj' (3.8) 
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Then, with 

Vj = ¢j,xJ ¢j,X' Zj = ¢j,,/ ¢j,X , (3,9) 

we have [with the upper signs in (3,5) and (3.6)] 

Vj + I +! Vj + ~ Zj = ¢j,J ¢j , (3,10) 

zj+ I +! Zj - ! Vj = - ¢j,J ¢j . (3.11 ) 

As was the case for the KdV systems, let 

Sj = ¢j,X I ¢j (3.12) 

and define 

A =circ[I,I,O, ... ,O,I], (3.13) 

B=circ[O,-I,O, ... ,O,I]. (3.14) 

Then, the BT (3.10), (3.11) at the periodic fixed points of 
order N, 

j = 1,2,3, ... (mod N) , 

Sj+N = Sj 

are solutions of the system 

where 

In terms of the preceding 

z= -At 
and 

(3.15 ) 

(3.16 ) 

(3.17) 

(3.18 ) 

Vj+1 +Zj+1 +2zj =0. (3.19) 

Observation 3: Except for the definition of the circulant 
matrices (A,B) the Boussinesq systems (3.18) have the 
same form as the KdV systems. 

In component notation Eqs. (3.16) are 

Sj+I,x +Sj,X + Sj-I,x = f: +f: (3.20) 
-~j+1 ~j-I' 

Sj+1 Sj Sj-I 
wherej= 1,2,3, ... (modN). 

Since all circulant matrices commute5 A and B have a 
set of simultaneous eigenvectors 

r(N-I)k 

for k = 0,1,2, ... ,N - 1, where 

r = exp(21TiIN) . 

The spectra of A and B are, respectively, 

AA = 1 + rk + l/rk, 

AB= _rk+l/rk, 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

k = 0,1,2, ... ,n - 1, with eigenvector (3.21). From (3.23) A 
is singular when 
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~ = exp ± 21Ti/3 

which, by (3.22) can occur iff 

N=3k. 

On the other hand, B, for any N, has the null vector 

(3.25) 

(3.26) 

(3.27) 

and, when N( = 2k) is even, B has the additional null vec
tor 

-1 

1 

Pk = - 1 

-1 

(3.28) 

As was true for the KdV systems, the null vectors of A 
induce constraints and the null vectors of B induce Casimir 
invariants for the system (3.16). WhenNis not a multiple of 
3, A is invertible. 

and 

and 

For 

N= 3k+ 1, (3.29) 

A -I = - circ[O,O, 1,0,0,1,0,0, ... ,0,1,0] 

+! circ[ 1,1,1, ... ,1,1] , (3.30) 

o =A -IB = circ[O, - 1,0,1, - 1,0,1, ... , - 1,0,1] . 

For 

N= 3k+2, 

A -I = circ[O,I,O,O,I,O,O,I, ... ,O,O,I] 

-! circ[I,I,I, ... ,I,I] , 

( 3.31) 

(3.32) 

(3.33 ) 

o =A -IB = circ[O,O, - 1,1,0, - 1,1,0, ... , - 1,1,0] . 
(3.34) 

In both instances 

0'= -0 (3~35 ) 

and the null vector of 0 are the null vectors of B. 
For any N, associated with the null vector (3.27), the 

system (3.16) has the Casimir integral 

That is, 

~HN = f Sj,X ~HN =HN L Sj,x 
ax j=1 aSj Sj 

(3.36) 

= HN L (Sj+ I,x + Sj,X + Sj-I,X), (3.37) 
3 Sj+1 Sj Sj-I 
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by (3.20) 

HN N 
= ""3 j~1 ( - 5j+ I + 5j ~ I ) =0. 

We define the operator 
N 

L = L DjDj+ IDj+2 , 
j~1 

(3.38 ) 

(3.39) 

where Dj = a/ a5j' and note the following identities for 
m = 0,1,2, ... and eachj 

5jDjL moHN =L moHN 

-mDj(Dj~2Dj~1 +Dj~IDj+1 

+Dj+IDj+2)Lm~IOHN , 

5jDj(Dj~2Dj~ I - Dj+ IDj+2)L moHN 

= (Dj~2Dj~1 -Dj+I Dj+2)L moHN · 

With these we show that 

HN~3m =LmoHN 

(3.40) 

(3.41 ) 

( 3.42) 

for m = 0,1,2, ... ,(N /3) are integrals of (3.16). That is, 

~L moHN = f 5j,X ~L moHN ax j~1 a~ 

= ~ 5j,X !-.D.L moHN 
~ 5j ~J J ' 

by (3,36) and (3.40) 

= _ m L (5j+ I,x + 5j,X + 5j~ I,x ) 

5j+1 5j 5j~1 

X Dj~IDjDj+ILm~loHN' 

by (3.20) 

by (3.41) 
N 

= L (Dj~2Dj~1 -Dj+IDj+2)Lm~loHN' 
j~ I 

and by periodicity 

~LmoHN =0. ax 
Therefore, when 

(3.43 ) 

,N=3k+1,3k+2,3k+3, (3.44) 

we have, from (3,42), k + 1 integrals. 
Furthermore, when N is even, 

N=2k, (3.45 ) 

there is associated with the null vector (3,28) of B the Casi
mir integral 

Ho = IT 52j~ I . (3.46) 
j~ I 52j 

By multiplication of the Casimirs (3.36) and (3.46) there 
are produced the equivalent Casimirs 
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k 

Hk = II 52j~I' 
j~1 

k 

H k =II52j' 
j~1 

(3.47) 

(3.48 ) 

The index refers to the degree of the integral under a homo
geneous scaling 

( 3.49) 

The result ofapplying the operator (3.39) to (3.47), (3.48) 
is null and a calculation reveals that applying (3.39)-(3.46) 
does not produce integrals. 

Therefore for a system of size NE{3k + 1, 3k + 2, 
3k + 3} we have one or two (N even) Casimir integrals and 
k integrals (3.42). In what follows we shall find that system 
(3.16) has a Hamiltonian structure. Unlike the KdV sys
tems, we do not find, by the above procedure, a sufficient 
number of integrals to show that (3.16) is completely inte
grable. By finding the consistent reductions [which preserve 
the form of (3.16) 1 we also will find the missing integrals. 

First consider the systems (3.16) without constraints. 
That is, when N is not a multiple of 3, 

N=3k+1 (3.50) 

or 

N= 3k+2. (3.51) 

From (3.31) or (3.34) system (3.16) is 

where 

(3.53 ) 

and N = 3k + 1 or N = 3k + 2. 
The Hamiltonian form ofEqs. (3.52) with Hamiltonian 

HI and cosymplectic form 

(3.54) 

is evident. Recall that n is antisymmetric and the Poisson 
bracket is 

(3.55) 

That (3.55) verifies the Jacobi identity is a simple conse
quence of the change of variables 5j = eO} (Miura transfor
mation between Hamiltonian systems). 4 It is perhaps worth 
noting at this time that 

(3.56) 
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where 

0 0 -D2 0 DN 

0 0 0 -D3 0 

D2 0 0 0 -D4 

01)= 
. . . . . . 

-DN 

0 -D\ DN_ 1 0 

when N = 3k + 1, 3k + 2. The higher-order equations asso
ciated with the integrals (3.42) are 

L =M~V~LmoHN' (3.58) 

From the form ofEqs. (3.52) and (3.57) and inspection 
of(3.31) and (3.34) a consistent reduction of(3.52) is to set 
any three consecutive terms equal to zero. That is, 

5j = 5j+ I = 5H2 = 0 (3.59) 

for fixedj. This preserves the form of the equations with 

N = 3k + 1 .... 3 (k - 1) + 1 , 
(3.60) 

N=3k+2 .... 3(k-1)+2, 

and 

LoHN .... H N_ 3 • (3.61) 

When N ( = 2k) is even, another consistent reduction 
of (3.52) and (3.58) is to set the even (or the odd) compo
neats of? equal to zero. That is, 

52j = 0, 52j- I = 5; (3.62) 

or 

52j-1 = 0, 52j =5;, (3.63 ) 

where j = 1 ,2, ... ,k N = 2k. Note that (1) when N = 2k 
=31 + 1,thenN/2=k =3p+2,wherel =2p+ 1, and 
(2) when N = 2k = 31 + 2, then N /2 = k = 3p + 1, where 
1 = 2p. Therefore, this reduction, while halving the period of 
the fixed point, exchanges the systems defined by (3.31) and 
(3.34). That the reduction is consistent can be seen immedi-
ately from (3.31) and (3.34). 

In Table I we present a list of systems with N =1= 3k and 
N<22. The degree of freedom d as a Hamiltonian system 
(after subtracting the Casimirs) and the degree [under scal-
ing (3.49)] of the complete (with regard to d) set of homo-
geneous, independent integrals are represented. The pri-
mary integrals are (3.42). We will show the existence and 
form of the secondary integrals. When N is even the highest 
weight secondary integral is the Casimir of the form (3.47) 
and (3.48). 

For any N the degrees of the primary integrals are deter-
mined by (3.42). That is, in this case, 

I,4,7, ... ,3k + 1 (3.64) 

or 

2,5,8, ... ,3k + 2 . (3.65 ) 

When N = 21 = 3k + 1, the degrees of the secondary 
integrals are (l = 3p + 2, k = 2p + 1) 
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0 

D\ 
0 

(3.57) 
-DN_\ 

0 

0 

2,5,8, ... ,3p + 2 , (3.66) 

and when N = 3k + 1 = 21 + 1, k = 2p, 1 = 3p, the degrees 
are 

are 

2,5,8, ... ,3p - 1 . (3.67) 

WhenN = 3k + 2 = 2/, k = 2p, 1 = 3p + 1, the degrees 

1,4,7, ... ,3p + 1 , (3.68) 

and when N = 3k + 2 = 21 + 1, k = 2p + 1,1 = 3p + 2 the 
degrees are 

1,4,7, ... ,3p + 1 . (3.69) 

Now, for any N the primary integrals are known from 
(3.42). We claim that the secondary integrals atN = N' are 
the primary integrals at N = 2N' that survive reduction 
(3.62). From the preceding it is immediate that any primary 
integral that does survive the reduction will be a secondary 
integral of the reduced system. Note that reduction does not 

TABLE I. Degree of primary/secondary integrals. 

N d 

4 I 4 
2 

5 2 2 5 
I 

7 3 I 4 7 
2 

8 3 2 5 8 
I 4 

10 4 I 4 7 10 
2 5 

11 5 2 5 8 11 
I 4 

13 6 I 4 7 10 13 
2 5 

14 6 2 5 8 II 14 
I 4 7 

16 7 I 4 7 10 13 16 
2 5 8 

17 8 2 5 8 II 14 17 
I 4 7 

19 9 1 4 7 10 13 16 19 
2 5 8 

20 9 2 5 8 11 14 17 20 
I 4 7 10 

22 10 I 4 7 10 13 16 19 22 
2 5 8 11 
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change the (weight) degree of a nonvanishing term. 
It is convenient to let Nbe even and greater than 4. Then 

N is of the form (for some k) 

N=4k 

or 

N=4k+ 10. 

Without loss of generality let 

S2j = 0 

(3.70) 

(3.71 ) 

(3.72) 

forj = 1,2, ... in (3.42). Any application of L that does not 
leave embedded even-order terms must remove terms in 
groups that are odd multiples of 3. Say, in 

(3.73 ) 

keep SI and remove S~3S4' keep Ss and remove S~7S8' etc. 
Or keep SI and remove S~3S4SSS~7SsS~1O' keep Sll' etc. 

Each excision will account for i terms, 

i = 4,10,16,22,28, ... , (3.74) 

where one odd indexed term is retained and i-I terms are 
removed from (3.73). It is immediate that when N = 4k the 
highest weight terms that survive reduction (3.72) will have 
degree k (by k excisions with index i = 4). Also, since 
N = 4k = 16 + 4(k - 4), there also result the next highest 
weight terms of degree k - 3 (k - 4 excisions with index 4 
and one excision of index 16). In this way, it is evident that 
when N = 4k the terms (secondary integrals) in (3.42) of 
degree 

k,k - 3,k - 6, ... (3.75) 

are uniquely the terms that do not vanish under reduction. 
In the same manner, when N = 4k + 10, the degree of 

the surviving terms are 

k + l,k - 2,k - 5, .... (3.76 ) 

Therefore, we have established the existence of the sec
ondary integrals (when N is not a multiple of 3). The num
ber of primary and secondary integrals equals the degree of 
freedom of the Hamiltonian system. 

For N a multiple of 3 it is not yet established that (3.62) 
is a consistent reduction. This will be examined later. 

The form of the secondary integrals is readily obtained. 
For instance, let N = 22 = 403 + 10. Then by the preceding 
the highest term surviving reduction has degree 4 and 

H 4 ( S2 = S4 = ... SN = 0) 

=L 6oH N ( S2 = ... = 0) 
II 

= L S2j-1 S2j+3 S2j+7 S2j+11 . 
j+ I 

(3.77) 

Therefore, when N = 11 and relabeling terms S 2j _ I --+ Sj for 
j = 1,2, ... ,11 we obtain the integral 

II 
H4 = L Sj Sj+2 Sj+4 Sj+6 . 

j=1 
In the same way, when N = 13 

13 
Hs = L Sj Sj+ 2 Sj +4 Sj+ 6 Sj+ 8 • 

j= I 

(3.78 ) 

(3.79) 

An explicit formula for the secondary integrals can be 
obtained through combinatorial considerations. We defer 
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from further discussion of this point except to note that for 
any N (not a multiple of 3) 

H 2=!t'A- It. (3.80) 

See (3.30) and (3.33). 
Observation 4: The results of Yoshida9 may be used to 

find the hypothetical degree of integrals for the scale-invar
iant system (3.20). An application of this method to (3.20) 
is particularly interesting in that for the most obvious form 
of singularity the leading orders and resonances numerically 
coincide, thereby greatly reducing the computational effort. 

B. The involution of integrals 

For the KdV systems ofSecs. I and II and Ref. 4 it is, in 
general (for any N), quite simple to demonstrate the involu
tion of the integrals since the systems have the dual-Hamil
tonian structure (2.36) for even Nand 

L = M~ V~L moHN = - mBA 'V~L m - 10Hn (3.81) 

for odd N.4 By the usual argument with (2.38), (3.81) for 
raising and lowering indices4 it is readily seen that 

{L poHN,LmoHN} = (V~L POHN)'M~V~LmoHN =0. 

(3.82) 

That is, the Poisson bracket vanishes. 
On the other hand, the corresponding formulation 

(3.56) for the Boussinesq systems, 

L=M~V~LmoHN= -mflnV~Lm-IoHN' (3.83) 

does not obtain a transparent procedure for demonstrating 
the involution of the (primary) integrals. That is, it is not 
evident that 

N 

=m L DjL PoHN 
j=1 

X( -Dj+IDj+2 +Dj_2Dj_l)oLm-IOHN 
(3.84) 

must vanish, since fln is a differential operator and the usual 
raising/lowering arguments do not apply. 

Various equivalent forms of this Poisson bracket are 

{L PoHN,L moHN} = - mpW~A 'BWm , (3.85) 

where (A,B) are as defined in Sec. III A, 

and 

A'B=BA '=circ[O,-I,-I,O, ... ,O,I,I], 

W =(::)Lm-IOH m. N' 

CN 

In divergence form 

a 
D·=-. 

J ax 

{LPoNN,L moHN} = mV~o(LPoHN Vm ) , 

John Weiss 
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(3.88) 

(3.89) 
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where 

V. =(~~)OLm_IOH m: N' 

dN 

dj = Dj + IDj+ 1 - Dj _ 1Dj _ I , 
A 

V4-oVm =0. 

(3.90) 

(3.91) 

(3.92) 

We consider the Poisson brackets of the primary and 
secondary integrals defined in Table I and thereafter. Of 
course, for any Nand G a generic integral 

{HI,G} =0, 

{HN,G} =0, 

(3.93) 

(3.94) 

and, when N = 2k, the Casimir Hk commutes with any G 

{Hk,G} = O. (3.95) 

Let H1 be defined as in (3.80). Then for any m 

{H2,L moHN } = O. (3.96) 

Since A is symmetric, 

(3.97) 

By (3.85) 

and by (3.84) 
N 

{H2,L moHN } = m I Dj H 2 
j= I 

and by (3.40) 

( 

DN_IDN -D2D3 ) 
2-, -I DND2 - D3D4 

=m~ 'A 

DN_1DN~1 -DID2 

X Lm-IoH
N 

( 

DNDI - DID2 ) 
=mt' : 

DN_IDN -DNDI 

X Lm-IoH
N

, 

{H2,L moHN } = O. 

For any N 

{HN _ 3 ,HN _ 6 } = O. 

(3.98) 

(3.99) 

( 

lIsN SIS2 ) 
° circ[O,O,O,I,I, ... ,I,I,O,O] : 

lIsN_I SNSI 
(3.100) 

and by direct calculation, 

{H N _ 3,H N _ 6} = 0 . 

We claim that when N = 3k + 1 or 3k + 2, {Hp,Hq} 
= 0 and p + q<N + 3, then {Hp,Hq} = 0 when 

N = 3k + 4 or 3k + 5. The reduction (3.59) and N not a 
multiple of 3 implies that when N = (3k + 4,3k + 5) 
{Hp,Hq} must contain the factor HN • Since degree of 
{Hp,Hq} = P + q < N, {Hp ,Hq} must vanish. 

For instance, in Table I the above argument shows that, 
say {Hs,H7 } = 0 when N = 13, but does not show that 
{H7,Hll } must vanish when N = 17. 

C. Constraints: N=3k 

When N = 3k the matrix 1 is sin~ular and contraction 
of (3.16) with the null vectors,Pk andP1k, defined by (3.21) 
obtains the constraints 

13k °t = 0, 

131k ot = O. 
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(3.101) 

(3.102) 

Equations (3.101) and (3.102) are equivalent to the system 
of real constraints 

CI=Clot=O, 

C2 = (;1° t = 0, 

where 

cI = (2, - 1, - 1,2, - 1, - 1, ... ,2, - 1, - 1) , 

c2 = (0,1, - 1,0,1, - 1, ... ,0,1, - 1) . 

We note that CloC2 = O. 
The symmetric circulant matrix 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

p = (liN) circ[2, - 1, - 1,2, - 1, - 1, ... ,2, - 1, - 1] 
(3.107) 

satisfies the conditions 

p2=p, PCI=C I , PC2=C2, (3.108) 

and is the projection onto the null space of A. 
We require a pseudoinverse, G of A to verify the condi-

tion 
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GA=AG=I-P. (3.109) 

Let 

G = (liN) circ[N - 2,0,3 - N, 

N -2, - 3,6-N,N -2, - 6,9 -N, ... , 

N - 2, - 3(j - 1),3j - N, ... ,N - 2, - N + 3,0] . 
(3.110) 

Then G is symmetric and satisfies (3.109). 
System (3.16) is a Hamiltonian system 

where HI = l:j"= I 5j. From the primary integrals 

H N- 3m =LmoHN , 

N 

HN= IT 5j' 
j=' 

the higher-order systems are 

From identity (3.40), it is generally true that 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

Using (3.112) it is found, by contraction of (3.113) with 
(C I ,C2 ), that the constraints are trivial for the systems 
(3.113). That is, both sides vanish identically. 

Now apply (3.110) to (3.111) and find that 

where 

03k = GB, 
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(3.115) 

(3.116) 

(3.117) 

(3.118) 

(3.119) 

(3.120) 

h ~c;e' 0 
0 )c, 0 

5N 

e' s}-~ C,. 
At 0 

0 =c, 0 

We note that 

··e' 0 
0 sJc,~ -C,. c, 0 

By evaluation 

GB = (liN) circ[0,2N - 5,2 - N,6 - N, 

2N - 8, - 1-N,12 -N, ... , 

2N - 3j - 2,5 - 3j - N,6j - N, ... , 

N + 1,8 - 2N,N - 6,N - 2,5 - 2N] . 

The higher-order equations are 

x 0 {C,.HN_3m}V,C, 

+ {C2,HN_3m}V,C2) . 

After a calculation it is found that 

- mHoV,HN+3_3m 

1 (5' =M,V,HN _ 3m --;; 

(3.121) 

(3.122) 

(3.123) 

(3.124) 

0q{C"HN _ 3m }V,C, + {C2,HN_3m}V,C2)' 
(3.125) 

where Oi) is defined by (3.56). 
By the above the higher-order equations (3.124) are 

L = -mOi)V,HN+3_ 3m · (3.126) 

Compare with (3.56) and (3.58). 
In general, we find that for systems (3.115) and (3.124) 

the reductions (3.59) or (3.62) are not consistent (form 
preserving). Therefore the secondary integrals do not seem 
to have the same structure when N = 3k and when N =I- 3k. 

IV. THE GENERIC SYSTEM 

The KdV and Boussinesq systems are instances of the 
general system in component form 

5 j,x + 5j + ,,x + ... + 5j + p,x = 5j _ 5j + P , ( 4.1 ) 
5J 5J+I 5J+P 

wherej = 1,2, ... (mod N). The KdV systems correspond to 
p = 1 and the Boussinesq to p = 2. Let the circulant forward 
shift matrix be 

C = circ[O,I,O,O, ... ,O] . (4.2) 
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In the N-vector form Eqs. (4.1) are 

with 

A=I+C+"'+CP, 

B=I-CP. 

Let 

r = exp21TilN . 

Then the eigenvectors of (4.4) and (4.5) are 

r(N-I)k 

The spectra of (A,B) are 

1- zP+ I 
AA = = 1+ z + '" + zP, 

I-z 

AB=I-zP, 

where for k = 0,1,2, ... ,N - I , 

z = yk = exp21TikIN. 

(4.3) 

(4.4 ) 

( 4.5) 

(4.6) 

(4.7) 

( 4.8) 

(4.9) 

(4.10) 

HereAB is null for some k, O<k<N - I, ifforinteger m, 
O<m<p-I, 

kp=mN, 

AA is null for some k if 

k(p+ I) =mN. 

( 4.10 

(4.12 ) 

The Casimir integrals of (4.1) correspond to the null 
vectors of B. The null vectors of A produce the constraints. 
We note that for fixed N, the Casimir vectors for the systems 

A 

with p = 1 + I are the principal Casimir vector Po, and the 
set of constraint vectors for the systems with p = I. 

Associated with the principal Casimir, for any N 
N 

HN = II Sj 
j= I 

we find the principal integrals of (4.1 ) 

H N- pm =LmoHN , 

where m = 0,1,2, ... , and 
N 

L = I DjDj + I ... Dj + P . 
j=1 

The identities, for eachj, 

SjDjL moHN = L moHN - m(Dj _ p Dj+ I-p" 'Dj 

+Dj+l_p···DjDj+1 + .. , 

(4.13 ) 

(4.14 ) 

(4.15 ) 

+ DjDj + I" 'Dj + p)L m -loHN , (4.16) 

imply that 

~LmoHN =0. ax 
That is, 

by (4.16) 

N 

" f:-. DL moHN ~ ~J.x } 
j=1 

= - m" Sj.x (D. D. ···D + '" 
~ ~ J-P J+I-p J 

+ DD ···D )oLm-IoH 
j j+ I j+ p N 

= _ m I (Sj,x + .,. + Sj+ p,x ) 
Sj Sj+ P 

X DjDj + I" 'Dj + pL m-IoHN 

by (4.1) 

by (4.17) 
N 

=m I (Dj_p"'Dj _ 1 -Dj+I"'Dj+p) 
j= I 

XLm-IoHN , 

by periodicity 

=0. 

(4.18 ) 

The systems (4.3) have a Hamiltonian structure 

( 4.19) 

where HI = ~:= I Sj . 
The higher-order equations associated with the inte

grals (4.14) are 

When A is invertible, then 

o =A -IB 

is an antisymmetric circulant matrix. Note that 

0= (1+ C+ ... +CP)-I(1-CP). 

Then 

0 , = (1 + C '+ ... + C IP) -I (1 _ C IP) 

and 

( 4.20) 

(4.20 

(4.22) 

Sj (Dj_pDj+ I _p" 'Dj - DjDj+ I" 'Dj+ p)L moHN CC ' = I 

= (Dj _ pDj+ I-p" 'Dj _ 1 - Dj+ IDJ+2" 'DJ+ p) implies that 

xL moHN (4.17) 0 ' = C PC -PO' = - O. 
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and 

We have the systems 

L =M~V~HI 

t.x =M~V~HN~pm' 
where 

M, =(" J{' . J 
is the cosymplectic form. 

Furthermore, for any N, by (4.16) 

SN ) V~HN~pm 

(

DN+ I ~p" 'DI) 
= -mA : HN+p~pm' 

DN~p"'DN 

(4.23 ) 

(4.24) 

(4.25) 

(4.26) 

This demonstrates that the constraints for (4.19) are 
trivialfor systems (4.20) and that systems (4.20) are equiv
alent to 

By (4.17) 

A (DN+ I ~p" 'D~ - D2 " 'Dp+ I) 
S.x=-m : 

DN~p"'DN~1 -DI"'Dp 

XHN+ p~pm , 

or 

t.x = - mOD V~HN+ p~pm , 

where for p;;.2 , 
p+ I p 

( 4.27) 

( 4.28) 

(4.29) 

~ ~ 
OD = diff circ [0,0,0,00.,0, - dp + I O,O,O,oo.,d 1,0,0,0'00.,0] , 

(4.30) 

Whenp = 1 Eqs. (4.31) are the dual-Hamiltonian formula
tion of the KdV systems. When p;;. 2 (4.31) is a differential 
form of the dual-Hamiltonian structure and as was true for 
the Boussinesq systems ( p = 2), does not directly imply the 
involution of ( 4.14 ). 
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APPENDIX: CANONICAL FORM 

Following Laxlo it is shown how to transform a system 
of the form 

where 0 = A -IBis an antisymmetric circulant matrix, to 
standard Hamiltonian form. 

To be specific, let H = ~f= I Sj' N = 2m + 1 and 

Sj = e/3j
• 

Then 

B.x =OVeH, 

where 

N () 
H= 2: e j

• 

j=1 

Again, the eigenvectors of (A,B,O) are 

PA (1 k _.k(N~I»' 
k = ,T , ... ,r- , 

where r = exp21TiIN. Let 

Pk = Sk + {ik . 

Then 

OPk = Ak Pk , 

with Ak = - iCTk 

OSk = CTktk' Otk = - CTkSk . 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

where dj = Dj + I ~ p ••• Dj ~ I and the differential circulant Note that 
(diff circ) matrix has the terms - dp + I' - dp + 2' A (1 )' 

Sk = ,Ck,C2k,00"Ck(N~ I) , 
- dp + 3 '00' (mod N) along the diagonal beginning at the 

p + 1 place, etc. We note that 0' = - O. tk = (0,Sk,S2k,,00,Sk(N~ I»" (A8) 

From (4.24) when A is invertible where 

(4.31 ) Ck = COS(21TIN)k), Sk = sin(21TIN)k). (A9) 

Let 

~=(l ° ° C 1 C2 Cm SI S2 

CN~I C2(N~ I) cm(N~ I) S(N~ I) S2(N~ I) 

(AlO) 
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Then, by (A7) 

o 

4>'04> =N 

Let 

(' U~} J = . . 
m . 

r 0) <1>', 1 . -Jm F= N 1/ 2 ~ 
Jm 

and 

G)~F8. 
Then 

(~t = (~ -I)V H AA o ( P.q) ( p,q) , 

2039 J. Math. Phys., Vol. 28, No.9, September 1987 

(AI2) 

(A13) 

(A14) 

(~ ~). 

where forj = 1,2, ... ,m 

Pj = 0/
12 (~ Cjk(Jk)' 

k=O 

qj = 0/
12 (~ Sjk(Jk)' 

k=1 

and forj = O,I,2, ... ,2m, 
m 

(Jj+ I = I Ok-
1I2 

(Sjkqk - CjkPk) . 
k=1 
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The main result is a simple evaluation of an integral related to the orthogonality property of 
hypergeometric polynomials occurring in mathematical physics. Some related formulas for 
generalized hypergeometric functions are also briefly discussed. 

I. INTRODUCTION 

In recent years interesting investigations l appeared concerning various hypergeometric orthogonal polynomials includ
ing (or generalizing) the 6j symbols of angular momentum, the classical polynomials, and related polynomials with discrete 
orthogonalities. 

In this context, the polynomials (we adopt here the same notation as in Wilson, 1980 1 ) 

Z [ - n, a + b + c + d + n - 1, a + ix, a - iX;] 
Pn( -x ;a,b,c,d) = (a+b)n(a+c)n(a+d)n4F3 b d 

a + ,a +c, a + 
(1.1 ) 

are particularly important. They satisfy the symmetry property 

Pn ( - xZ;a,b,c,d) = Pn ( - xZ;b,a,c,d) (1.2) 

(this is a consequence of a well-known transformation formulaz for a balanced 4F3) and the orthogonality relation 

J: '" dx r(xz;a,b,c,d)Pm ( - xZ;a,b,c,d)Pn ( - xZ;a,b,c,d) = n!(a + b + c + d + n - 1 )nKn (a,b,c,d)8mn , (1.3) 

where 

(1.4) 

and 

K =r(a+b+n)r(a+c+n)r(a+d+n)r(b+c+n)r(b+d+n)r(c+d+n). 

n rca + b + c + d + 2n) 
( 1.5) 

For the sake of simplicity, we start with real positive values of a, b, c, and d. This restriction may be removed by also allowing 
for complex values of the parameters, by performing the appropriate analytic continuation at each step of the procedure 
described in Sec. II. 

The proof of Eq. (1.3) is quite easy, involving a term by term integration and a rearrangement of the resulting double 
series, by means ofSaalschiitz's theorem. 3 The key of this procedure is the formula 

f'" d r( z. b d) = rea + b)r(a + c)r(a + d)r(b + c)r(b + d)r(c + d) x x ,a, ,c, , 
_ '" rea + b + c + d) 

which is an integral analog of a 5F4 summation theorem.4 

According to Wilson, the derivation ofEq. (1.6) by contour 
integration requires a tedious trigonometric computation. 
The main purpose of the present note is to give a simpler 
proof of ( 1.6), based on a formal trick familiar to a physicist. 
This is done in Sec. II. Some related results, pertaining to the 
hypergeometric series 2Fl' are given in Sec. III. In Sec. IV, 
examples borrowed from the theory of generalized hyper
geometric series are also discussed. 

II. PROOF OF EQ. (1.6) 
We begin by quoting the formula 

1 J'" d rca + ix)r(a - ix) isx - x e 
21T - '" reb + ix)r(b - ix) 

r(2a) ( 5)-ZQ 
= 2 cosh-reb - a)r(b + a) 2 

X zFt( a,a + +; b + a; sechz ~) . 
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To establish this result, we write CO < Re a < Re b) 

rCa + ix) = 1 II dt ta+be-I(l_ t)b-a-I 
rCb + ix) rCb - a) 0 ' 

rCa - ix) 1 l" I d a-be-ICI )b-a-I 
--=--~ = uu -u , 
reb - ix) rCb - a) 0 

so that the lhs ofEq. C2.1) becomes 

1 t t dtdu(tu)a-I 
217"[rCb - a)]2 Jo Jo 

X[(1-t)(1_u)]b-a-IL"'oo dX(~ est. 

The x integration gives 21TUWt5 (t - uw), w = e - s. Thus we 
are left with a single integral and, by using Euler's integral 
representation of J"I together with a quadratic transforma
tion, S Eq. C 2.1) follows at once. 

In particular, we have 

1 foo d rCa + ix)r(a - ix) isx -- x e 
217" - 00 rUx)rc - ix) 

= 2- 2acosh- sinh- , rC2a) tit 1- (2a + I) 

rc - a)rCa) 2 2 
(2.2) 

1 foo d rea + ix)r(a - ix) isx -- x e 
217" - 00 rq + ix)r(! - ix) 

r(2a) 2- 2a I· h t 1- 2
a 23 

= r(! - a)r(! + a) sm"2. ( . ) 

Let us now consider the integral 

1 Joo 1=-- dx 
217" - 00 

X rca + ix)r(a - ix)r(b + ix)r(b - ix) eisx 
r(ix)r( - ix) 

= r(2b) t dt [t(1 _ t) ]b- I Joo dx 
217" Jo - 00 

X rca + ix)r(a - ix) eiJU (2.4) 
rUx)r( - ix) 

wherep=t + In(t /(1 - t»). By using Eq. (2.2), we get 

1= rC2a)r(2b) (w- 1/2A)2a+I(l1 +12), (2.5) 
r( - a)r(a) 

with w=e- s, A =w/(w+ 1), and [Rea<O, Re(a 
+ b) >0] 

II = 1'-4 dt [t(1 - t) ]a+b-l[tw- 1/2 + (1 - t)wI/2 ] 

X CA - t) - (2a+ I), (2.6) 

12 = f dt [t(1 - t)]a +b- I [tw- 1/2 + (1 - t)wI/2 ] 

X(t_A)-(2a+l). (2.7) 

The splitting into II + 12 is necessary, since Isinh(p/ 
2) I = cosh(t /2)/[t( 1 - t)] 1/21t - A I. By putting t = Au 
in II' and t = 1 - (1 - A)u in 12, these integrals are readily 
evaluated in terms of hypergeometric (or Legendre) func
tions. Precisely, since 
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p"'(x) = 1 (l+x)"'/2 
v r(1-p) I-x 

XJ"I( - V,V + 1; 1 - p;(1 - x)/2) 

we first get 

I, = 2br(a + b)r( - 2a)(W- 1/2A) - (2a+ I) 
2 

X (i. sech 1...)a + bpa - b( ± tanh 1...) 
2 2 a+b 2 ' 

whence, according to a standard formula6 

f
oo dxl rea + ix)r(b + ix) 12eiSX 

- 00 r(ix) 

=r(a+ ~)r(b+ ~)r(a+b)COSh~ 

X J"1(a + i. ,b + i.;i. ; - sinh21...) . 
2 2 2 2 

Similarly, one finds 

f
oo dxl r(c + ix)r(d + ix) 12eiSX 
-00 r(!+ix) 

(2.8) 

(2.9) 

= r(c)r(d)r(c + d) J"{c,d; ~ ; - sinh2 ~)
(2.10) 

We are now going to derive (1.6) from (2.9) and (2.lO), by 
means of Parse val's formula7 

rOOOO dxF(x)G(x) = f: 00 dt/(t)g( - t), 

whereF(x) and G(x) are the Fourier transforms of/(t) and 
g(t). Then, with 

F(x) = 1 rea + ix)r(b + ix) 12 
r(ix) , 

G(x) = 1 r(c + ix)r(d + ix) 1
2
, 

r(! + ix) 

and sinh2Ct /2) = t, we are led to consider the integral 

LOO d -1/2 F ( 1 b 1 1 ) tt 2 I a+- +_·_·-t 
o 2 ' 2 ' 2 ' 

XJ"I(C,d;~ ;-t) 

rca + c)r(a + d)r(b + c)r(b + d) 
=17" , 

rea + !)r(b + ~)r(c)r(d)r(a + b + c + d) 

Re(a + c), Re(a + d), Re(b + c), Re(b + d) > o. 
(2.11) 

This formula is easily established as the particular case u = 1 
of the more general result 

dtt- 1/2 
1<'1 a+- b+-·_·-ut l oo (1 1 1 ) 

o ~". 2 ' 2 ' 2 ' 

XJ"I(C,d; ~ ; - t) 

rea + c)r(a + d)r(b + c)r(b + d) = 17" --"":"""""":"""""":""""":"""""":"""--'---'---'---'---'--"""';"'-
rea + pr(b + !)r(c)r(d)r(a + b + c + d) 

Xu - (a+ 1/2) J"I (a + c,a + d;a 

+b+c+d;I-l/u) (2.12) 
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whose validity can be checked by evaluating the Mellin 
transform (with respect to u) of both sides. This concludes 
our proof. 

In the limiting case d - 00, Eq. (1.3) takes the form 

Loo 00 dx r(x2;a,b,c)Prn ( - x 2;a,b,c)Pn ( - x 2;a,b,c) 

= n!r(a + b + n)r(a + c + n)r(b + c + n)i5rnn , 
(2.13 ) 

where 

Pn ( - x 2 ;a,b,c) = (a + b)n (a + c)n 

[ 
- n, a + ix, a - IX;] 

X3F2 • 
a + b, a + c 

(2.14 ) 

It is instructive to give an alternative derivation of the or
thogonality relation (2.13), based on some elementary prop
erties of the coefficients gs.l defined by 

s 

x 2s = L gs,l (a)(a + ix), (a - ix),. 
'=0 

Let us write 

(2.15 ) 

Jr.s (a,b,c) = f: 00 dx r(x2;a,b,c)(a + iX)r(a - iX)rx2s. 

(2.16) 

Then, we have [from (1.6), by letting d- 00], 

Jo.o (a,b,c) = rea + b)r(a + c)r(b + c), (2.17) 

Jr.O (a + s,b,c) = (a + b) r + s (a + c) r+ Jo.o (a,b,c), 
(2.18 ) 

and 
s 

J r.s (a,b,c) = Jo,o (a,b,c) L gs,' 
'=0 

so that 

f'" 2 [ - n, a + ix, a - iX;] 2 
dx rex ;a,b,c) 3F2 b x s 

_'" a+ ,a+c 

n (n) s 
= Jo,o(a,b,c) r~o (-1)' r ,~o gs,l 

X (a + r)(a + r+ b),(a + r+ c),. (2.20) 

Now, by mathematical induction, one easily proves that 
l::=ogs,,(a+r)(a+r+b),(a+r+c), is a polynomial 
of degree s in r, the coefficient of r' being (b + c) s. By noting 
that 

{
O, j<n, 

= (_ l)nn!, j = n, (2.21) 

Eq. (2.13) follows at once, 
As a further application of the method used in deriving 

Eq. (1.6), we consider the integral 

J = f: '" dx rea + ix)r(b - ix)r(c + ix)r(d - Ix) 

(2.22) 

where 
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Un (x;a,b,c,d) 

_ F [ - n, a + b + c + d + n - 1, a + IX;] 
- 3 2 a + b, a + d . 

(2.23 ) 

These polynomials, which have been discussed by Ataki
shiyev and Suslov, I are connected to Jacobi polynomials by 
Euler's transformation 

R(a + iX,d - ix)un (x;a,b,c,d) 

= LI dtt a+ ix - I (1_t)d-iX+I 

X 2F I ( - n,a + b + c + d + n - l;a + b;t). 
(2.24) 

By inserting (2.24) in (2.22), and by using the formulas 

Loooo dx reb - ix)r(c + ix)ei/-Lx 

= 21Tr(b + C)( ~ sech ~ r+ce(b-C)/-L12, 

we easily obtain 

J = 21Tr(a + d)r(b + c)e[(b-c)/21s21- (a+b+c+d) 

( 
5 S)-(b+C) 

X cosh "2 - t sinh "2 

(2.25) 

Xp~a+b-I,c+d-l)(t). (2.26) 

By writing 

( 
5 S)-(b+C) 

cosh "2 - t sinh "2 

( 
S)-(b+C) '" (b+c)r ( s)r = cosh- L ttanh-
2 r=O r! 2 ' 

(2.27) 

a straightforward calculation shows that 

f: '" dx rea + ix)r(b - ix)r(c + ix)r(d - Ix) 

X Urn (x;a,b,c,d)Un (x;a,b,c,d) 

(2.28) 

Thus, the orthogonality relation for the polynomials Un ,is a 
simple consequence of the orthogonality of Jacobi's polyno
mials9

; this is, in fact, the only tool required in the above 
sketched proof. 

We end this section by quoting the formula 
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1T f: "" dx I (~ + iX) r ( + + ix )s 1

2
X sinh( 1Tx)sech

2
( 1TX) 

= r!s!(r + s)!, (2.29) 

which follows from Eq. (2.9) with s = 0 and a = r +!, 
b = s + ! (r,s = 0,1,2, ... ). This result may be helpful in eval
uating Mehler-Fock transforms; for instance, it is almost 
immediate to obtain Mehler's generalization of Heine's for
mula, 10 

(y - x) -I = 1T L"" dt P _ 112 + it (y)P - 112 + it ( - x) 

X t sinh( 1Tt)sech2( 1Tt). (2.30) 

III. SOME FORMULAS FOR F1 
An appropriate use of Fourier transforms like those 

considered in Sec. II leads to new integral representations of 
special functions. As an interesting example, we start here 
from Clausen's formula II 

(3.1) 

which, with a-a + it and b-b - it, can be written as 

r(a+b+!) t tdudvub-lva-I(1-u)a-1I2(1-v)b-1I2(1-xu)-a(1-xv)-b[ l-u . v(1-XV)]it 
Jo Jo u (1 - xu) 1 - V 

1 __ b ~ r(2a + 2it + n)r(2b - 2it + n)(a + b)n = 1T.4 a £.. xn. 
n=O r(a+b+!n)(2a+2b)nn! 

By taking the Fourier transform of both sides, we get [recall Eq. (2.25)] 

t tdUdvu-I(1-u)a-1I2(1-xu)-ava-I(1-v)-1/28( l-u . v(1-xv) ?-1) 
Jo Jo u (1 - xu) 1 - v 

= B(a, !)( 1 + 1") - 2a 2FI (a,a;2a;y), 

I 
where 1" = es12, y = 4x'T/( 1 + 1")2, and a + b has been re
placed by a. It is easy to check Eq. (3.3) in the special cases 
x = 0 and x = 1. For S = 0, Eq. (3.3) reduces to 

f dv vn+ a- I(1_ v)O 2F I( - n,l;a;v - 1) 

f dv va- I (1- v)a(1-xv)l-a(1- 2xv +XV2)-1 

= 2 - 2°B(a, !) 2FI (a,a;2a;x). (3.4) 

A direct proof of (3.4) runs as follows. By partial integra
tion, we have 

f dx(1-x)20-1[(a+n)(1-x2)n 

- n (1 - x) (1 _ x 2
) n - I] = ! ' 

whence 

(3.5) 

=2- 2aB(a ~)~ 
'2 (2a)n 

and the desired result follows immediately. 
In the general case, we have 

8( 1 - u . v(1 - xv) ? _ 1) 
u(1 - xu) 1 - v 

u2(1- XU)2 

1- 2xu +xu2 
1 - V -2~( _) 

1" uU-U, 
v(1 - xv) 

where u is the root of the quadratic equation 

(3.2) 

(3.3 ) 

(3.9) 

(3.10) 

f dx(1-x)2o-I[1 - t(1-x)][1 - t(1-x2)] - (0+ I) xu2 _ (1 + v(1-xv) ?) u + v(1-xv) ? = 0, 
I-v I-v 

= (1/2a) (1 - t) -a, (3.6) 

which, in tum, implies 

f dx(1_x)2a+n-1 JI( - n,a + l;a; -x) 

_ 1 F [ - n, a + 1, 1; - 1] _ 1 
----32 --

2a + n a, 2a + n + 1 2a ' 
(3.7) 

because l2 

[1 - t(1 - x)][ 1 - t(1 - x 2)] - (0 + I) 

"" (a) 
= L __ n [t(1-x)] n

2F ,(-n,a+l;a;-x). 
n=O n! 

(3.8) 

Next, we rewrite (3.7) as 
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(3.11 ) 

which,forx=O,reducestouo =?vl[l- (1-?)v]. We 
can expand u as 

"" 
u = Uo + L urxr, (3.12) 

r= 1 

where [A = 1 - (1 - ?)v] 

X L (!)n+l. [4(1-V)?]n+' 

n+j=r-I (n + 2)! A 2n+3 n~l 

X 2F1( - j,2n + 3;n + 1;(1 - v)/A). (3.13) 

Equation (3.3) takes now the form 
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f dvu(1-U)a-1I2(1-XU)-(a- 2V- 2(1-V)1/2 

X (1 - XV) -I (1 - 2xu + XU 2 ) -I 

=B(a,!)[r/(l +r)2a] :zFI(a,a;2a;y). (3.14) 

If we expand both sides of (3.14) in power series of x, we get 
a sequence ofidentities involving :zFI; for instance, at order I, 
one has 

(a + (1 - r)/2)B(a + 2,a + 2) 

X:zFI(a +~, a + 2;20 + 4;1 - r) + (a + 1) 

xB(a + l,a + 2) :zFI(a +~, a + 1;2a + 3;1- r) 

+ arB(a + l,a + 3) :zFI(a +~, a + 3;20 + 4;1 - r) 

= 2aB(a,!)r- l (1 + r) -2(a+ I). (3.15) 

IV. SOME REMARKS ON aF2 
In this section, we give two further examples illustrating 

the usefulness of Fourier transforms in the theory of general
ized hypergeometric series. We first observe that (w = e - S) 

F"'"" dx r(a + ix)r(/3 - ix) 

F [a + ix, /3 - ix, (a + /3 - 1)/2;]eisx 
X3 2 a +/3, (a +/3+ 1)/2 

= 21T[r(a +/3)/(1 + w- I
)] 

X [wa-IO(t) + w-PO( - t)]. (4.1) 

This result is a simple consequence ofEq. (2.25), combined 
with the formula 13 

:zFI (a - ~,a;2a;x) = ((1 + vT=X)/2)1- 2a. (4.2) 

On the other hand, a standard integral representation 14 for 
the logarithmic derivative of the gamma function gives 

II . tl'-I-t)..-I 
~(Il + ix) - ~(f.L + ix) = dt tlX -----

o 1 - t 

whence one easily obtains 

f:"" dx[~(Il+ix) -~(f.L+ix)]eiSX 
uI'-wA. = 21T O(t). 
1-w 

(4.3) 

(4.4) 

By using (4.4), it is immediately seen that the rhs of (4.1) is 
the Fourier transform of 

~ r(a + /3) [~ a + ~ + ix ] + ~(/3 + ~ - iX) 

_~(a~ix)_~(/3~ iX); 

hence we get Watson's formula l5 

[ 
a,/3,(a + /3 - 1)/2; ] 

Ji'2 a +/3,(a +/3 + 1)/2 

= 1 [~(~) + ~(~) 
2B(a,/3) 2 2 

-~(~)-~(~)]. 
Next, let us consider Dixon's theorem 

(4.5) 

3F2[ a, b, c; ] = r(1 + aI2)r(1 + a - b)r(1 + a - c)r(1 + a/2 - b - c) 
1 + a - b, 1 + a - c r(1 + a)r(1 + al2 - b)r(l + al2 - c)r(1 + a - b - c) 

(4.6) 

summing any convergent well-poised 3F2 with unit argu
ment. After the replacements b-b + ix and c-c - ix, we 
take the Fourier transform of both sides. By using the for
mula (w = e- S) 

f"" dx r(a + ix)r(P - ix) eisx 
- "" r(1l + ix)r(f.L - ix) 

= 21T r(a + /3) wa 

r(1l - a)r(a + f.L) 

x:zFI(a -Il + l,a +/3;a +f.L;w), (4.7) 

which generalizes Eq. (2.1), a simple calculation shows (by 
writing simply b instead of b + c) that 

=:zFI (b - al2,b;1 + aI2;w). (4.8) 

If we expand :zFI(b-a,b+2n;1 +a+2n;w) and rear
range the double series, the Ihs becomes a single power series 
in w. Then, by comparing the coefficients of w' in both sides, 
we have (with the replacement b-b - n) 
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I 
[ 

-n,a,b; ] (1 +a)n(l +aI2-b)n 

Ji'2 1 + a + n,l + a - b = (1 + a12) n (1 + a - b) n 
(4.9) 

and no new result is obtained, because (4.9) is nothing but 
(4.6) with c = - n. However, if we perform the above 
sketched transformations in the reverse order, a rather unex
pected way to derive the general Dixon's theorem from the 
terminating one emerges. Now, theproofofEq. (4.9) is very 
simple, involving the use of a suitable generating function. 
To this aim, we start from the formula 

F [ - m,a,l + aI2;] 
3 2 al2,a + m + 1 

= 1 t dxxa-I(1-x)m 
B(a,m + 1) Jo 

X:zFI( -m,1 + ~ ; ~ ;x) 
= 1 t dxxa-1(1_x)2m 

B(a,m + 1) Jo 
X J?I(-m -1·~· __ X_) =~ 0 

2"' "2' I-x m' 

which can be rewritten as 
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(aI2) Sal B(b,a-b+ l)t5mo = m duub+m - I(1_U)a-b 
m! 0 

X F [-m,a,l +aI2;1- U]. 
3 2 1 + a - b,al2 

By recalling that 

f ~ (A)m 3F 2[ - m,a,/J;x] 
m ~o m! A,j.l 

= (1 - 1) -;. ~1(a,/J'J.l; - ~) 
1 - t 

(4.11 ) 

(4.12) 

(this follows, after expansion of 3F2' by rearrangement of the 
double series), Eq. (4.11) implies 

f du ub- l (1 - u)a-b(1 - su) -a/2 

X 2FI 1 + - ,a;l + a - b; - -'----'--(
a SU(1-U») 
2 l-su 

=B(b,l +a-b) 

or, by setting u = (1 - x)/(1 - sx) 

11 dxxa- b(1_x)b-I(1_sx)-(1+a12) 

(
a sx(1-x») X 2FI 1 + - ,a; 1 + a - b; - --'-----'--
2 1 -sx 

=B(b,l +a -b)(1-s) -(1+a12-b). 

Now, as a particular case ofEq. (4.12), we have 

00 t n L - (a)n 2FI( -n,b;c;x) 
n~O n! 

= (1 - 1) - a ~I(a,b;c; - ~) . 
1 - t 

Thus Eq. (4.14) becomes 

(4.13 ) 

(4.14 ) 

(4.15 ) 

f dx xa-b+ n(1_x)b-1 2FI( - n,a;l + a - b;l - x) 
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(1 + al2 - b)n 
=B(b,l+a-b)----

(1 + al2)n 
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( 4.16) 

and this is equivalent to the desired result (4.9). 
In conclusion, we recall for the reader's convenience the 

formulas and the derivations that, as far as we know, are new 
and possibly useful. The key formulas of Sec. II, namely the 
Fourier transforms (2.9) and (2.10), together with the tools 
used to derive them, seem to be new. The same statement 
holds for Eq. (2.12), and for the alternative derivation of the 
orthogonality relation (2.13) based on the properties of the 
coefficients gs.l defined by (2.15). Likewise, Eqs. (3.4), 
(3.14), (4.8), and (4.14) do not seem to be known in the 
mathematical literature. 

I R. Askey and J. A. Wilson, SIAM J. Math. Anal. 10, 1008 ( 1979); 13, 651 
(1982); J. A. Wilson, SIAM J. Math. Anal. 11,690 (1980); N. M. Ataki
shiyev and S. K. Suslov, J. Phys. A: Math. Gen. 18, 1583 (1985); and 
references therein. 

2W. N. Bailey, Generalized Hypergeometric Series (Cambridge U. P., Cam
bridge, 1935), p. 56. As remarked by Wilson, this formula, when iterated, 
contains the symmetries of the 6j symbols. 

3 Bateman Manuscript Project: Higher Transcendental Functions 
(McGraw-Hill, New York, 1953), Vol. 1, p. 66. 

'See Ref. 2, pp. 27 and 47. 
5See Ref. 3, pp. 59 and 110. 
"See Ref. 3, p. 126, formula (22). 
7E. C. Titchmarsh, Theory of Fourier Integrals (Oxford U. P., New York, 
1948), p. 50. 

"By Fourier inversion, Eq. (2.25) is nothing but a standard integral repre
sentation of Euler's beta function. 

"Bateman Manuscript Project: Tables of Integral Transforms (McGraw
Hill, New York, 1953), Vol. 2, p. 285. 

"See Ref. 9, p. 174. 
I I See Ref. 3, p.185, formula (1); note (see Errata) that in the rhsone should 

read 2a + 2b instead of a + 2b. This formula can be obtained, in a quite 
~ ;mple manner, from the corresponding formula for q-hypergeometric 
Lmctions, by letting q~ I; see, for instance, F. H. Jackson, Q. J. Math. 11, 
1 (1940). 

12See Ref. 3, p. 82. 
13See Ref. 3, p. 10 I. 
14See Ref. 3, p. 16. 
15See Ref. 2, p. 98. 
I"See Ref. 2, p. 13. 
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Some classes of unbounded commutants and bicommutants and their behavior with respect to 
the quasiweak*-topology which seems to play here the role of the weak topology for bounded 
operators, are investigated. In particular, some sufficient conditions are given in order that the 
bicommutants be the quasiweak*-closure of the original set of operators. 

I. INTRODUCTION 

This paper continues the study of unbounded commu
tants and bicommutants of unbounded operator families, 
started in Refs. 1 and 2. In Refs. 1 and 2 we discussed, among 
other things, all possible definitions of unbounded commu
tants and we studied their behavior with respect to the weak 
topology which seems to be quite natural for the commutant 
&lb (see Sec. II for definition). 

As pointed out in Refs. 1-3 the weak topology is not 
natural for the weak unbounded commutant &I ~ or the 
strong unbounded commutant &I;, for in general these com
mutants need not be weakly closed. 

In this paper, we will be concerned with the commu
tants &I ~ and &I;, as well as the bicommutants &I;{c and 
&1;(7' In particular, we will investigate their behavior with 
respect to the quasiweak*-topology which plays here the role 
of the weak topology for bounded operators. 

In Sec. II, after recalling some basic facts on partial in
ner product spaces,4-8 we define the different topologies, as 
well as the different commutants and bicommutants we will 
discuss in this paper. 

In Sec. III we study topological properties of our com
mutants and bicommutants and in Sec. IV we give some 
sufficient conditions in order that the bicommutants &I;{c 
and &1;0' be the closure of the original set of operators with 
respect to the quasiweak*-topology. 

II. OPERATORS IN A PARTIAL INNER PRODUCT (PIP) 
SPACE 

A. Definitions and basic properties 

A PIP space4-8 consists of a complex vector space V, a 
nondegenerate Hermitian form ( '1' ), and a family of vector 
subspaces {V"rEf} satisfying the following requirements. 

(i) The family f {V" rEf} covers V and is an invo
lutive lattice with respect to set intersection, vector sum, and 
involution #: V,-Vr . 

The lattice structure may be transferred to the index set 
Iby writing: VpAq == Vp n Vq,Vpvq == Vp + Vq,Vr = (V,)#. 
Besides elements of f, we consider also the extreme spaces 
V#== n reI V, and V== U reI V,. 

(ii) The Hermitian form ('1'), called the partial inner 
product, is defined on U rEI V, X V,,, 

a) On leave of absence from the Department of Mathematics, University of 
Burundi, BP 2700 Bujumbura, Burundi, Central Africa. 

Moreover, we assume that V possesses a central Hilbert 
space, i.e., there exists an element 0 = 6 in I such that 
Vo = Va is a Hilbert space with respect to ( '1' ). 

It follows from the assumption of nondegeneracy 
(V# )1 {a} that every pair < V" VI') as well as < V#,V) is 
a dual pair with respect to ( '1' ). Consequently each V, may 
be endowed with its canonical Mackey topology r( V" VI') 
and similarly for V #, V. This choice implies the following. 

(i) Whenever Vp C Vq, the embedding Eqp: Vp ~ Vq is 
continuous and has dense range. 

(ii) V # is dense in every V, and every Vr is dense in V. If 
for every rEf, V, is a Hilbert space, then the PIP space V is 
called a nested Hilbert space.9 

An operatorS on the PIP space Vis a map A; § (A ) ..... V, 
where § (A) is the largest union of subspaces V, such that 
the restriction of A to any of them is linear and continuous 
into V. The domain § (A) is a dense vector subspace of V 
containing V #, and A is uniquely determined by its restric
tion to V #. Such operators may be extremely singular, since 
the range of A 1 v # may be much larger than the central 
Hilbert space S). Yet every operator A has an adjoint A X, 
which is also an operator on V, and the correspondence 
A-A x is an involution on the set Op Vof all operators on V. 
The set Op V is a vector space but not an algebra (it is a 
partial-x-algebra 10,11); two operators A and B may always be 
added (as sesquilinear forms over V #), but their product 
AB is defined only if there is a continuous factorization 
through some Vqd; 

# B A 
V ...... Vq ...... V. 

An operator AEOP V is called regular 1 
2 if 

D(A) = D(A X) = V; equivalently if A maps both V# and V 
into themselves continuously. It is well known that equipped 
with the involution A _A *, where A * is the restriction to V # 
of the adjoint operator A x, the set Reg Vofall regular opera
tors on Vis a *-algebra, isomorphic to an Op*-algebra, 13 i.e., 
a *-subalgebra with unit of the algebra L + ( V #) of all closa
ble operators on S), which together with their (Hilbertian) 
adjoint have V # forinvariant domain. The space Op V con
tains another remarkable subset, namely, 

C(V#,S) = {A closable in S)1V#CD(A)nD(A *)} 

= {AEOp VIA (0): V# ...... S)}. 

We have Reg VkC(V#,S)kOp V. 
From now on we will assume that V is quasicomplete in 
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its Mackey topology. This implies in particular that we can 
simply identify Reg V with L + (V#); see Ref. 12, Proposi
tion 2.5. The condition of Mackey quasicompleteness of Vis 
actually satisfied in almost all examples; the only known 
exceptions are quite pathological. 14.15 It is of course auto
matic if (V #, V) is a reflexive dual pair in the sense of 
Kothe,16 i.e., if the dual of V# in the strong topology coin
cides with V and vice versa. 

B. Topologies 

Several topologies may be defined on C( V # ,S) ). Here 
we will consider the following ones. 

(a) The quasiweak-(qw-) topology 17 defined by the fol
lowing family of seminorms: 

AEC(V#,S)~I(h,Af)l, fEV#, hES). 

(b) The quasiweak*-(qw*-) topology defined by the 
seminorms: 

AEC( V # ,S) )~max{ I (h,Af) I, I (h,A *f) I} 
or 

A~I (h,Af) I + I (h,A *f) I, fEV#, hES). 

(c) The strong*-(s*-) topology lS defined by the semi
norms: 

or 
A~IIAfIl + IIA *fll, fEV#. 

The qw*-topology is coarser than thes*-topology, finer than 
the qw-topology but not comparable to the strong topology. 
Actually the qw*-topology generalizes the so-called com
mutant topology introduced in Ref. 19. 

On Reg V ~L + ( V #) we will consider the qw-, qw*-, 
and s*-topologies inherited from C( V # ,S). 

C. Commutants 

Since we are dealing with unbounded operators, several 
concepts of commutants may be introduced. LetA, BEOp V. 
Following Ref. 11 we say that A is the left multiplier of B 
(resp. B is the right multiplier of A), and we note AEL (B) 
[resp. BER. (A)], if the productAB is defined. Similarly, if 8i' 
is a subset of Op V, we may define 

L8i'= n L(B) = {CEOp VICB exists 'tJBE8i'}. 
BE::!? 

Definition 2.1: A subset 8i' ofOp Vis called a partial-x
algebra, if the following conditions are satisfied: (i) 8i' con
tains the identity; (ii) 8i' is x invariant, i.e., AE8i' implies 
A xE8i'; (iii) if A ,BE8i' and A EL (B), then ABE8i'. It is easily 
verified that Op V is a partial-x-algebra. 

Let us now recall the different notions of commutant we 
need in the following. 

(a) If8i' is an x-invariant subsetofOp V, we may define 
the following commutants. 

(i)8i" = {XEOp VIXEL8i'nR8i', XA = AX, 'tJAE8i'}. 
As already pointed out in Ref. 1, 8i" is a vector subspace of 
L8i' nR8i'. Furthermore, it is x-invariant and contains the 
identity, but in general it is not a partial-x-algebra. 
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(ii) 8i'; =8i"nL +( V#) 

= {XEL +( V#) lAX =XA, 'tJAE8i'}. 

Here 8i'; will be called the strong unbounded commutant. It 
is an Op*-algebra on V#. 

(b) Let now 8i' be an x-invariant subset of C( V#,S). 
Then we may define the following commutants. 

(i) 8i'~ = {XEC(V#,S)I(X*f,Ag) = (A *f,xg);'tJf,g 
EV# ,AE8i'}. Here 8i'~ is called the weak unbounded com
mutant. 3 It is an *-invariant linear subset of C( V#,S). Its 
bounded part 8i' ~ = 8i' ~ n B ( S) is the weak (bounded) 
commutant introduced in Ref. 20. 

(ii) 8i';=8i'~nL +(V#) 

={XEL+(V#)I(A*X*J, g) 

= (f,AXg); 'tJJ, gEV#, 'tJAE8i'}, 

where 8i'; is an Op*-algebra on V#. 
(c) Finally, if 8i' is an Op*-algebra, then we may define 

the following commutants: 
(i) 8i'~ = {XEOp V lAX = XA; 'tJAE8i'}, 

where 8i' ~ is an x-invariant subset of Op V; 
(ii) 8i' ~ =8i'~ n C( V#,S); 
(iii) 8i'; =8i'~ nL + (V#) coincides with Inoue's com

mutant. 21 

D. Bicommutants 

In this paper we will be concerned with the following 
bicommutants (for the other unbounded bicommutants, we 
refer to Refs. 1-3 and 19). 

(a) Let 8i' be an Op*-algebra. We define 

8i'({c = {YEL + (V#) I YX = XY; 'tJXE8i'~}, 

where 8i'({c is an Op*-algebra on V#. 
(b) Now let 8i' be an x-invariant subset of C( V#,S). 

Then we may define the following bicommutant: 

8i';u = {YEC(V#,S)I(Y*f,xg) = (X*J,Yg), 

'tJJ,gEV#, XE8i'~}. 

Here 8i';u is an x-invariant linear subset of C( V # ,S). These 
two bicommutants are related in the following way: 

8i'({c ~8i';u ~ C( V#,S). 

III. TOPOLOGICAL PROPERTIES OF THE 
COMMUTANTS 

It is well known that for the algebra B (S) of bounded 
operators the usual commutants and bicommutant are 
closed in the weak (and afortiori in the strong) topology.22 
For unbounded operators and unbounded commutants, this 
result is no longer true and the question is as follows: Under 
which topology is each commutant and bicommutant 
closed? 

A. The strong unbounded commutant 

Let 8i' be an x-invariant subset of Op V. As mentioned 
in Ref. 1, 8i'; is not in general weakly or quasiweakly closed 
in L + ( V #). Similarly, if 8i' is an Op*-algebra on V #, then 
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&?;{c need not be closed with respect to the weak- or 
quasiweak-topologies. 

Proposition 3.1: &?; is closed in L + ( V #) with respect to 
the quasiweak*-topology. 

Proof LetAEL + ( V #) be the limit of a qw*-converging 
net Aa E&?;. This means, in particular, that for every fE V # 

and hE V, we have 

(h,AJ) --+ (h,Af) and (h,A V") --+ (h,A *f)· 

Let BE&?, i.e., BAa = AaB. Then for everyJ,gEV#, we have 

(Bg,A *f) = lim(Bg,A V") = lim (Aag,B *f) = (Ag,B *f), 
a a 

i.e., AE&? ~. Since AEL + ( V #), we finally get that AE&?; .• 
Corollary 3.2: If&? is an Op*-algebra on V#, then &?;{c 

is closed in L + (V#) with respect to the qw*-topology. 
Proposition 3.3: If&? is an Op*-algebra on V#, then the 

commutant of &? is equal to the commutant of its qw*-clo
sure, i.e., 

&?~ = (~qw')~. 

Proof The inclusion (~qw')~ c&?~ follows from the 
fact that &? C ~qw'. 

Let us prove the opposite inclusion. Let BE~qw', i.e., 
there exists a net {Ba }C&? such that Ba -B, i.e., for every 
fEV# and hE V, we have 

lim(h,BJ) = (h,Bf) 
a 

and 

lim(h,B V") = (h,B *f)· 
a 

Let XE&?~, i.e., XBa = BaX. Then, for every J,gEV#, we 
have 

(B *X*J,g) = lim(B :X*f,g) = lim(f,xBag) 
a a 

= lim(J,BaXg) = (J,BXg) = (X*B *J,g) 
a 

hence XE(~qw')~. 
Remark 3.4: In the proof of Proposition 3.3 we used 

only the fact that 

lim(h,BJ) = (h,Bf), fEV#, hEV. 
a 

Therefore the commutant of &? is also equal to the commu
tant of its quasi weak closure, so that finally we have 

&?~ = (~qW)~ = (~qw·)b. 

Corollary 3.5: Let &? and &? I be two Op*-algebras such 
that &? Ie&? and &? I is dense in &? with respect to the qw*
topology. Then we have 

(&?I)~ =&?~. 

Proof The inclusion &?~ C (&? I)~ follows from the in
clusion &? IC&?, Next, &? I is qw*-dense in &?, i.e., ~qw':::> &? 
and hence (~'tw')~ C&?~. From Proposition 3.3, we have 
(fiiw*)o = (&? I)~ which implies that (&? l)~ C &?~. 

Remark 3. 6: This corollary could be applied to symmet
ric Op*-algebras [i.e., such that for every AE&? 
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(1 + A * A ) - I exists and lies in the bounded part 
&? b == &? nBC S»], because in this case &? b is dense in &? with 
respect to the qw*-topology. 

B. The weak unbounded commutant 

Let &? be a *-invariant subset ofC( V#,S». As pointed 
out in Ref. 3, in general, &? ~ is not weakly or strongly closed 
in C ( V # ,S) ). It has been shown in Ref. 19 that &? ~ is closed 
in C( V#,S» with respect to the strong*-topology. Here we 
consider the quasiweak*-topology which is weaker than the 
s*-topology. 

Proposition 3.7: &? ~ is closed in (CV # ,S» with respect 
to the quasiweak*-topology. 

Proof Follows from Ref. 19 (Proposition 1 and the re-
mark after Corollary 2). • 

Corollary 3. 8: &? ~a is closed in C( V # ,S» with respect to 
the quasiweak*-topology. 

C. The role of the quasiweak*-topology 

The implication of the last two paragraphs is that the 
com mutants &?; and &?~ as well as the bicommutants &?;{c 
and &?~a are closed in the quasiweak*-topology, respective
ly, in L + ( V #) and C( V # ,S) ). Therefore this topology 
seems to be quite natural for the above mentioned commu
tants and bicommutants, and it is clear that it will play the 
role of the weak topology for bounded operators. 

IV. BICOMMUTANTS AND THE QUASIWEAK*
CLOSURE OF !!II 

Since the bicommutants &?;{c and &?~a are closed with 
respect to the quasiweak*-topology, the natural question to 
ask is whether they coincide with the quasiweak*-closure of 
&? 

A. The strong unbounded bicommutant 

Proposition 4.1: Let vii be an Op*-algebra of bounded 
operators. Then, vII;{c is the closure of vii in L + ( V #) with 
respect to the quasiweak*-topology, i.e., 

vII;{c = Jtqw'nL +(V#). 

Proof The inclusion Jtqw' c;;,vII;{c follows from Corol
lary 3.2. Let us prove that vII;{c c;;,Jtqw' nL + (V#). 

(a) LetfEV# and consider the norm closed subspace 

vIIf ofS). Let Pbe the projection on vIIf. Since every MEJI 

is bounded and vii is an algebra, vii leaves pf invariant, i.e., 
PEJI~. Now take YEJI;{c and any gEV#. Then 

«(l-P)YJ,g) = (YJ,(l-P)g) = «(l-P)J,Y*g) =0, 

i.e., Yf = PYf and therefore YfE vIIf. Consequently if 
YEJI;{c' it follows that for every E>O,fEV#, there exists 
MEJI such that II (Y - M)fll < E. In particular, 
I(h, (Y-M)f) I <E;'rJfEV#, hEV. 

(b) Next we show that vII;{c c;;,JtqwnL + (V#). 
We recall that zero neighborhoods in the quasiweak

topology are of the form 

r>" . In;h,, .. ,hn;E(O) = {AEL +( V#) I I (hl,Afl) I <E, 

.. ·,1 (hn,Afn)1 <e}, 
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for any finite sequences[I"",[n of elements of V#, hw .. ,hn 

of elements of Vand any € > O. It is sufficient to prove that if 
YE.-R';{c; [1,[2eV#; hl ,h2eV and €>O, then there exists 
ME.-R' such that Y-Mbelongs to 'Y't,,[,;h,.h,;E (0). 

Consider the PIP space V ED V, with central Hilbert 
space.\) ED .\), and the subalgebra vii ED vii of L + ( V # ED V #). 
Every ME.-R' gives rise to a bounded operator 

- (M 0) M = 0 M in.\) ED .\). 

We denote by ..ff the set of such operators, i.e., 

- {- (M vII= M= 0 

The unbounded commutant and bicommutant of..ff may be 
computed explicitly and we obtain 

..ff, = {x = ~It X12) 1x..E.-R" " - I 2} o X IJ 0' I,J - , 
21 22 

and 

- {- (Y vIIb'c = Y= 0 

Apply~g !.,he rc:su1t~ of part ~ a) of this proof to ..ff b'c we get 
t!atj'YE.-R'b'c,[eV ED V#, heV ED V, and €> 0, there exists 
ME.-R' such that 

I (h, (Y-M)J) I < €, 

i.e., ifJ= (/1,[2) and h = (h l ,h2 ), then we have 

l(hl,(Y-M)[I) I <€/2 and l(h2,(M - Y)[2) I <€f2. 

Thus (Y - M)eV",[,;h,.h,;E/2 (0). Since this is true for any 
neighborhood, we have that Ye.A'qw. Since vIIb'c lies in 
L + ( V #) we finally get that 

vII;{c c;;,~qwnL +( V#). 

(c) In order to show thatvllb'c c;;,~qw*nL + (V#), we 
have to prove that if Y - M lies in some zero neighborhood 
of the form above, then Y * - M * also belongs to that neigh
borhood. We can follow step by step the proof of part (b), 
but in this case we consider direct sums V ED V, .\) ED~, and 

V# ED V#; where V (resp. ~ and V#), denotes the space 
conjugate to V (resp . .\), V#), i.e., the same set considered 
with the conjugate scalar mUltiplication .4,0[=1.[ and 
equipped with the complex conjugate scalar product. Next 
we consider the set 

A {A (M vii = M= 0 

equipped with the product 

o )=(MN 
N* 0 

and with the scalar conjugate mUltiplication 

.4,0(: ~*) = (~M ~M*). 
Then vii is an Op*-algebra on V# ED V#. 

Now we compute the commutant and bicommutant. 
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We obtain 

vRb = {(:II ~2J IXIt.x22E.-R'~}, 

vR b'c = {(~It ~2J I YIt , Y22E.-R' b'c } . 

In partic~lar, for every YE.-R'~ the element Y = a~*) be
longs to vii b'c. The application of part (a) of this proof to this 

{>articular element shows thal fgr every feV# ED V#, 
he V ED V, and € > 0, there exists ME.-R' such that 

l(h,(Y -AI)!> I <E. 

Ifwe takef= (f,[) and h = (h,h), for any[eV#, heV, we 
get 

l(h,(Y-M)[)I<€/2 and l(h,(Y*-M*)[)I<€/2, 

i.e., ye.A'qw*. Sincevllb'c is contained inL + (V#) we finally 
get that 

vIIb'c c;;,~qw*nL + (V#). • 

Proposition 4.2: Let f!lt be an Op*-algebra on V#, and 
assume that there exists an Op*-algebra vii in the bounded 
part f!lt b such that vii b = f!lt ~. Then we have 

f!ltb'c = fjqw*nL + (V#). 

Proof By Proposition 4.1, f!lt b = vii ~ implies that 

f!ltb'c = vIIb'c = ~qw*nL + (V#) c;;,fjqw*nL + (V#). 

On the other hand, f!lt;{c is closed in L + ( V #) with respect to 
the qw*-topology, so that we have 

f!ltb'c :>fjqw*nL + (V#). • 

Corollary 4.3: Let f!lt be an Op*-algebra. If there exists 
an Op*-algebra vii c;;,f!lt b dense in f!lt for the qw*-topology, 
then 

f!ltb'c = fjqw* nL + (V#). 

Proof We use Corollary 3.5 to obtain vII~ = f!lt~ and 
then we conclude with Proposition 4.2. • 

Remark 4. 4: The assumptions of Corollary 4.3 are auto
matically satisfied if f!lt is a symmetric Op*-algebra and 
vII=f!ltb' 

Following Ref. 6 we say that a subspace W of a PIP 
space V is orthocomplemented in V if W is the range of an 
orthogonal projection P, i.e., W = PV. 

Proposition 4.5: Let f!lt be an Op*-algebra on V# and 

assume that for every[eV#, theu( V,V#) closure f!lt[U[ of 
f!lt[is orthocomplemented in V. Then we have 

f!ltb'c = fjqw*nL + (V#). 

Proof The inclusion fjqw* nL + ( V #) C f!lt b'c follows 
from the fact that f!lt b'c is closed in L + ( V #) with respect to 

the qw*-topology. Now let P be the projection on f!lt[u. 
Since every Aef!lt is u( V, V #) continuous, it leaves &t[U in
variant, which means thatPA =AP, i.e., Pe.f!lIb. On the oth
er hand, by definition PeL + ( V #), so that finally Pe.f!lI;. 
Take Yef!ltb'c andgeV#. Then we have 

«(l-P)Y[,g) = (Yf,(l-P)g) = «(l-P)f,Y*g) =0 
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hence 

Yf = PYj, i.e., YfE f!ltfu. Thus, given YEf!ltoc ' for every 
E> 0, fE V # , hE V, there exists MEf!lt such that 

l(h,(Y -M)f)1 <E. 

In order to show that f!lt oc ~ Piqw· n L + ( V # ), we follow 
step by step the proof of Proposition 4.1. 

Remark 4.6: In this Proposition it suffices to require 
that there exists an Op*-algebra f!ll 0 dense in f!lt with respect 

to the qw*-topology, such that for every feV#, f!ltofu is 
orthocomplemented in V. The results of Proposition 4.5 
hold for f!ll because (f!llo)b = f!llb. 

Corollary 4.7: Let f!lt be a symmetric Op*-algebra on 

V #. If for every fE V #, f!lt b fU is orthocomplemented in V, 
then 

f!ll~ = Ii qw*nL + (V#). 

B. The weak unbounded bicommutant 

Proposition 4.8: Let .A' C C( V#,s;,) be a *-algebra of 
bounded operators containing the identity. Then.A';u is the 
closure of.A' in C( V # ,s;,) with respect to the qw*-topology, 
i.e., .A';u = 1 qw•. 

Proof: The inclusion 1 qw• ~.A';u follows from the fact 
that .A';u is closed in C( V#,s;,) with respect to the qw*
topology. On the other hand, from Ref. 19, Proposition 9 we 
have that 

M" C1s* C1qw•. (jCT _ _ • 
Remark 4.9: In Ref. 19 it was shown that .A';U is also 

the closure of.A' with respect to the s*-topology, so that 
finally we have 

Proposition 4.10: Let f!ll be a *-invariant subset of 
C( V # ,s;,) and assume there exists a *-algebra .A' with unit 
in the bounded part f!ll b such that.A': = f!ll:. Then we have 

Proof' The equality f!ll: =.A': implies that f!lt;u 
= .A';U = 1 qw•. Now, since 1 qw• cPiqw., it follows that 

f!lt;u cPiqw •. The inclusion Piqw. Cf!ll;u follows from the 
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fact that f!ll;u is closed in C( V # ,s;,) with respect to the qw*
topology. The equality f!ll;u = Pis· has been proved in Ref. 
19, Proposition 11. 
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In a recent paper [M. L. Bedran and B. Lesche, J. Math. Phys. 27, 2360 (1986)], an attempt 
was made to find an affine collineation in Robertson-Walker space-time. However, only a 
homothetic affine collineation was found, in the case of a linear scale factor, R (t) - t. It is 
pointed out that another homothetic affine collineation exists when R (t) - t b, and a proper 
(nonhomothetic) affine collineation in the Einstein static space-times has been found. 

I. INTRODUCTION 

An affine collineation I in a space-time is generated by a 
vector field S which leaves invariant the connection, and 
therefore the geodesics, of space-time, and which is charac
terized by 

.2" s rpy = 5 fly + R PYU5 U = O¢:}5(a;p);y = 0. (1) 

Special (improper) affine collineations are generated by ho
mothetic Killing vectors 

5(a;P) = 1/IgaP' 1/I;a = 0, (2) 

which include Killing vectors (1/1 = 0) as a further special 
case. 

For the Robertson-Walker metric 

ds2=dt 2-R 2(t)[(1-kr)-ldr 

+ r(d(} 2 + sin2 () d¢i)], (3) 

where k = 0, ± 1, Bedran and Lesche1look for an isotropic 
and homogeneous S, and find that (1) implies 

S = R(t)JI' (4) 

and 

R(t) =at+b, (5) 

where a,b are constants. As they point out, (3 )-( 5) imply 
that S is in fact homothetic. Furthermore, the field equations 
with (5) lead I to the rather unrealistic equation of state, 
p+3p=0. 

Two questions arise from their results. First, are there 
other homothetic affine collineations of ( 3 )? Second, can we 
find proper (Le., nonhomothetic) affine collineations of 
(3)? These questions are answered in the following two sec
tions. 

II. HOMOTHETIC AFFINE COlllNEATIONS 

A study of the conformal Killing vectors of Robertson
Walker space-time2 shows that apart from (4), the only oth
er homothetic Killing vector is 

Jdt 
s=1'JT +rJ" 7= Ji' (6) 

with 

R (t) = at band k = 0, b # 1, (7) 

which was found by Eardley.3 For suitable values of b, the 

field equations with (7) give the standard equation of state, 
p = (r - l)p, 1<r<2. 

Both of the homothetic affine collineations, given by (4) 
and (5) and by (6) and (7), may be found directly from the 
conformal Killing algebra,2 without reference to Eq. (1). 

The vector field (4) is the orthogonal conformal Killing vec
tor, which becomes homothetic iff (5) holds. The vector 
field (6) is one of the eight nonorthogonal conformal Killing 
vectors,2 

s= (l-kr)1/2[h(1')J
T 

+h'(7)rJr ], 

where 

h( 7) = (7,COS 7,cosh 7) for k = (0,1, - 1), 

which becomes homothetic iff (7) holds. 

III. PROPER AFFINE COlllNEATION 

The complexity of (1) for the metric (3) forces us to 
make some simplifying assumptions in the search for affine 
collineations. Bedran and Lesche1 assume that S is isotropic 
and homogeneous, and then find only the homothetic solu
tion (4) and (5). This seems to imply that (3) does not 
admit an isotropic and homogeneous proper affine collinea
tion. However, this is not the case, since Bedran and Lesche 
omitted the special solution in the static case R = 0. (The 
first of the equations (2.4) in Ref. 1 need not hold in this 
special solution.) It is readily verified that 

s=tJt (8) 

satisfies (1) provided 

R(t) = const, 

but does not satisfy (2), since 

5(a;l3) = - t -25a5p · 

(9) 

( 10) 

Thus (8) and (9) give the unique isotropic and homogen
eous proper affine collineation in Robertson-Walker space
time. 

For k = 0, (9) reduces (3) to Minkowski space-time, 
and (8) is one of the nine proper affine collineations in Min
kowski space-time. This follows from the generation solu
tion 

Sa =AabXb+Ba, 

of (1), where Aab and Ba are constant, and xa = (t,x,Y,z) 
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are orthonormal coordinates. A basis for the affine collinea
tion Lie algebra G20 is thus given by Pa = aa (Aab = 0), 
Mab = X[aab 1 (A(ab) = 0 = Ba ), Xab = X(aab) (A[ab 1 = 0 
=Ba ), where Xa =gabxb = ( - t,x,y,z). The GIO Killing 

subalgebra is spanned by {Pa,Mab }, while {Xab } spans the 
homothetic G1 subalgebra [~bXab = x a aa' which is just 
(6) with b = 0 in (7)], and gives nine proper affine collinea
tion vectors, including (9) (; = - Xoo)' 

For k = ± 1, (9) gives the Einstein static space-times, 
for which the general solution of ( 1) is not known. The prop
er affine collineation vector (9), together with the static 
Killing vector at [which is just (4) with a = 0 in (5) ], and 
the six Killing vectors2 on t = const, form a Gg of affine 
collineations, since they close under the Lie bracket. 

IV. CONCLUDING REMARKS 

We have seen that the problem of finding affine collinea
tions in Robertson-Walker space-time may be completely 
solved in the homothetic case, but only partially solved in the 
general case. Any further affine collineations would neces
sarily be nonhomothetic, and also inhomogeneous or aniso
tropic (or both) . 

Apart from the information that they can provide about 
the space-time geometry, affine collineations are important 
because they generate first integrals of geodesic motion. This 
follows since S(a;P) is a Killing tensor [see Eq. (1)], which 
implies that4 

(11) 

is constant along any geodesic xa(v), where v is an affine 
parameter. Bedran and Lesche1 use ( 11) with (4) and (5) in 
order to regain the timelike geodesics for R ( t) - t. A similar 
analysis could be performed for the affine collineations (6) 
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and (7) and (8) and (9); however. in these cases, (11) 
would not provide any advantage over the standard method 
of using the Killing vectors to determine the geodesics. The 
real usefulness of ( 11) is in space-times without many Kill
ing vectors which admit an affine collineation. 

Finally, we give an alternative derivation to that in Sec. 
III for the proper affine collineation (8) and (9), which may 
be applicable in other space-times. Suppose X is a Killing 
vector and P a nonconstant scalar, and let; = PX. Then 

S(a;P);y = X(aF;p );y' 

and it follows that ; will satisfy ( 1 ) if Xa = aFa 
(a = const) , which is (locally) equivalent toXa;.8 = 0 sin~e 
X is Killing. Furthermore, ; will generate a proper affine 
collineation, since 

S(a;.8) =a-1XaXp =a- 1p-2sasp, 

of which (10) is a particular case. 
We conclude that if a space-time admits a Killing vector 

X which is a gradient, or equivalently a covariantly constant 
vector X, then PX is a proper affine collineation vector, 
where aF;a = Xa for some constant a. For example, in the 
plane-fronted wave solutions with parallel rays,S the ray vec
tor k satisfies ka;.8 = 0, so that; = tPk is a proper affine col
lineation vector, where tP is the phase function (ka = tP;a). 
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Spinors associated with an eight-dimensional Euclidean space are used for constructing a 
graded vector representation space for OSp ( 41 N,R). The underlying geometry fixes both the 
nature and highest dimensionality of the family of internal symmetry groups of the bosonic 
subspace, as well as those of the fermionic subspace through an appropriately defined inner 
product. The basic ingredients of the theory are fermionic variables while the bosonic fields 
occur as composite quantities made up from an even number of products of the fermionic 
entities. 

I. INTRODUCTION 

Extended supersymmetries are obtained essentially by 
constructing graded vector spaces given by the orthogonal 
direct sum of two subspaces for which the ring of operators 
consist of even and odd elements of a Grassman algebra. 
Defining a scalar product for these graded vector spaces 
which decompose (because of orthogonality) into a sum of 
two scalar products for each of the subs paces, allows one to 
obtain the transformations which leave each of the scalars 
invariant as well as those that interchange the two vector 
subspaces but preserve the inner product for the total graded 
space. These isometries determine the characteristic super
group for the graded vector space under consideration. 

Elements in the subspace with even (odd) Grassmann 
coefficients are identified as "semiclassical" limits of bosonic 
(fermionic) field operators. The structure and dimensionali
ty of these subspaces are, however, totally unrelated and im
posed in an ad hoc fashion when constructing each of the 
possible supersymmetric theories. 1 Such an approach was 
followed by the authors2 in developing a theory for supergra
vity based on supertwistor fiber bundles which, although it 
served to clarify some aspects related to the gauging of trans
lations, provided no additional insight for a geometrical in
terpretation of the internal degrees of freedom. 

Since supersymmetry appears to be a fairly well-estab
lished ingredient in the construction of theories of grand uni
fication of gravitation with the other fundamental interac
tions in nature, investigations which might lead to a deeper 
understanding of the underlying geometry for the bosonic 
and fermionic components of these theories and the Grass
mann nature of their semiclassical limit are worthwhile un
dertaking. 

Efforts in this direction have been reported recently in 
the literature. Some of them3 are based on attempts to link 
the division algebras with the existence and properties of 
supersymmetric theories in various space-time dimensions; 
another interesting approach makes use of the Kiihler
Atiyah algebra to suggest a certain fusion between fermions 
and bosons by writing both types of fields in terms of inho
mogeneous differential forms.4 

The program that will be presented here, although it 
also makes use ofinhomogeneous exterior forms to represent 

spinors, is basically different from the one just cited. Our 
idea consists essentially of using the theory of spinors of Car
tan,5 worded in the language of modem differential geome
try with an added gradation from the Grassmann algebra, to 
construct both the fermionic and bosonic elements of a grad
ed vector space. Thus the forms representing spinor spaces in 
our formalism are constructed from isotropic subs paces of 
an underlying Euclidean geometry, and have dimensions 
2[nl2] (where [nI2] denotes the integer part ofn12), while 
the forms used in Ref. 4 have dimension 2n. This supporting 
geometry fixes both the nature and highest dimensionality of 
the family of internal symmetry groups of the bosonic sub
space, as well as those of the fermionic subspace through an 
appropriately defined inner product which breaks up the 
spinor representation space into a direct sum of isomorphic 
orthogonal fermionic subs paces. 

The bosonic part of our graded vector space is derived 
by making use of a general theorem by Cartan whereby the 
tensor product of two spinors is shown to be completely re
ducible with respect to the group of rotations and reversals 
into a sum of n + 1 (n = dimension of the Euclidean space 
with which the spinors are associated) irreducible tensors or 
pseudotensors. By this procedure the even Grassmann gra
dation of the bosonic subspace appears as a consequence of 
the tensor product of the two odd graded spinors from which 
it is constructed, and the basic ingredients of the theory are 
fermionic variables while the bosonic fields occur as com
posite quantities made up from an even number of products 
of the fermionic entities. 

The resulting graded vector space, with an inner prod
uct induced by those for the odd and even Grassmann-grad
ed subspaces, serves as a representation space to generate the 
characteristic supergroup of the theory. 

More specifically, in the present paper we shall restrict 
consideration to the construction of representation spaces 
for OSp ( 41 N,R). One reason for this choice is that it serves 
to exhibit in a natural and rather direct manner some of the 
ideas stated above. Another reason is the intrinsic physical 
interest of OSp ( 41 N,R) supersymmetry, since by means of a 
Wigner-Inonii6 contraction one can go from this graded 
group to extended supersymmetry with SU(2,2) supersym
metry for the fermionic subspace and an O(N) internal sym
metry group for the bosonic part. These extended supersym-
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metries have been widely used in the treatment of 
supergravity. 

Finally we also remark that although the specific con
struction of the local gauge theory for OSp( 4/N,R) will not 
be undertaken in this paper, such a construction can be 
achieved by a procedure similar to the fiber bundle approach 
previously developed by the authors. 2 

The presentation is organized as follows: In Sec. II we 
give a brief review of the essential features of Cartan's spinor 
theory formulated in terms of exterior and Clifford algebras. 
We consider in particular the spinors associated with Euclid
ean spaces in even n dimensions. An additional gradation is 
then introduced by taking the ring of operators which belong 
to the module of spinors to be elements of an odd Grassmann 
subalgebra. 

Section III is dedicated to the construction of a graded 
vector space where the elements of the fermionic subspace 
are obtained from self-conjugate (in the Cartan sense) 
Grassmannized spinors associated with a Euclidean space in 
eight dimensions. These spinors are then projected on a four
dimensional subspace which allows for a fermionic structure 
with a symplectic and real inner product, as well as for the 
construction of supersymmetric transformations that map 
spinors into real bosonic vectors. The nature of these bosonic 
elements, which appear as composite spinorial entities with 
an added gradation in the even Grassman algebra, is dis
cussed for the different cases of internal symmetries in 
SO(N), and an explicit procedure for obtaining the superal
gebras for OSp ( 4/ N,R) is presented using our graded vector 
space as a representation space for such a construction. In 
Sec. IV we give some concluding remarks and suggestions 
for further work. 

Finally, in the Appendix A we present some additional 
formulas, related to material used in the text, for the spinor 
operators which generate the Clifford algebra G(8,O) and its 
complex extension GC = G(8,O) ® C, and give representa
tions for the infinitesimal generators of Spine 8) in terms of 
the elements in the Lie algebra of sp ( 4 ). In Appendix B we 
exhibit the relation between the exterior and matrix formula
tion of spinor algebra for the benefit of those readers interest
ed in applications and in comparing our approach with the 
work of others. 

II. SPINORS AND GRASSMANN GRADED SPINORS 

A. Spinors in 'll n 

The systematic development of the theory of spinors in n 
dimensions, from a purely geometrical point of view, is due 
to Cartan.5 Here we review only those aspects of the theory 
which are needed in order to make the discussion in the fol
lowing sections as self-contained as possible. Although for 
the present paper we are specifically interested in spinors 
associated with 'll 8' in the discussion that follows the basic 
concepts and definitions will be formulated for the general 
case of n-dimensional (n = even) Euclidean spaces, making 
use of the modern language of exterior algebra, where quan
tities are defined in an intrinsic fashion. Such a formulation 
is particularly convenient for larger-dimensional spinor 
spaces, for which the matrix notation used by Cartan makes 
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calculations rather cumbersome. A detailed presentation of 
this approach to n-dimensional spinor theory, both for even 
and odd general pseudo-Euclidean spaces, will be the subject 
of a review paper to be published by the authors elsewhere. 
However, for the benefit of those readers who may be inter
ested in comparing and applying our formalism to other 
work which is expressed in the more familiar language of 
gamma matrices and spinors as one-column matrices, a 
short outline which provides such a translation is given in 
Appendix B. 

Let 'll n (n = 2v), denote an n-dimensional Euclidean 
space for which, as it is well known, the fundamental quadric 
can be always reduced to a sum of n-positive squares. More
over, as shown by Cartan, in a Euclidean (or pseudo-Euclid
ean) space of dimension n = 2v, any isotropic subspace (i.e., 
a subspace in which all vectors have zero norm) has dimen
sion <; v. Making use of this last fact, we can choose as a basis 
for'll n the basis elements of the two v-dimensional isotropic 
subspaces {e1, ... ,ev}6./Yv and {e; , ... ,e~}6./Y~, where ei and 
e; are complex conjugate to each other, and 'll n = ffv 

EIlff~. We also have the orthogonality conditions 

(2.1 ) 

In terms of this basis, a vector XE'll n may be written as 

(2.2) 

and the fundamental quadric is given by the expression 

(2.3 ) 

where (Xi) * = X'i. 

For notational convenience, we introduce the basis {e i
} 

~~, dual to {eJEJ1""v, by means of the R-valued nonde
generate bilinear function 

g(ek,e,) = 8\. (2.4) 

We can now set up the isomorphism JI ~ ;::::A~~, bye' -+ e;, 
such that 

(2.5) 

In a similar fashion we can introduce a basis {e"}~ v' 

dual to {e;}6./Y~, and the isomorphism JI v ;::::JYv' by 
e"-+e" such that 

(2.6) 

In terms of the dual spaces thus introduced, a spinor 
space Y', associated with'll n' is defined as the direct sum 

Y'= A JI~, = Ell APJl~, (2.7a) 
P~O 

i.e., Y' is the module of complex p-vectors formed from JI ~, 
with degrees p ranging from zero to v. 

Identifying each A P JI ~ with its image under the ca
nonical injection ip: A p JI~ -+ AJI~, we can write 

v 

Y'= L APJl~. (2.7b) 
p=o 

A spinor SEY' can be written, therefore, as 

(2.8) 

where the symbol < indicates that the indices (il, ... ,ip ) are 
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subject to the condition i I < i2 < ... < ip • The set of ZV com
plex coefficients 5; ""'; (which have the property of chang-

, p 

ing sign or being unaltered under odd or even permutations 
of the indices) are the components of the spinor ~. 

Similarly, we can define a dual spinor space 

(2.9) 

in terms of exterior products of elemen ts in JI v . From now 
on, however, we will make use only ofspinors in Y/. 

B. The spinor transformation associated with a vector 

For a vector xEIt' n' we can construct a linear operator 
H(x) whose action on spinors in Y/ is defined by the Clif
ford product: 

v 

H(x)~=~!\ I (x'kEk)+g(~,r), (2.10) 
k~1 

where? 

g(~!\T,r) =~!\g(T,r) + (-I)Pg(~,r)!\T, 
for ~EY', TE!\PJl~, rE/Y"v, (2.11) 

and, in particular, g( T,r) = g( T,r), when TEJI~. Thus 
g( ',r) is an antiderivation operator which maps !\ p JI ~ 
-> !\P-IJI~. 

Making use of (2.10), (2.11), and (2.5), it can be readi
ly shown that 

H(x)H(y) + H(y)H(x) = 2x'yE, for X,YEIt' n 

(2.12) 

where E is the identity operator on Y'. 
Writing H;=H(e;), Hi' =H(ej), we get from (2.12) 

the following basic anticommutation relations: 

HjHk + HkHj = 0, 

Hi'Hk' + Hk,Hj' =0, 

H;Hk' + Hk,H; = o;kE. 

(2.13 ) 

Hence the elements (HI + HI')' - i(HI - HI')' (H2 

+ H 2,), - i(H2 - H 2, ), ••• ,(Hv + H v')' - i(Hv - H v')' 
are the generators of the Clifford algebra G(n,O) and its 
complex extension GC = G(n,O) ® C. 

C. Bilinear fundamental form on Y' 

In the space of spinors, we can define a fundamental 
bilinear form by means of 

v 

(~IA): = I Y (- 1) (1!2)p(p + 1)5;,jp 

p=OI~ 
X ;"·';pk, ... k,._pA, 

€ k l ·· ·k,,~ p' 

i ... j k ···k. . .. 
where E' p' "-p IS the LevI-Clvlta symbol. 

It is easy to show that 

(~IA) = ( - 1) (I/2)v(v+ I)(AI~), 

and 
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(2.14 ) 

(2.15 ) 

(2.16 ) 

D. Conjugate spinors 

According to Cartan, for a Euclidean space It' 2v' the 
conjugate ~c of a spinor ~ associated with such a space is an 
antilinear map ~c~~ defined by 

~c=ivC~*, (2.17) 

where 

(2.18 ) 

and ~* denotes the spinor that results from taking the ordi
nary complex conjugate of the components of~ in (2.8). It is 
clear from this definition and the properties (2.13) that 

(2.19) 

Thus the map ~~c defines an involution if v=O or - 1 
(mod 4), and an anti-involution ifv= lor 2 (mod 4). 

The definition (2.19) is based on the application of the 
identity 

CH(x*) = ( - 1)vH(x)C, 

where 

(2.20) 

(2.21 ) 

The proof of (2.20) follows rather directly from (2.13) and 
(2.18). 

It is important to remark here that because of (2.20), 
(H(x)~r = ( - 1 )VH(x)~c. Thus, for v even, spinors and 
their conjugates transform under (2.10) in the same way, 
while the ordinary complex conjugate of a spinor transforms 
differently, in general. 

We also note, for the purpose of avoiding any possible 
confusion, that the Cartan operation of conjugation is not 
the same as charge conjugation defined for quantum me
chanics. In fact, for a hyperbolic It' 3.1' space where charge 
conjugation is naturally defined, it is not difficult to show 
that the relation between these two operations is given by ~Q 
- (HI - HI') (HI + HI') (H2 - H 2,) (H2 + H 2, )SC, ~Q is 
the spinor which is charge conjugate to ~. 

E. Spinors as graded modules over a Grassmann 
algebra 

We are now ready to extend the spinor formalism sum
marized above to the case where the ring of operators be
longing to the module of spinors is made up of elements of 
the odd subset f:§ 0 of an infinite-dimensional Grassmann al
gebra. Thus the spinor components in (2.8) will be complex 
anticommuting quantities, and spinor space will be defined, 
therefore, by the Kronecker product Y; = f:§ 0 ® ( !\ JI ~ ), 
i.e., Y; contains a double gradation: the one due to the di
rect sum ofp-vectors and one generated by f:§ o. The assump
tion that spinor components are contained in f:§ 0 seems rea
sonable when one considers the odd elements of a 
Grassmann algebra as a semiclassical limit of fermionic op
erators in quantum field theory. 

Since in the remainder of this paper we will be dealing 
with such extended spinors, it is important to determine 
which other of the definitions and relations introduced so far 
need to be modified. We will retain, however, the same nota
tion that we have used for ordinary spinors, as there is no risk 
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of confusion. It turns out, in fact, that the only relations that 
need to be changed are those involving ordering of the spin or 
components. Thus instead of (2.15) we will now have 

(sIA) = - ( - 1) (\12)(v+ I)V(Als), (2.15') 

which follows immediately from the definition of the funda
mental bilinear (2.14) and the anticommutativity of the 
spinor components. 

Also, recalling that for Grassmann quantities (5a A.fJ) * 
= A.fJ *5a * (where a, f3 are composite spinor indices), it is 

easy to show that 

(sIA)* = - (s*IA*). (2.22) 

The rest of the formulas for ordinary spinors presented 
in this section remain the same for Grassmannized spinors. 

Finally we note that (2.17), (2.18), and (2.22) togeth
er, imply 

(2.23) 

III. SPINOR GENERATED REPRESENTATION SPACES 
FOR OSp(4IN,R) 

As pointed out in the Introduction (cf. also Ref. 1), the 
main families of simple superalgebras that are relevant to 
supergravity are the orthosymplectic superalgebras osp(M I 
N) and the superunitary algebras su(M IN). Of the latter 
family the most interesting ones are the superconformal al
gebras su(2,2IN). Moreover, since by means ofa Wigner
Inonii contraction of osp( 4/1) one can pass to the simple 
super-Poincare algebra, while extended supersymmetries 
can be derived by a similar contraction of osp(4IN) , thus 
leading to gauge theories of supergravity with SO (N) as an 
interior symmetry group, consideration of the possible un
derlying geometries of OSp ( 41 N) appears to be an impor
tant issue for a deeper understanding of these theories. H,9 

We will now proceed to develop a formalism for obtain
ing representation spaces ofOSp( 41N) , where both the fer
mionic and bosonic subs paces have structures induced by 
the geometry of the double graded spin or space Y;: 
= :1 0 ® Y', with a fundamental bilinear given by (2.14) 

which also satisfies (2.15'). 
One interesting feature of this approach is that the basic 

ingredients of the theory are anticommuting fermionic vari
ables. The bosonic elements occur as composite quantities 
made up, via the spinorial construction, from an even num
ber of fermionic entities. 

A. The fermionic subspace 

Since OSp ( 41 N) contains as bosonic part of the ordi
nary Lie groups Sp(4) and SO(N), the fermionic subspace 

for a representation of the orthosymplectic supergroup will 
have to be a four-dimensional vector space with a symplectic 
inner product. If we want to take the graded spinors Y; as 
elements for the construction of this subspace, as well as for 
the different bosonic representations ofSO(N) such that the 
supersymmetric transformations of OSp (41 N) map spinors 
into real vectors and vice versa, we need to satisfy the follow
ing requirements: ( 1) the fundamental symplectic spinor bi
linear has to be real valued; and (2) the dimensions of the 
original Euclidean space, with which the spinors are asso
ciated, should accommodate the largest possible values of N 
for the internal symmetry groups that are physically inter
esting. 

The second of the above requirements clearly suggests 
choosing N = 8, which in turn implies taking 'f} 8 as the un
derlying geometry for our spinorial constructions. In order 
to satisfy the condition of real-valuedness for the symplectic 
spinor bilinear, we note first that (2.17)-(2.19) and (2,23) 
together imply 

[i(S + sCIA + AC)] * 
= i(SC + ( _ 1) (\12)v(v+ I)slA. C + ( _ l)(I12)v(v+ 1)1..). 

(3.1 ) 

Thus from odd Grassmann graded spinors associated 
with 'f} 8 (v = 4) we can indeed obtain real scalar products, 
Observe, however, that this spin or space has dimension 24 
and also that its metric, according to (2.15'), is symmetric. 
We must, therefore, investigate the possibility of construct
ing projection operators on our 16-dimensional self-conju
gate spinors to get a four-dimensional subspace and simulta
neously find a different inner product for the resulting spin
ors in this subspace with has a symplectic metric. There are 
several different ways to meet these two conditions, One of 
them is to introduce the projection operators 

g;( ±): =! [E ± (H2H 2, - H 2,H2) (H3,H3 - H 3H 3,)] 

(3.2) 

and 

where, for a homogeneous p-vector s(Pl, 

(p even), 
(p odd). 

(3.3 ) 

(3.4 ) 

By means of a straightforward calculation it can be shown 
that for a self-conjugate spinor 

s + SC = (50 + 5 T234) + (51 - 5 ~34 )£1 + (52 + 5 T34 )£2 + (53 - 5 T24 )£3 + (54 + 5 T23 )£4 + (512 - 5 f4 )£1 /\ £2 

+ (513 + 5~4)£1/\£3 + (514 - 5~3 )£1/\£4 + (523 - 5T4 )£2/\£3 + (524 + 5T3 )£2/\£4 

+ (534 - 5 T2 )£3/\ £4 + (5123 + 5 :)£1/\ £2/\ £3 + (5124 - 5 f)£I/\ £2/\ £4 

+ (5234 - 5 f}£2/\ £3/\ £4 + (5134 + 5 n£1 /\ £3/\ £4 + (51234 + 5 ;\,)£1/\ £2/\ £3/\ £4, 

the projection operators (3.2) and (3.3) yield 
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and 

s(+ +): = g(+),91{+)(s + SC) = {52 + 5 T34 )e2 + (53 - 5 T24 )e3 

+ (5124 - 5 t)e1 /\ e2 /\ e4 + (5134 + 5 f)e1 /\ e3 
/\ e4, 

s(-+): = g<-),9I(+)(s + SC) = (512 + St4 )e l 
/\ e2 + (513 + 5t4 )e l /\ e3 

+ (524 + 5 T3 )e2 
/\ e4 + (534 - 5T2 )e3 

/\ e4, 

s(+-): = g(+),9IH(S + s") = (51 - St34 )el + (54 + ST23 )e4 

+ (5123 + 5 :)el /\ e2 
/\ e3 + (5234 - 5 T>e2 

/\ e3 
/\ e4, 

s(--): = g(-),9IH(S + SC) = (So + ST234) + (514 - Sf3 )el /\e4 

+ (523 - ST4 )e2 
/\ e3 + (51234 + 5 ~)el /\ e2 

/\ e3 /\ e4, 

S + SC = s(+ +) ED S(+ -) ED s(- +) ED s(- -I. 

Moreover, defining a new spinor bilinear product by 

<S + sCIi.. + i..c ): = (s + sCI (H4H4, - H4,H4 ) (i.. + i..C») 

we find 

and 

(s(++'Ii..(++» = [(52 +5T34)(1I. 134 +lI.t) - (53-5T24)(1I. 124 -1I.t> 

+ (5124-5t)(1I.3 -II.T24) - (5134+5t)(A,2+A,T34)]' 
(S(- +)Ii..(- +1) = [(512 - 514) (11.34 -II. T2) - (513 + 5!4) (A,24 + II. T3 ) 

- (534-sT2)(A,12 II.t4) + (S24+sT3)(A,I3+A,t4)]' 

<s(+-lli..(+-l) = [(5123 + 5:)(11.4 + II. T23) - (51 - 5!34 )(11.234 -II. T) 

- (54 + 5T23 )(11.123 +11.:') + (5234 - 5T)(1I.1 -II. !34)]' 

(s<--)Ii..<--» = [(S23-sT4)(A,14-lI.t3) - (so+5T234)(A,1234+lI.t) 

- (514 - 5!3 )(11.23 - A, T4) + (51234 + 5t)(lI.o + A, T234) ], 

<s(++)Ii..(+-» = <s(++)Ii..(-+» 

= (s(+-)Ii..(--J) 

<s<++)Ii..<--» = <s(+-)Ii..(-+J) 

(s(-+)Ii..(--» = O. 

Clearly (3.9a)-(3.9d) are real and have a symplectic 
metric. Note also that since 

In terms of this new basis we have 

s<+ +) = (52 + 5 T34 )p1 + (5134 + 5 !)p2 
C,9I{±) = ,9I(±)C, Cg(±) = g(±)C, (3.11) 

it follows that + (5124 - 51)p3 + (53 - ST24 )p4. 

(3.6a) 

(3.6b) 

(3.6c) 

(3.6d) 

(3.7) 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

(3.10) 

(3.13) 

( 3.12) 

i.e., if Sis self.conjugate (real, in the sense of Cartan) then 
s( ± ±) is also self ~onjugate (real). 

We now let {q,J be the basis dual to {pal, i.e., qa opp 
= 8'1 a' and define a symplectic metric tensor 

We can therefore choose either one of the four-dimen
sional subspaces ofspinors S(++), S(+-l, s<-+), S(--) asso-
ciated with 'iff 4 C 'iff g, with inner products defined according 
to (3.8), as our fermionic subspace. We shall select as our 
basis for Sp( 4) the set of real spinors 

3'""; = {s(++)EY;1 (s(++»C = s(++), 

g(+),9I{+)S<++) = S(++)}. 

Furthermore, for simplicity we rewrite the product (3. 9a) in 
terms of a metric by choosing a standard basis {pal via the 
isomorphism 

2057 

e2:::::pl, e l /\e3 /\e4:::::p2, 

e1 /\e2 /\e4:::::p3, e3:::::p4. 
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r(l) = ql /\q2 + q3/\~ (3.14) 

such that 
(s(++)Ii..(++» = s<++)or(I) 0 i..(++) 

=5~+ +)r(f)II.~+ +J, (3.15) 

where 

and 

f
OlIO] 

a{J a -1 0' 
r(1): = P orm opp = - 0 - ~ -0 -1 . 

f -1 0 

(3.16) 
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The inverse of r (\) is given by the tensor 

G 1/\23/\4 (\) = - p p - p p. 

Evidently, 

(3.17 ) 

r(\) oG(\) = qa ® pa (right identity on Y;), 
(3.1S) 

G(\) or(\) = pa ® qa (left identity on Y;). 

We next derive an explicit representation for the genera
tors of the Lie algebra sp ( 4) in terms of our basis {pa} and 
metric r(\). To this end note that the transformations U, 
with real coefficients in the odd Grassmann subalgebra that 
leave invariant the bilinear form (3.15) and satisfy the re
striction 

vor(\) oU = uPar,f) u; = r~r) (3.19) 

are elements of Sp ( 4,lR). 
The generators of sp( 4) follow directly by first letting 

U = G(\) or(\) + €B, (3.20) 

where € is a real infinitesimal parameter in the odd Grass
mann subalgebra. Substituting this expression into (3.19), 
results in the condition 

(3.21) 

[the symbol - in (3.21) denotes the usual operation of trans
position on tensors]. It is now an easy matter to obtain all 
possible forms for the generators B of sp ( 4 ). In fact, by not
ing that D=D and [by (3.1S)] B=G(i)OD 
= (G(I) oDoG(1) )or(l), we immediately get 

B(aP) = (pa ® pP + pP ® pa)Or(\» (3.22a) 

which satisfy the Lie algebra 
[B(aP) ,B(Yc5)]: = B(aP) oB(Yc5) _ B(yc5)oB(aP) 

= r~EBac5 + r~f)B(ay) 
+ r,r)B(Pc5) + r,f)B(PY). (3.22b) 

B. The bosonic subspaces 

These are representation spaces for SO(N), which we 
will construct from bilinear forms containing the real odd
Grassmann graded spinors in Y; or their projected sub
spaces defined above. In order to obtain the form of the rep
resentation spaces, we resort to a general theorem due to 
Cartan (see Ref. 5, Sec. 131) by means of which the product 
of two spinors can be shown to be completely reducible 
(with respect to the group of proper and improper orthogo
nal transformations) into 2v + 1 irreducible tensor spaces. 

We shall consider first the most interesting case N = S. 
The generators for the irreducible tensor spaces into which a 
product of two real spinors 9,pEY; decompose are the 

spinor bilinears (91H p) (p = 0,1 , ... ,S), where H is the p-
(p) (p) 

vector operator given by 

1 
H: = - I ( - 1)°H(xu(\) ) .. 'H(xu(p)' 
(p) p! 17 

(3.23 ) 

Here the sum is over the set of all permutations uof{l, ... ,p}, 
( - 1)" = ± is the sign of u, and H(xU(i) ) is the linear 
spinor operator defined in (2.10). 

Note now that under a reflection H(ai ) in the hyper
plane normal to the unit vector ai real spinors in Y; and p
vector operators transform as 

9~9' = H(ai )9, 
(3.24a) 

H~H' = (-I)pH(ai )H H(ai ), 
(p) (p) (p) 

where the spinor operators H(ai ) are the generators of the 
Clifford algebra G(S,O): 

H(a l ) = HI + HI" H(a2) = - i(HI - HI')' 

H(a3) = H2 + H2" H(a4) = - i(H2 - H2,), 
(3.24b) 

H(as) = (H3 + H3,), H(a6 ) = - i(H3 - H3,), 

H(a7 )=H4+H4" H(as) = -i(H4-H4,)· 

We thus have, after making use of (2.16), 

(3.25) 

Consequently (91H p) transforms under reflections as 
(p) 

a scalar or pseudoscalar according to whether p is even or 
odd, and we can write in general 

(91-ft,p)=Xi .... iPYi, .. y for p even, (3.26a) 

for p odd, 

(3.26b) 

wherexi,,,.ip are the contravariant components ofthep-vector 

H Th t ddt ip+ ,···i. . e ensorsYi,."i
p 

an pseu 0 ensors €i,."i
p

+ ""i.Y , 
(p) 

which are bilinear with respect to the components of 0 and p, 
are elements of nine irreducible representation spaces for 
O(S) of dimensions (!) =S!/(S - p)!PL Futhermore, for 
the unimodular transformations in which we are interested, 
the tensorial and pseudotensorial representations transform 
in the same way and we can therefore, use either one indis
tinctly. This observation allows us to choose the pseudovec
torsYj = i(9IHjp),j = 1,1', ... ,4,4', as a natural eight-dimen
sional representation space for SO (8). (The inclusion of the 
pure imaginary factor i in the definition of the pseudovectors 
Yj is needed in order to have yj' = Y/ so that YjEf§ e ® 'll g.) 
Explicitly, we have 

YI = i[ (81234 + 8~)( PI - P~34) - (814 - 8~3)( PI23 + pt) + (813 + 8 ~4)( PI24 - pr) 

- (812 - 8 r4) (P134 + p~) + (81 - 8 ~34) (P1234 + p~) - (8134 + 8 n (PI2 - pr4) 

+ (8124 - 8r)( P13 + P~4) - (8123 + 8 t)( PI4 - P~3)]' (3.27a) 
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Y2=i[(023- 0 T4)(P124-pn - (024 + °T3)(P123 +P:) - (012- 0 r4)(p234-PT) 

- (0234 - OT)( PI2 - pr4) + (02 + 0T34)( PI234 + pt) + (0124 - 0 n (P23 - pT4) 

- (0123 + 0:)( P24 + pT3) + (01234 + 0 t)( P2 + pT34 ) ], (3.27b) 

Y3=i[(01234+ 0 t)(P3-pT24) + (023- 0 T4)(PI34+P!) - (013+ 0 !4)(P234-PT) 

- (034 - 0 T2)( Pm + P:) - (0234 - 0 T)( PI3 + P!4) + (0134 + O!)( P23 - pT4) 

+ (03 - 0 T24)( PI234 + pt) - (0123 + 0:)( P34 - pT2)]' (3.27c) 

Y4 = i[ (01234 + Ot)( P4 + pT23) - (014 - 0!3)( P234 - pT) + (OZ4 + 0T3)( P134 + p!) 

- (034 - 0T2)( PI24 - pn - (0234 - 0 T)( PI4 - P!3) + (0134 + O!)( P24 + pT3) 

- (0124 - On (P34 -pT2) + (04 + 0T23)( PI234 + pt)], (3.27d) 

and 

(3.27e) 

Extending now the canonical isomorphism introduced pre
viously for the subspace Y; [see discussion preceding 
(3.13)] to all of the real-spinor space ..9";, by 

E?:::::pl, e I Ae3Ae4::::;pz, e I Ae2Ae4:::::p3, e3:::::p4, 

e I Ae2Ae3:::::p5, e4:::::p6, e2Ae3Ae4:::::p7, el:::::ps, 

e l A e2 :::::p9, e3 A e4 :::::plO, e2 A e4 :::::pll, 

e l Ae3:::::pI2, e l Aez Ae3 A e4:::::pI3, 

1:::::pI4, e2Ae3:::::pI5, e I Ae4:::::pI6, 

we can write 

Yj = (iO®p)~ E(jJ = iOoE(jJ0p 

= (iOapp)E~~l' a,fJ = 1, ... ,16; 

where 

(3.28 ) 

E(jJ = ToHj , E~~J = paoE(jJ opp, j = 1,1', ... ,4,4', 

g 

T: = I (- 1 H q2i - I ® q2i + q2i ® q2i - I ). 
;=1 

(3.29) 

(3.30) 

We thus see that the tensors E( jJ act as an isotropic basis 
for [§ e ® 'lis, whereby vectors are expressed as tensor prod
ucts of real spinors with anticommuting components. 

Equations (3.29) and (3.30) also serve to display the 
relationship between the generators of the isometries of our 
fermionic and bosonic subspaces. For this purpose note that 
if, in analogy to the metric tensor (3.14) for the symplectic 
product of real spinors in Y;, we introduce similar metrics 
for the other projected subspaces {s(+ -)}, {s(- +)}, {s(- -)}, 
into which a real spinor splits up as a direct sum [cf. Eq. 
(3.7)], we can define a symplectic metric for..9"; by 

r: = r(lJ El) r(2J El) r(3J El) r(4J' 

where 

(3.31 ) 

r(2J = ~ A q6 + q7 A qs, r(3J = q9 A qlO + qll A qlz, 

r(4J = ql3 A ql4 + ql5 A Q16' (3.32) 
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It is then easy to show that (3.30) may be written as 

T = rO[itl ( - l)i(p2i-1 ®p2i + p2i®p2i-l) lor 

g 

= I (- l)iroB(2i-I,2iJ, (3.33 ) 
i=1 

where the B(2i-1.2iJ are the generators of the Lie algebra of 
sp(4) which we derived in (3.22). 

In terms of (3.33), the expression (3.29) for the isotrop
ic basis tensors for [§ e ® 'li g now becomes 

E(jJ = ttl ( - l)iroB(2i-I,2iJ)oHj 

= [r(lJ (B (34) - B (12) El) r(2) (B (34) - B (lZ) El) ... 

'" r (B (34) - B (l2)]H 
<I7 (4) j' (3.34 ) 

Here the quantity in square brackets is a 16X 16 block 
diagonal matrix, where each of the block members in the 
direct sum is the same and has the form 

r (i) (B (34) - B (lZ) 

= ~(B(lI) + B(Z2) + B(33) + B(44) (B(34) _ B(lZ) 

(the O"s are ordinary right-handed Pauli matrices), while 
the matrices H j are also expressible in terms of elements of 
the Lie algebra of sp ( 4) as shown in Eqs. (A2) in Appendix 
A. 

Consequently the Hj' whose even degree Clifford alge
bra serves to generate the elements ofSpin(8), which is the 
2-1 covering group of SO (8), and the representation vectors 
Ej [as given by (3.34)] for this latter group, are both deter
mined by the Lie algebra of the generators of isometries of 
our fermionic subspace. 

Our next step is to use the basis {E(jJ} to construct a 
metric tensor on [§ e ® 'lis. This leads us to the need to intro
duce the basis {E(j)}, dual to {E(j)}' and defined by 

(3.35) 

Clearly 

E .E(k) - E(kJ.E . - E(kJoE _ r:.k (j) - (j) . - ° (j) - U j' (3.36) 
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An appropriate metric tensor .1 on [1 e ® 1f s is then 

1 4 

.1=- L (E(j) ®E(j') +E(ll ®E(j»' (3.37) 
2 j=i 

In terms of this metric, the scalar product of any two 
vectors in [1 e ® 1f s, 

w = L [(iOaPP )E(~) ] E(j) 
j 

Z = L [(iflaVp)E('h ]E(j>, 
j 

is given by 

(j = 1,1', ... 4,4'), 

w·.1·z = ~ L [(iOapp)E(~)] [(iflyV/l )Er~)]· 
2 j 

Moreover, if in analogy with (3.15), we now set 

(E(i) /E(j): = E(i)·.1·E(j), 

(3.38 ) 

(3.39) 

(3.40) 

we then have the following equivalent expressions for the 
scalar product in [1 e ® 1f s: 

(w/z):=w·.1·z= «i9®p)/(iIL®V» 

= «iOappE(~) )E(j)/(iflyV/lEr~) )E(k». 
(3.41) 

By construction [cf. Eqs. (3.27) and (3.28)], the compo
nents of any vector w, defined as in (3.38), satisfy the prop
erty (w l )* = wi, (w2 )* = w~, (w3 )* = wi, (w4 )* = w~. 
Hence the scalar (3.41) is real. In fact (3.37) can be rewrit
ten in the form 

1 s 
.1=- L A(a) ®A(a)' 

4 a= I 

where 

(3.37') 

A(I) = E(1) + E(I')' 

A(3) = E(2) + E(2')' 

A(s) = E(3) + E(3')' 

A(7) = E(4) + E(4')' 

A(2) = - i(E(I) - E(I') ), 

A(4) = - i(E(2) - E(2') ), 

(3.37" ) 
A(6) = - i(E(3) - E(3')' 

A(S) = - i(E(4) - E(4'»' 

When (3.37') is substituted into (3.41), it yields real quanti
ties for each vector component in the scalar product. 

It is easy to verify that the generators of the infinitesimal 
transformations which leave (3.41) invariant are of the form 

M(ab) = (A (a) 1\ A (b) ) • .1, 

and satisfy the commutation on relations 
[M(ab) ,M(ed)]: = M(ab).M(ed) _ M(ed).M(ab) 

= DbcM(ad) - DbdM(ae) 

-DeaM(bd) + DadM(bc). 

Therefore M(ab)ESO(8). 

c. Representation space for OSp(4/8,JR) 

(3.42) 

(3.43 ) 

Combining the above results, we can now construct the 
direct sum space ( [1 e ® 1f s) e Y; with elements 
Z = z + S( + +), where zE[1 e ® 1f s is of the form given in 
(3.38) and S(+ +)EY; is a real spinor ofthe form (3.13). 
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In component notation we can write 

ZA = (Za'S~+ +», a= 1,2, ... ,8, a= 1, ... ,4 . 

We next define a gradation-respecting scalar product by 

(W/Z): = (w/z) + (S(++)/11(++», (3.44) 

where (w/z) and (S(++)/11(++» are given by (3.41) and 
(3.15), respectively. 

Clearly, since both (w/z) and (S<+ +)/11(+ +» are real, so 
is (3.44). 

In terms of the metric tensors (3.16) and (3.37'), the 
scalar product (3.44) can be expressed as 

WAAABZA =Waaabzb +S~+ +)r(f)7]V +), (3.45) 

where AAB is the block diagonal metric 

AAB = __ I- __ 
[

aab I 0] 
O raP' 

I (I) 

(3.46 ) 

Because the product (3.44) respects gradation, the sym
plectic transformations, whose generators are given by 
(3.22), will transform spinors among themselves, and the 
special orthogonal transformations generated by (3.42) will 
transform vectors into vectors. Consequently, we only have 
left to consider those supersymmetric transformations 
which map spinors into vectors and vice versa. To this end, 
let VE([1e®1fs)®Y;eY;®([1e®1fs) denote the 
transformations ZA~Z ~ = VABZB, such that (3.44) re
mains invariant. Since we are only interested in the subset of 
V with graded determinant equal to 1, we can consider infin
itesimal transformations of the form 

VA
B = lAB + ESAB, (3.47) 

where E is an infinitesimal real parameter, and IA B acts as 
the identity operator on ([1 e ® 1f s) e Y;. 

Invariance of (3.44) implies 

(3.48 ) 

Now let SA B = SaP + Sa b, where S aPE([1 e ® 1fs) ®Y; 
(I) (2) (1) 

and S a bEY; ® ([1 e ® 1f s). Equation (3.48) then becomes 
(2) 

+ S dw raP 7]( + +) + W aab S /l7]( + +) - 0 
(2)a d (l) P a (1/ /l -. 

(3.49) 

Furthermore, since Sa /lS ~ + +) = - 5 ~ + +) S /la' Eq. 
(1) (I) 

(3.49) yields the consistent conditions 

(3.50a) 

S da raP = a db S bP, (3.50b) 
(2) (l) 

it can be readily verified that the solutions to (3.50) are 

(3.51a) 

(3.51b) 
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Hence 

SA B = [(i()yPl»A r~) ] [1J~ + + )rrf) 

-1J~+ +)(A(a)IA(b»]. (3.52) 

For the purpose of extracting the odd generators of the grad
ed algebra from (3.52) and deriving their anticommutation 
relations, note that 

s = S a [3 A (a) ® q[3 + S a bpa ® A(b) 
(I) (2) 

= [U()yp.-;)A r~) ]1J~ + +) [A (a) ® (ppor(l» 

-pp®(A(a) • .1)]. (3.53) 

It is evident from this last expression that 

Q(a[3): = [A (a) ® (ppOr(l) ) _ pp ® (A (a) • .1) ] (3.54) 

are the odd generators of the graded algebra that we needed. 
In particular, for any two Q(af3), Q(by

), we have 

{Q(a[3) ,Q(bY )} 

= - A(a) ® (A(b) • .1)rfr) - pp® (pYOr(l) )(A(a)IA(b» 

- A (b) ® (A (a) • .1) rfr) - py ® (ppor( I) ) (A (b) IA (a) 

- rfr) (A (a) 1\ A (b) ) • .1 

_ 8ab (pp ® py + py ® pp)Or(l)' (3.55) 

Thus recalling [cf. Eq. (3.42)] that (A (a) 1\ A (b) ) • .1 are 
the generators for so(8), while (pp®pY + py®pp)Or(l) [cf. 
(3.22a)] are the generators for sp( 4), we see that the anti
commutators (3.55) together with the commutators 
(3.22b) and (3.43) close the graded algebra for osp(4/S), 
and the vector space ( Y e ® If 8) E!) T;, with elements 
Z = z + ~(++) and inner product defined according to 
(3.44), is an appropriate representation space for OSp(41 
S,H). 

Also we note that the representation spaces for the other 
OSp( 4IN,H) , N = 1,2, ... ,7, can be easily obtained by taking 
our fermionic subspace the same as before and requiring that 
the bosonic basis vectors A(N + I) , ••• ,A(8)' as given in 
(3.37"), remain invariant under the transformations in 
SO(N). 

Vectors in our bosonic subspaces will, therefore, be giv
en by spinor bilinears of the form 

1 N 
W = 2" a~1 [U()aP[3)A (~) ]A (al, (3.56) 

which lie in the hyperplane normal to the vectors A (b), 

b=N + 1, ... ,8. 
We also remark that for the specific case N = 4, the 

projected spinors ~(+ + lEY; can be used for the construction 
of both the fermionic and bosonic subspaces. 

Before ending this section, we feel it is important to in
clude some comments on a technical aspect of our formalism 
concerned with the additional structure which we had to 
impose on our original spinors by means of the symplectic 
product (3.8). 

Recall that, although we started with odd Grassmann 
graded spinors associated with If 8 and a fundamental spinor 
bilinear given by (2.14), which is invariant under PineS), 
this in variance is broken down to Pin ( 6) in (3. S ), and the 
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association with If 8 as an underlying geometry for the the
ory is somewhat obscured. 

On the other hand we were forced to introduce (3.8) in 
order to obtain a symplectic metric for our four-dimensional 
fermionic subspaces. As an end result we now have a spinor 
structure with Sp (16), Pin (6), and Sp ( 4) as isometry 
groups instead of the original ones given by Pin (8) and its 
subgroups. 

Thus it can be argued that while our spinors originated 
from If 8 together with the new inner product, (3.S) may still 
be viewed as a natural supporting geometry for OSp(4IN) 
with N ranging from I to 6, such an assumption would not be 
applicable for extended supersymmetries with N = 7,8. 

In what follows we outline the basic steps of a procedure 
by means of which the above objections can easily be an
swered. Since the details of such an approach entail only 
minor essential modifications to what we have already devel
oped here, we will be omitting them for the sake of brevity. 

Instead of taking If 8 as an underlying geometry for our 
spinor spaces, start with either of the pseudo-Euclidean 
spaces If 8,2 [signature (~, - - )] or If 9,1 [sig-

nature ( + + ... + . - )]. 
'-v-...' 

9 

Note next that for pseudo-Euclidean spaces with h nega-
tive signs in the signature, the Cartan conjugate of a spinor ~ 
is given by 

~c = i(V-h)(H1 -HI')'" (H(v_ h) - H(v_h)' )~*, 
(3.57) 

in::.tead of (2.17). Also, since 
(~C)C = (_ l)(v-h)(v-h+ 1)/2~ 

in these cases, it is clear that self-conjugate spinors may be 
associated with If 8,2 and If 9,1' and used for the construction 
of real subspaces as required in the beginning of this section. 

Moreover, (2.15') implies in addition that our real spin
ors have an already built-in symplectic metric for the origi
nal fundamental bilinear, so we do not need to introduce any 
further structure into the spinor formalism in order to obtain 
the required fermionic subs paces. 

Specifically for If 8.2' these fermionic subspaces result 
from projecting the odd Grassmann graded real spinors 
~ + ~c, with 25 components, into four-dimensional sub
spaces obtained by successive application of the operators 
(not unique) 

fJPl ±) =![ E ± (HI,HI - HIHI,) (H2,H2 - H zH 2,)], 

( 3.5Sa) 

fJP~±) = ~[E ± (H4,H4 - H 4H 4,) (H5,H5 - HsHs')], 

(3.5Sb) 

(3.58c) 

Such a procedure allows us to write our original spinor 
space as a direct sum of eight four-dimensional isomorphic 
subspaces for which the fundamental bilinear form has ab 
initio a symplectic metric. 

As a consequence, the groups ofisometries of the funda
mental bilinear spinor associated with If 8,2 now include 
Sp(32), Pin(S,2), Spin(8,2), PineS), and Sp(4), which 
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contain all the symmetry groups required for the construc
tion of our fermionic subspaces as well as those needed for 
the bosonic ones with SO(N) internal symmetries, with N 
having values ranging from 1 to 8. 

As far as the bosonic subspaces are concerned, all that 
we would require for their construction is to resort to Car
tan's tensor decomposition that was described in detail pre
viously, but now using pseudovectors of the form (9jHj p), 
j = 1,1', ... ,5,5', as a natural ten-dimensional representation 
space for SOC 8,2). Choosing the subspace of these vectors 
which is invariant under SO ( 8) results in the bosonic basis 
which we need for the construction of a representation space 
for OSp ( 4/8,R). Further invariance requirements on this 
subspace similar to those used before, leads us down the lad
derofthefamilyofsupersymmetriesOSp(4/N), N = 1, ... ,8. 

We believe that the above description should suffice as a 
guide for those readers interested in rewording the details of 
our formalism for the cases W 8.2 and W 9,1' The considerably 
more complicated computations and the length of formulas 
that will arise provide the justification for having chosen for 
the more complete presentation of our ideas the simpler ap
proach based on W 8 (if one keeps in mind the remarks we 
have just made). 

IV. CONCLUSIONS 

We have shown that by extending Cartan's theory of 
spinors to a graded module for which the ring of operators 
consists of elements of an odd Grassmann subalgebra, one is 
able to construct a representation space for the orthosym
plectic supergroup OSp ( 4/ N,R), where the fermionic sub
space was made up of such spinors, while the bosonic vectors 
were taken from the space of irreducible tensors into which a 
product of two spinors decomposes under the action of the 
group of rotations and reversals. 

By adopting this procedure it was possible to exhibit the 
relation between the structures of the fermionic and bosonic 
subspaces of the graded vector representation space, and 
their underlying geometry, which originates from a Euclid
ean space in eight dimensions. 

The formalism, we believe, provides some additional in
sight for investigating the deeper levels of merging which 
might exist between fermionic and bosonic fields in super
symmetries theories, and the interrelationship between their 
structures and dimensionalities as determined by a support
ing geometry. 

For those of us that like to consider spinors as the funda
mental builiding blocks from which vectors and tensors are 

constructed as composite quantities, it is pleasing to see that 
a procedure can be found by means of which this might be 
achieved for supersymmetry also, and that the Grassmann 
gradation of the bosonic subspace is a result of the tensor 
product of the two odd graded spinors that make up such 
fields. 

APPENDIX A: GENERATORS FOR sp(4) AND G(8,O)GDC 

In Sec. III of the text we obtained explicit tensor repre
sentations in terms of a spinor basis for the generators of 
sp ( 4 ) . We also remarked there that the spinor operators 
which lead to the Clifford algebra G (8,0) can be expressed in 
terms of the Lie algebra of sp(4). Here we present some 
complementary material on spinorial representations for the 
infinitesimal generators of the symplectic group in four di
mensions, based on Pauli matrices, and also give without 
proof the formulas that exhibit the form of our spinor opera
tors when written in terms both of Pauli matrices and of the 
generators of sp ( 4 ). 

1. Generators for sp(4) 

Making use of (3. 22a) and (3.14), we get, in terms of 
right-handed Pauli matrices, the following expressions for 
the generators of sp( 4): 

B(I!) = ~(12 + 0"3) 181 (0"1 + i0"2) , 

B (Z2) = - ~(1z + 0"3) 181 (0"1 - iO"z), 

B(33) = ~(1z - 0"3) 181 (0"1 + i0"2), 

B(44) = - ~(1z - 0"3) 181 (0"1 - i0"2)' 

B(lZ) = ~(12 + 0"3) 1810"3' B(l3) = !O"I 181 (0"1 + i0"2)' 
B(l4) = - ~(O"I 1810"3 + i0"2®12), (AI) 

B (23) = ~( - 0"1 181 0"3 + i0"2 181 1 2 ), 

B (Z4) = ~O"I 181 (0"1 - i0"2)' 

B (34) = ~(0"3 181 0"3 - 1z 181 0"3)' 

In the above we use 1z to denote the 2 X 2 identity matrix. 

2. Generators for G(8,O) 

From (2.10) and the spinor basis isomorphism intro
duced in Sec. III [just before Eq. (3.28)] it can be seen that 
matrix representations for Hi (i = 1,1', ... ,4,4') will be anti
diagonal in two 8 X 8 dimensional blocks. By rather straight
forward (albeit tedious) computations we find 

HI = Hi0"2 181 1z - i0"2 181 0"3] 181 [0"1 ®1z - i0"2 181 0"3] - 1[0"2181 (12 + 0"3)] 18114 - HO"I 181 (1z + 0"3)] 181 [0"3181 0"3] 

2062 

= - H (B (Z3) - B (14) (14 + B (12) + B (34)] 181 [(B (lZ) + B (34)B (23)] - H (B (Z3) _ B (14) (14 _ B (1Z) _ B (34)] 

(A2a) 

HI' = HiO"z 181 1z + iO"z 181 0"3) 18114 - HO"I 18112 + iO"I 181 0"3] 181 [0"3181 0"3] + i [0"2 ®1z - O"z 181 0"3] 181 [0"1 ®1z + iO"z 181 0"3] 

= H (B (23) - B (14) (14 - B (1Z) - B (34)] 181 14 - H (B (Z3) + B (14) (14 _ B (1Z) _ B (34)] 181 [B (12) _ B (34)] 

(A2b) 
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H2 = - H (0"1 + i0"2) ® (0"1 + 10"2)] [12 ® 0"1 - ilz ®O"Z] + 1[iO"I ®0"2 - i0"2 ®0"1][i0"2 ® 0"1 + i0"2 ® 0"2] 

+ H (0"1 - 10"2) ® (0") - 10"2)] ® [0"3 ® 0") - i0"3 ® O"Z] 

= _ H (14 - B (34) + B (l2»(B (13) + B (24»] ® [(B (l2) - B {34})B (Z4)] + H (14 + B (34) _ B (lZ»(B (13) _ B (24»] 

®B(44) + 1[(14 + B(34) _ B (lZ})(B (13) + B(24»] ®B(ZZ), 

H 2, = H (0"1 + i0"2) ® (0"1 + i0"2)] ® [0"3 ® 0"1 + i0"3 ® O"Z] + Hi0"2 ® 0") - 10"1 ® 0"2] ® [0"2 ® O"z - iO"Z ® O"tl 

- H (0"1 - 10"2) ® (0") - i0"2)] ® [/2 ®O"l + i12 ® O"Z] 

= H (14 + B (1Z) - B (34»(B (13) + B (24»] ® [(B (34) _ B (l2»B (13)] 

+ H (14 + B (34) - B (lZ»(B (13) + B (24» J ® B (II) + H (14 + B (34) - B (l2»(B (24) - B (13»] ® B (33), 

H3 = (i/4 )[0"1 ®O"J - 0"2 ® 0"2] ® [O"Z ®lz ] - H0"2 ® O"J + 0"1 ® 0"2] ® [0"2 ® 0"3] 

+ 1£0"1 ® 0"1 + 0"2 ® 0"2] ® [0"3 ® 0"3] + U/4 )[0"1 ® O"z - 0"2 ® O"d ® [0"3 ®12] 

= H (14 + B (34) - B (lZ»B (13)] ® [B (23) - B (14)] ® [(14 - B (lZ) _ B (34»] 

+ H (14 + B (lZ) - B (34»B (Z4)] ® [(B (12) - B (34» (14 + B (lZ) + B (34»] 

+ H (14 + B(l2) - B(34»B(13}] ® [(B{34) - B(l2» (14 _ B(I2) _ B(34»] 

_![ (14 - B(1Z) + B (34»B (24)] ® [(B(23) _ B(14» (14 + B(l2) + B(34»], 

H 3, = - U/4 )[0") ® 0"1 - 0"2 ® 0"2] ® [0"2 ® 12] - 1£0"2 ® 0") + 0"1 ® 0"2] ® [0"2 ® 0"3] 

+ 1£0"1 ®O"I + 0"2 ®0"2J ® [0"3 ®0"3J + Hi0"2 ®O"I - iO", ®0"2] EEl [0"3 ®12] 

= _ H (14 + B (34) - B (l2»B (l3)J ® [(B (23) - B (14» (14 _ B (12) _ B (34»] 

- H (14 + B(lZ) - B(34»B(24)J ® [(Bt34) - B (2» (14 - B m ) - B (4» J 

_ ! [(14 - B (34) + B (I2»B (l3)J ® [(B (lZ) - B (34» (14 + B (12) + B (34» ] 

+ H (14 - B (12) + B (34»B (24)] ® [(B (23) - B (14» (14 _ B (12) - B (34»], 

H4 = HO"I ®12 + 0"1 ® 0"3] ® [0"1 ® 12 + i0"2 ® 0"3] + HO"I ® 12 - iO"I ® 0"3] ®14 + Hi0"2 ®lz - i0"2 ® 0"3J ® [0"3 ® 0"3] 

= H (B (14) + B (23» (B (12) + B (34) - 14)] ® [B (l4)(B (12) + B (34»] + H (B (14) + B (23» (B (12) + B (34) + 14) J 

(A2c) 

(A2d) 

(A2e) 

(A2f) 

(A2g) 

H 4, = HO"I ®0"2 + 0"1 ®0"3J ® [0"2 ®12 - i0"2 ® 0"3] + HO"I ®12 - 0"1 ® 0"3] ® 14 - Hi0"2 ® 12 - 10"2 ® 0"3] ® [0"3 ® 0"3] 

= H (B(l4) + B(Z3» (B{l2) + B(34) - 14)] ® [(B(12) + B (4»B(23)] + H (B(14) + B(Z3»(B 02) + B(34} +14)] ®14 

(A2h) 

r 
As pointed out in the discussion following Eqs. (2.13) 

in Sec. II, the generators ofG(8,0) and GC = G(8,0) ® Care 
obtained by taking linear combinations of the spinor opera
torsH; (i = 1,1',2,2', ... ,4,4') given above. Since these gener
ators are invertible, so are the basis elements of the Clifford 
algebra, and therefore they generate a multiplicative group 
G * (8,0). Also, since the Clifford image of ;r g, i E: 

;r g --> G( 8,0), is stable under the twisted adjoint map, 10 

(A4) 

and Sw is the involution map Sw: G(8,O) -->G(8,0)OPP 
[G( 8,0)OPP is the algebra opposite to G(8,0)], while e is the 
identity element of G (8,0). 

If we now note that the restriction of Ad (A) to i E ('C 8) 

is an isometry, i.e., (1"AX)-(1"AX) = x-x, where 1"AX is the 
vector in 'C 8 whose Clifford image is Ad(A)H(x), then it 
follows that there exists a surjective homomorphism, ~: 
r(8) -->O( 8), given by ~w (A) = 1"A' and it also follows that 
the restriction ~ of ~w to Pin(8), such that ~: Ad(A)H(x) =w",,(A)H(x)A -I, 

AEG*(8,0), H(X)EiE('C g ), 

(A3) 

where w"" denotes the degree involution of G(8,0), the 
group G *(8,0) is isomorphic to the Clifford group r(8) of 
'C 8' 

Furthermore, Pin ( 8) is the subgroup of r ( 8) consisting 
of the elements A which satisfy Aw (A) = ± 1, where the 
homomorphism Aw : r( 8) --> JR* (the multiplicative group of 
JR) is defined by 
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Pin(8) -->0(8), is surjective. 
Finally we observe that since Spin (8) is the subgroup of 

Pin(8) consisting of elements which satisfy Ww (A) = A, we 
have 

Spin(8) = Pin(8)nGo(8,0), (A5) 

where GO( 8,0) is the subspace of G( 8,0) defined by 

GO(8,O) = ker(ww - 1). (A6) 

The elements of Spin (8) can be also characterized by 
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the condition det <I> (A) = 1; i.e., if and only if <I> (A) is a 
proper isometry. Thus <I> restricts to the surjective homo
morphism 

'" Spin ( 8) -+ SOC 8). (A7) 

The above discussion sums up the exact sequence of 
groups generated by our spinor operators. In particular, we 
see that the generators of Spin (8) are obtained from the even 
degree elements of G(8,0), which, when expressed in terms 
of (A2a)-(A2h), display the relation between the genera
tors of isometries for the fermionic and bosonic subspaces 
that represent the orthosymplectic symmetries discussed in 
the text. 

APPENDIX B: RELATION BETWEEN THE EXTERIOR 
AND MATRIX FORMULATIONS OF SPINOR ALGEBRA 

In Sec. II of the text we have defined spinors associated 
with an underlying Euclidean of pseudo-Euclidean space of 
n = 2v dimensions, go n' as elements of a module of complex 
p-vectors (with degree p ranging from zero to v) formed 
from the basis vectors dual to one of the v-dimensional iso
tropic subspaces into which go n decomposes. 

We thus had that a spinor ~EY' [cf. Eq. (2.7b)] was 
given by an expression of the form 

(B1 ) 

where {e i
} is the dual basis isomorphic (via [2.5]) to the 

isotropic subspace JY'~ introduced at the beginning of Sec. 
II, and the remainder ofthe notation is defined following Eq. 
(2.8) in that section. As pointed out there, the set of2v com
plex coefficients S;, ..... i

p 
are the components of the spinor ~ 

and have the property of being totally antisymmetric in their 
simple indices. 

Spinors in Y' are transformed into other spinors in S' 
via an endomorphism induced by linear operators H(x), 
where x is an arbitrary vector in go n' which act on spinors by 
means of the Clifford product defined in (2.10) and (2.11). 

Note that the space of operators H(x) is spanned by the 
generatorsHj =H(ej ),Hi' =H(e;), i = 1, ... ,v, which satisfy 
the Clifford algebra (2.13). Thus we can write 

H(x) = H(r + r') = xiHj + x';Hi" (B2) 

Furthermore, since the contraction operation g(s,r) defined 
by (2.11) is essentially the interior product of ~ with an 
arbitrary vector r in the isotropic subspace JY'v [cf. Eq. 
(2.2)] acting on the right, we can express (2.10) as 

H(x)t = ~r\f' + ~ Lr, 

that is 

Hj~ = t Lei> H;~ = ~/\ei. 

(B3) 

(B4) 

Making use of (B4) and Eqs. (2.13) in the text, we can 
now readily show the relation between our intrinsic formula
tion of spinor algebra and the one used by Cartan and other 
authors which is expressed in the perhaps more familiar lan
guage of gamma matrices and spinors as one-column vec
tors. 

Consider first a general n-dimensional pseudo-Euclid-
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ean space for which the fundamental form hasjl positive and 
If negative squares. We shall restrict our attention however 
to spaces of even dimensionality, i.e., n = 2v, since these are 
the type of spaces considered in this paper. [To account for 
spinors associated with odd-dimensional spaces one only has 
to include an additional direction orthogonal to go n and add 
a further term in the Clifford product (B4) related to this 
extra dimension and involving the operator defined in 
(3.4).] 

An orthonormal basis for go n is al, ... ,ay , bl, ... ,b y with 

aj·aj = O;j, aj'bj = 0, for i,j = 1, ... ,v, 
bj'bj = 0, for i=/j, 

bj'bj = 1, for i = 1, ... ,v - h, 

bj'bj = - 1, for i = v - h + l, ... ,v. 

(BS) 

In order to construct the two isotropic subspaces, each 
of dimension v, we complexify go n and define a basis e l, ev , 

e; , ... ,e~ for C go n by 

ej = !(aj + ibj ), for i = 1, ... ,v - h, 

ej = !(aj + bj), for i = v - h + 1, ... ,v, 

e; = !(aj - lbj ), for i = 1, ... ,v - h, 

e; = !(aj - b j), for i = v - h + 1, ... ,v. 

(B6) 

Clearly the subspaces {eJ and {e;} are isotropic and 
satisfy the orthogonality conditions (2.1) in the text. More
over, making use of the isomorphism given by (2.5), we 
obtain the dual basis e

j 
to be used in the calculation of the 

action of the generators Hi' on a given spinor. Note that if we 
choose the coefficients of ej and e;, for i = 1, ... , v - h, to be 
complex conjugate to each other, and those of ej and e;, for 
i = v - h + l, ... ,v, to be real, then our pseudo-Euclidean 
space will become real even though the bases for the two 
isotropic subspaces are complex. 

Also note that by virtue of the basic anticommutation 
relations (2.13), the elements H(aj ), H(bj ) are representa
tion-free operators corresponding to the gamma matrices. 

To be more explicit in establishing the notational rela
tion between spinor theory expressed in the language of exte
rior algebra and its matrix formulation, we take as an exam
ple the spinors associated with the Minkowski space-time 
go 3.1' In this case we have v = 2, and aj'aj = oij, aj,bj = 0, 
for i,j = 1,2,bj'bj = 0, for i=/=j, and bl·b l = 1, b2,b2 = - 1. 
The bases for our isotropic subspaces are e l = !(a\ + lb\), 

e2 = !(a2 + b2 ) and e; = !(al -lb\), ei = !(a2 - b2 ). 

A spin or associated with go 3.1 is of the form 

and consequently we get from (B4) 

Hj~ = S\o) + S20~ + SI2(0~e\ - 0)e2), 

Hi' ~ = Soe
j + Slel /\ e20~ - S2el /\ e20 i

l • 

(B7) 

(B8a) 

(B8b) 

If we now arrange the spinor coefficients into a one-column 
matrix such that those with an even number of simple indices 
come before those with compound indices with an odd num-
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ber of simple indices, we can write 

5~(D~(:) (B9) 

The two component spinor cI> = (~~,) is an example of what 
Cartan5 calls a semispinor of the first type, while 'I' = (~;) is 
a case of semispinors of the second type. This convention 
amounts to considering spinors as elements of a vector space 
with basis {Ia} obtained via the isomorphism 11::::: 1, 
12:::::£11\£2, 13:::::£1, 14:::::£2, and introducing a dual basis 
{mp }, such that mp ola = laomp = /)tp. Thus 

S = soli + 51212 + 5113 + 5214. (BlO) 

In terms of these bases, and making use of (B8a) and (B8b), 
the linear operators Hi and Hi' may be expressed as tensors 
of the form 

The matrix representation of (Bll) follows immediately 
after noting that the generic form of these tensors is 

Hi = (Hi )aPla ® mp , Hi' = (Hi' )aPla ® mp , i = 1,2, 

where 

(Hi)a P = maoHiolP, (Hi' )a P = maoHi'0IP, (BI2) 

so that (Hi) a P is the matrix element corresponding to the 
ath row and {3 th column. 

From (Btl) and (BI2) it is now an easy matter to de
rive the gamma matrices associated with 'f/ 3.1' which are 
equivalent to our linear operators 

H(a l ) =HI +HI·, H(a2) =H2 +H2·, 

H(b l ) = - i(HI - HI')' H(b2) = H2 - H 2·· 

We have that 

[H(al)a P ] = rl, 
[H(b l )a.8] =r, 

[H(a2 )a P ] = y2, 

[H(b2 )a P ] = yO. 
Although the resulting representation is not one com

monly used for the Dirac matrices, other representations 
follow by applying various similarity transformations. In 
particular, the similarity transformation induced by the ma
trix 

(BI3) 
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is the most convenient one for relating our spinor compo
nents to the elementary Weyl spinors with dotted and undot
ted indices which occur in the spinorial form of the Dirac 
equation. 11 We thus get 

S5~ [;~o}+:-~~-;] (D~ 8]. (BI4) 

whence 

rPl = So - iS12, rP2 = 512 - iso, 
Xi = 51 - is2, Xi = - 52 + iS I • 

(BI5) 

That is, the undotted spinor components of the Dirac bi
spinor are given by linear combinations of Cartan's semis
pinors of the first type, while the dotted components of the 
bispinor involve linear combinations of semispinors of the 
second type. 

The above discussion suggests a general procedure to be 
followed in order to establish the relationship between our 
formalism and the one based on matrices for spinors asociat
ed with other types of Euclidean and pseudo-Euclidean 
spaces of arbitrary dimensions. It also outlines the method 
by means of which the components of a Cartan spinor can be 
related to the spin-tensor components with mixed indices of 
the relativistic Dirac-Fierz-Pauli field equations for arbi
trary spin values. 
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The embedding problem for a three-parametric family of homogeneous three-spaces into a 
higher-dimensional Euclidean space is considered. These three-spaces occur as space sections 
in cosmological models. After general consideration a certain two-parametric family is 
embedded into a five-dimensional Euclidean space, deferring the solution of the general case to 
later papers. 

I. INTRODUCTION 

A number of very interesting world models of the rela
tivistic cosmology have compact spacelike sections invariant 
under the transformations of the rotation group. Schiicking 
suggested the embedding of those three-spaces into a higher
dimensional Euclidean space, hoping to obtain a more ade
quate picture of their geometry. I We would like to develop at 
the outset some language in order to formulate our problem 
more precisely. 

Denote by 

5 1,5 2,5 3,5\ (1.1) 

the Cartesian coordinates in the four-dimensional Euclidean 
space E4. The equation of the unit sphere S 3 is then 

(5 1)2 + (5 2)2 + (C)2 + (5 4)2 = 1. (1.2) 

By the assignment 

5 = 5 I + i5 2, 1] = 53 + i5 4 (1.3 ) 

and by forming the unitary matrix 

Following Flanders2 we compute the matrix of the forms 

(1.4) 

we establish a one-to-one correspondence between the points 
of S3 and the elements ofSU2, 

( 1.5) 

being the equation of the unit sphere. 
If PI andP2 are points of S3 and A I andA 2 are the corre

sponding matrices then the matrix multiplication 

AIA2 =A3 

and the correspondence 

A3 -P3 

turn S 3 into a Lie group--the universal covering group of 
0 3, the group of rotations of E3 around a fixed point. 

We introduce the Eulerian angles 

O';;;XI = X';;;1T, O.;;;x2 = y, x 3 = Z.;;;21T (1.6) 

as local coordinates by the assignment 

i Sin(XI2)e[i(y- zl/2]). 
cos(xI2)e[ -,(y+zl/2] 

(1. 7) 

w = A - I dA = ( (i12) (cos x dy + dz) 
(i12 ) elZ dx + ! sin xe'Z dy 

(i12)e - iz dx - ~ sin xe - iz dY) 

- (i12) (cos x dy + dz) 
( 1.8) 

each of which is a left invariant one-form of the matrix group 
defined by (1.7). That is by appropriate numbering we have 

Wi = cos z dx + sin x sin z dy, 

w2 = -sinzdx+sinxcoszdy, (1.9) 

w3 = cos x dy + dz, 

as our invariant one-forms in our coordinate system. 
It is easy to see that 

dw l = - w2 Aw3
, 

a) We dedicate this paper to Professor E. L. Schiicking on the occasion of his 
60th birthday. 

dw2 = -w3 Aw l
, dw3 = -w I Aw2

• (1.10) 

The line element on S 3 in this coordinate system is given by 

(dS)2 = H (W I )2 + (W2)2 + (W3)2] 

= H (dX)2 + (dy)2 + 2 cos x dy dz + (dZ)2]. 
(1.11) 

If we interpret the assignment (1.7) as 

51 =ZI(X,y,Z) =cos(xI2)cos[(y+z)/2], 

52 = Z2(X,y,z) = cos(x/2)sin[ (y + z)/2], 

53 = Z 3 (x,y,z) = - sin(x/2)sin [ (y - z)/2], 

54 = Z4(X,y,Z) = sin(xI2)cos[ (y - z)/2], (1.12) 
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then we have a parametric equation of S 3, or an embedding 
of it into E4. 

Indeed, as a straightforward calculation shows 

(dS)2 = (ds 1)2 + (ds 2)2 + (ds 3)2 + (dS 4 )2 

= H (dX)2 + (dy)2 + 2 cos x dy dz + (dZ)2], 
(1.13 ) 

which is, naturally, not surprising. We are now ready to for
mulate our problem. 

We would like to consider the most general, positive 
definite metric, invariant under the left translations of the 
group of rotations. These metrics form a three-parametric 
family 

(dS)2 = p2(U)1)2 + q2(U)2)2 + r 2(U)3)2, 

where 

p, q, r 

(1.14 ) 

(1.15) 

are arbitrary parameters. (For example, p = q r = 1 cor
responds to a sphere of radius 2.) Denoting the Cartesian 
coordinates in E6 by 

sa, a=l, 2,3,4,5,6, 

we are looking for six functions 

Sa = za(x,y,z) , a = 1,2,3,4,5,6, 

such that 

6 

(dS)2 = L (dS a)2 = 8af;JZ~Z~j dXi dx j 

a t 

= p2(U)t)2 + q2(U)2)2 + r 2(U)3)2 

= {p2(COS Z)2 + q2(sin z)2}(dx)2 

+ (p2 _ q2)sin x sin 2z dx dy 

+ {[p2(sin Z)2 + q2(COS Z)2] 

X (sin X)2 + r 2(COS x)2}(dy)2 

+ 2r 2 cos x dy dz + r 2(dz)2 

( 1.16) 

(1.17) 

( 1.18) 

where the numbering of the coordinates is as introduced in 
(1.6) and 

za = aza . (1.19) 
.' axi 

We turn to this problem after giving the left invariant vector 
fields in our coordinate system for future reference, 

a sinz a 
XI = cos Z - + ---

ax sin x ay 

. a 
cot x smz-, 

az 

. a cosz a a 
X 2 = - smz- + -- - cot x cosZ-, (1.20) 

ax sin x ay az 

a 
X 3 =-, 

az 

with 

[X2,x3] =Xt, [X3,x1] =X2, [XI ,x2] =X3· 
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( 1.21 ) 

II. FUNDAMENTAL EQUATIONS 

We expect that, in general, E6 would be the ambient 
space. Therefore we have to find six functions 

(2.1 ) 
a, f3 = 1,2, ... ,6; i, j = 1, 2, 3 

satisfying the six nonlinear partial differential equations 

8 f;Jzazf;J. =g .. , a ,1.) lJ (2.2) 

wheregij is given by (1.18). 
The relevant part of the classical differential geome

try-developed by the great masters, is readily available, for 
instance, in Eisenhart's book3 or in the beautiful books of 
Spivak4-instructs us to introduce vector fields 

lla
A' A = 4, 5, 6, 

such that 

8af;JZ~llaA = 0, A = 4, 5, 6 

and 

8af;JllaA~B 8 AB , A, B = 4, 5, 6, 

and integrate the linear system 

Z a bA a 
;ij = ijll A' 

a b Imza + BC a llA,j = - Aljg ,m CA PBjll c, 

where 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

PAj = ~ CA BCVBC] (2.7) 

and V BC] are defined as in Eisenhart.3 The semicolon denotes 
covariant differentiation with respect to the metric (1.18); 

bAij (2.8) 

are symmetric tensors and 

PAi (2.9) 

are vectors on our three-space. The integrability conditions 
of (2.6) are 

Rijkl =bAikbAjl-bAi/bAjk' 

bAij;k-bAik;) CABC(PBkbCij PB)bCik ), (2.10) 

PAj,k - PAk,) + cA BC(PBjPCk + bBljbCmk im) 0, 

being the Gauss, Codazzi-Mainardi, and Ricci equations, 
respectively. Rijkl are the components of the Riemann tensor 
of our three-space. In order to find the as yet unknown coef
ficients bAij and PAj in (2.6) we have to find a solution of 
(2.10) by the given Rijkl' A formidable task. The fact that 
our three-space is homogeneous, that its metric is invariant 
under the left translations of our group, comes to our rescue. 
The metric tensor is invariant, therefore the Riemann tensor 
is invariant. We now assume that the tensors b and the vec
torsp are also invariant. We make this assumption, and ex
plore its consequences, rather than to attempt to construct a 
proof of this invariance. 

To exploit the invariance of our tensors and vectors we 
use the invariant one-forms (1.9) and the invariant vector 
fields ( 1.20) in order to span the tensor fields over our mani
fold, since the invariant tensor fields have constant coeffi
cients with respect to the tensor products of the invariant 
one-forms and vector fields. 
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We use 

(2.11 ) 

to denote the "frame components" of our tensor fields, ad
hering to the convention that letters from the beginning of 
the alphabet 

a, b, c = 1, 2, 3 (2.12) 

are "frame indices," and letters like 

i, j, k = 1, 2, 3 (2.13) 

would denote coordinate indices. 
We shall see that our assumption reduces Eqs. (2.10) to 

algebraic equations. 

III. GAUSS, CODAZZI-MAINARDI, AND RICCI 
EQUATIONS 

We now develop the Gauss, Codazzi-Mainardi, and 
Ricci equations in terms of our frame. Using the invariant 
vector fields (1.20) we introduce the Koszul connection 

(3.1 ) 

in order to carry out covariant differentiation. The frame 
components of the covariant derivative of a tensor b ab and a 
vector f-la are given by the expressions 

Xebab - bjbre/ - bal re/ 
and 

Xef-la - f-ll rea.t; 

respectively, which reduce to 

- bjbre/ - bal re/ 
and 

(3.2) 

(3.3 ) 

(3.4 ) 

- f-ll rea.t; (3.5) 

respectively, in case of invariant tensor and vector fields. The 
requirement, that the connection is torsion-free and metric, 
that is, that the torsion tensor and the covariant derivative of 
the metric vanish, leads to 

rabe = ~(Cbea + Ceab - Cabe ), (3.6) 

where the C's are the structure constants of the group 

[Xa,xb]=ClabXI (3.7) 

and the raising and lowering of the indices are carried out 
with the help of the frame components ofthe metric tensor. 

The components of the Riemann tensor are given by 

R a
bed =Xerdba_Xdreba 

+ re/ rd/ - rd/ re/ - r jb a Cled . (3.8) 

These, however, since the r's are constant, reduce to 

R abed = relard/ - rdlare/ - rjbaCled. (3.9) 

The Ricci tensor components and the Ricci scalar are given 
by 

Rab = r la
g r g / - rl/rab

g 

and 

R =RII' 

respectively. 

2068 J. Math. Phys., Vol. 28, No.9, September 1987 

(3.10) 

(3.11 ) 

Equations (2.10) take the form 

R abed = bAaebAbd - bAadbAbe' (3.12a) 

XebAab - XbbAae + bAalClbe - bAjbre/ + bAlerb/ 

= €ABC(f-lBebCab - f-lBbbcae), (3.12b) 

Xef-lAb - Xbf-lAe + f-lAIClbe 

= - €A BC{ f-lBbf-lCe + bBjbbcge gig}, 

A =4, 5, 6, (3.12c) 

and reduce to algebraic equations in case of invariant ten
sors, having constant components. We want to write out 
these equations in full detail for the case of invariant band f-l. 
In our case the non vanishing components of the structure 
constant tensor are 

C 123 = C 231 = C 3 12 = 1 (3.13 ) 

and the components of the metric are 

gab = diag(p2 q2 r 2) (3.14 ) 

and 

(3.15 ) 

as we noticed earlier. As a consequence of all this the compo
nents of the Koszu1 connection are given by 

and 

r 231 = ~ (p2 _ q2 + r 2), 

r 321 = - !(p2 + q2 _ r 2), 

r 312 = ~(p2 + q2 _ r 2), 

r132= -~( _p2+q2+r2), 

r 123 = ~ ( - p2 + q2 + r 2), 

r 213 = - ~ (p2 _ q2 + r 2), 

r 23
1 = (1/2p2)(p2 _ q2 + r2), 

r3/ = - (1I2p2)(p2 + q2 _ r 2), 

r3/ = (1/2q2)(p2 + q2 _ r 2), 

r 1/ = - (1/2q2)( _ p2 + q2 + r 2), 

r1/= (1/2r2)( _p2+q2+r2), 

r 2 / = - (1I2r 2)(p2 _ q2 + r 2). 

(3.16 ) 

(3.17 ) 

The nonvanishing components of the Riemann tensor, 
Ricci tensor, and Ricci scalar are in turn, 

R 2323 = (1I4p2)(2p2( _ p2 + q2 + r 2) 

_ (p2 _ q2 + r 2) (p2 + q2 _ r 2) ), 

R3131 = (1I4q2)(2q2(p2 _ q2 + r 2) 

_ (p2+q2_r2)( _p2+q2+r2)), (3.18) 

R1212 = (1I4r 2)(2r 2(p2 + q2 _ r 2) 

_ ( _ p2 + q2 + r 2 )(p2 _ q2 + r 2) ), 

R 11 = - (1I2q2r 2) (p2 _ q2 + r 2) (p2 + q2 _ r 2), 

R22 = - (1I2r 2p2) 

X(p2+q2_r2)( _p2+q2+r2), (3.19) 

R33 = - (1I2p2q2) ( _ p2 + q2 + r 2) (p2 _ q2 + r 2), 
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R = (1/2p2q2r 2) 

X (p4 + q4 + r4 _ 2q2r 2 _ 2r 2p2 _ 2p2q2) 

= (1/2p2q2r 2)(2(p4 + q4 + r4) _ (p2 + q2 + r 2)2) 

= _ (1/2p2q2r2)(p+q+r)( -p+q+r) 

X (p - q + r) (p + q - r), (3.20) 

respectively. 
Introducing the notation 

(b'".)~~ f 

~l ' b (Jlsa) = (x y z), 

d 

(3.22) 

q? 

_ (1/2p2) (p2 _ q2 + r 2)A 

_ (1/2q2) ( _ p2 + q2 + r 2)B + C 

= (YE - x6) - (1/e - sd); 

a - (1/2q2) (p2 + q2 _ r 2)b _ (1/2r 2) (p2 _ q2 + r 2)C 

= (;F -1/E) - (Zq? - YE), 

(1/2p2)(3p2+q2-r2)f= (;B-1/D) - (Z/3- Y6), 

(1/2p2) (3p2 - q2 + r 2)e = (;D -1/C) - (Z6 - Yy), 

(1/2q2)(p2 + 3q2 - r 2)f= (sE - ;A) - (XE - Za), 

_ (1/2p2) (p2 + q2 _ r 2) a + b 

_ (1/2r 2) ( _ p2 + q2 + r 2)C 

= (sD - ;F) - (X6 - Zq?), (3.26) 

(1/2q2) ( - p2 + 3q2 + r 2)d = (sC - ;E) - (Xy - ZE), 

(1/2r 2)(p2 - q2 + 3r 2)e = (1/A - sF) - (Ya - Xq?), 

(bM')~[; /3 

6 ~l ' (Jl6a) = (5 1/ ;), (3.23) (1/2r 2) ( - p2 + q2 + 3r 2)d = (1/F - SB) - (Yq? - X(3), 

_ (1/2p2) (p2 _ q2 + r 2)a 

we can give Eqs. (3.12) in full detail, 

R 2323 = BC - D 2 + bc - d 2 + /3y _ 62 

= (1/4p2)(2p2( _ p2 + q2 + r 2) 

_ (p2 _ q2 + r 2) (p2 + q2 _ r 2»), 

R3131 =AC-E2 +ac _e2 +ay- C 

= (1/4q2)(2q2(p2 _ q2 + r 2) 

_ (p2 + q2 _ r 2)( _ p2 + q2 + r 2»), 

RI212 =AB - F2 + ab _f2 + a/3 - q?2 (3.24) 

= (1/4r 2)(2r 2(p2 + q2 _ r 2) 

_ ( _ p2 + q2 + r 2) (p2 _ q2 + r 2»), 

R 2331 =DE- CF+de - cf+&- yq? =0, 

R2312 = DF - BE + df - be + 6q? - /3E = 0, 

R3112 = EF-AD + ef - ad + Eq? - a6 = 0; 

A - (1/2q2) (p2 + q2 _ r 2)B _ (1/2r 2) (p2 _ q2 + r 2)C 

= (Zq? - YE) - ({;f -1/e), 

(1/2p2)(3p2+q2_r2)F= (z/3-y6) - (;b-1/d), 

(1/2p2)(3p2 - q2 + r 2)E = (z6 - yy) - (;d -1/C), 

(1/2q2)(p2 + 3q2 - r 2)F = (XE - za) - (Se - ;a), 

_ (1/2p2) (p2 + q2 _ r 2)A + B 

_ (1/2r 2) ( _ p2 + q2 + r 2) C 

= (x6-zq?) - (sd-{;f), (3.25) 

(1/2q2) ( - p2 + 3q2 + r 2)D = (xy - ZE) - (Sc - ;e), 

(1/2r 2)(p2 - q2 + 3r 2)E = (ya - Xq?) - (1/a - 51), 
(1/2r 2)( _ p2 + q2 + 3r 2)D = (yq? - x/3) - (rJI - sb), 
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_ (1/2q2) ( _ p2 + q2 + r 2) b + c 

= (1/E - sD) - (YE -X6); 

a - (1/2q2) (p2 + q2 _ r 2)/3 _ (1/2r 2) (p2 _ q2 + r 2)y 

= (Zf - Ye) - (zF - yE), 

(1/2p2)(3p2 + q2 _ r 2)q? = (Zb - Yd) - (zB - yD), 

(1/2p2) (3p2 - q2 + r 2)E = (Zd - Yc) - (zD - yC), 

(1/2q2)(p2 + 3q2 - r 2)q? = (Xe - Za) - (xE - zA), 

_ (1/2p2) (p2 + q2 _ r 2)a + /3 

_ (1/2r 2)( _ p2 + q2 + r 2)y 

= (Xd - Zf) - (xD - zF), (3.27) 

(1/2q2) ( _ p2 + 3q2 + r 2)6 = (Xc - Ze) - (xC - zE), 

( 1/2r 2) (p2 _ q2 + 3r 2) E = (Ya - Xf) - (yA - xF), 

(1/2r2)( _p2+q2+3r2)6= (Yf-Xb) - (yF-xB), 

_ (1/2p2) (p2 _ q2 + r 2)a 

_ (1/2q2) ( _ p2 + q2 + r 2)/3 + y 

= (Ye -Xd) - (yE -xD); 

X = - (y; - z1/) - (1/p2)(fE - eq?) 

- (1/q2) (M - d/3) - (1/r 2) (dy - c6), 

Y = - (zs - x;) - (1/p2)(ea - aE) 

- (1/q2) (dq? - fo) - (1/r 2) (CE - ey), 

Z = - (x1/- YS) - (1/p2)(aq? - fa) 

- (1/q2)(fT3-bq?) - (1/r2)(e6-dE), 

x = - (1/Z -;Y) - (1/p2)(q?E - EF) 

- (1/q2)(/3D-6B) - (l/r 2)(6C-yD), 
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Y= - (;X -tZ) - (1/p2)(€A -aE) 

- (1/q2)(oF - rpD) - (1/r 2)(yE - €C), 

Z= - (tY-1]X) - (1/p2)(aF-rpA) 

- (1/q2)(rpB - /3F) - (1/r 2)(€D - oE), 

t = - (Yz - Zy) - (1/p2)(Fe - Ef) 

- (1/q2)(Bd - Db) - (1/r 2)(De - Cd), 

1] = - (Zx -Xz) - (1/p2)(Ea -Ae) 

- (1/q2)(Df-Fd) - (1/r2)(Ce-Ee), 

; = - (Xy - Yx) - (l/p2)(Af - Fa) 

- (1/q2)(Fb-Bf) - (l/r 2)(Ed-De). 

(3.28) 

A solution of this formidable system furnishes the frame 
components b Aab and IL Aa . 

IV. EXPLICIT FORM OF THE BASIC EQUATIONS 

As we have seen in the previous section, due to the ho
mogeneity of our three-space, Eq. (2.10) reduced to algebra
ic equations, and we have to integrate only the linear partial 
differential equations (2.6). 

We wanted to rewrite these equations in terms of our 
frame and develop them more fully. 

Using the notation 

(4.1 ) 

(applying the vector fields Xa to the functions Z a) we can 
rewrite those equations as 

Xazab = ra/Z af + b A
ab 1]aA, (4.2) 

X a - b fZ a + BC a a1] A - - Aa f €A ILBa1] C, 

where 

bAa b = b Aaf g'>1. (4.3) 

Using (3.17) we have 

xJzaJ = b A
II1]aA, 

X JZ
a
2= (1/2r2)( _p2+q2+r2)za3+bAI21]aA' 

x Jza3 = - (l/2q2)( - p2 + q2 + r 2)za2 + b A
131]aA> 

X 2Z
a
2 = b A

221]aA, 

x 2za3 = (1/2p2) (p2 _ q2 + r 2)zaJ + b A
231]aA, 

x 3za3 = b A
331]aA, 

and 

X a - b fza + BC a a 1] A - - Aa f €A ILBa 1] c, 

or in full detail 

X a b fza + a a a 1] 4 = - 4a f ILsa 1] 6 -1L6a 1] S' 

Xa 1]as = - bsa
f zaf + 1L6a 1]a4 -1L4a 1]a6 , 

Xa 1]a6 = - b6a
f zaf + 1L4a 1]as -ILSa 1]a4· 

V. A SPECIAL CASE 

(4.4) 

( 4.5) 

In this section we find a certain two-parametric family 
of solutions of (3.4 )-( 3.28), characterized by the vanishing 
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of the Ricci scalar. We specialize the fundamental equations 
for this case. Setting 

ILAa = 0, A = 4, 5, 6; a = 1, 2, 3 (5.1) 

and 

b6ab = 0, a, b = 1, 2, 3, (5.2) 

one sees immediately that only the diagonal components of 
b4ab and bSab can be different from zero. Our system col
lapses to 

BC + be = (1/4p2)(2p2( _ p2 + q2 + r 2) 

_ (p2 _ q2 + r 2) (p2 + q2 _ r 2) j, 

AC + ae = (1/4q2)(2q2(p2 _ q2 + r 2) 

_ (p2 + q2 _ r 2)( _ p2 + q2 + r 2) j, 

AB + ab = (1/4r 2)(2r 2(p2 + q2 _ r 2) 

_ ( _ p2 + q2 + r 2 )(p2 _ q2 + r 2) j, 

and 

A - (1/2q2) (p2 + q2 _ r 2)B 

_ (1/2r 2) (p2 _ q2 + r 2) C = 0, 

_ (1/2p2) (p2 + q2 _ r 2)A + B 

_ (1/2r 2) ( _ p2 + q2 + r 2) C = 0, 

and 

a - (l/2q2)(p2 + q2 _ r 2)b 

_ (1/2r 2 )(p2 _ q2 + r 2) e = 0, 

_ (1/2p2) (p2 + q2 _ r 2)a + b 

- (1/2r2)( _p2+q2+r2)e=0. 

(5.3 ) 

(5.4 ) 

(5.5 ) 

In order to avoid the trivial case of S 3 we have to insist 
that the determinant 

1 - (1/4p2q2) (p2 + q2 _ r 2f 
= _ (l/4p2q2)«p2 + q2 _ r 2)2 _ 4p2q2j 

= _ (1/4p2q2) (p4 + q4 + r4 _ 2q2r 2 

_ 2r 2p2 _ 2p2q2) 

should vanish. This happens precisely when the Ricci scalar 
(3.20) of our space vanishes. We have therefore the follow
ing theorem. 

Theorem: The subfamily of ( 1.14), for which the Ricci 
scalar vanishes, can be embedded into ES

• 

This condition is satisfied, for instance, if 

r=p+q. 

Our equations reduce to 

BC + be = 2q(p + q), 

CA + ea = 2p(p + q), 

AB+ab= -2pq, 

[1/(p+q)]C= (l/p)A + (l/q)B, 

[1/(p + q)]e = (1/p)a + (1/q)b, 

having the solution 

A=p, B=q, C=2(p+q), 

a = fjp, b = - fjq, e = 0. 
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That is 

b4ab = diag(p q 2(p + q»), 

bSab = diag( {3p - {3q 0), (S.9) 
b4 / = diag(l/9 l/q 2/(p + q»), 

bsa
b =diag({3lp -{3lq 0). 

Substituting (S.6) and (S.9) into (4.4) and (4.S) we have 

X IZ I =P1J4+{3P1JS' (S.lOa) 

X IZ 2 = [ql(p + 1) ]Z3' (S.lOb) 

X IZ 3 = - [(p + q)lq]Z2' (S.lOc) 

X 2Z 2 = q1J4 - {3q1Js, (S.lOd) 

X 2Z 3 = [(p + q)lp]ZI' (S.lOe) 

X3Z 3 = 2(p + q)1J4' (S.lOf) 

X I1J4 = - (l/P)ZI' ( S.l1a) 

X 21J4 = - (llq)Z2' (S.l1b) 

X 31J4 = - [2/(p + q) ]Z3' (S.l1c) 

and 

X I1Js = - ({3lp)ZI' (S.12a) 

Z21JS = ({3lq)Z2' (S.12b) 

X31JS = O. (S.12c) 

We dropped the index a in order to simplify our notation. 
We integrate these equations in the next section. 

VI. EMBEDDING OF THE SUBFAMILY 

Before starting to integrate Eqs. (S.lO)-(S.12) we in
troduce another piece of simplified notation: If F is a func
tion of x,y,z we denote the partial derivatives as 

aF =F aF aF 
x' -=Fy, -=Fz, 

ax ay az 

respectively. 
Since the vector field X3 has the simple form X3 = a I az 

in our coordinate system [see (1.20)] we determine the z 
dependence of our functions first. Equations (S.lOf) and 
(S.l1c), 

Zzz = 2(p + q)1J4 and 1J4z = - [2/(p + q) ]Zz 

imply 

Z=Scos2z+ Tsin2z+ U, (6.1 ) 

where S, T, and U are arbitrary functions of x and y only. 
Substituting (6.1) into (S.lOc) and (S.lOe) we find partial 
differential equations for S, T, and U, 

Sy - 2 cosxT + sinxTx = 0, 

Ty + 2 cos xS - sin xSx = 0, 

Ux = [(p - q)/(p + q) ]Sx' 

Uy = [(p - q)/(p + q) ] sin xTx , 

respectively. 
Equation (S.lOb) leads to 

(sin X)2 Sxx + Syy - ~ sin 2x Sx 

+ (2(sin X)2 + 4(COSX)2)S = 0, 
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(6.2a) 

(6.2b) 

(6.2c) 

(6.2d) 

(6.3a) 

(sin X)2 Txx + Tyy - ~ sin 2xTx 

+ (2(sinx)2 + 4(COSX)2)T= 0, (6.3b) 

Txx + T= O. (6.3c) 

These equations are integrability conditions of (6.2). 
Observe that the sum of (S.10a), (S.IOd), and (S.lOf), 

(XIXI +X~2 + X73)Z = 3(p + q)1J4 + {3(p - q)1J5' 
(6.4) 

A straightforward calculation shows that 

3(p + q)1J4 + {3(p - q)1J5 

= Zxx + cot xZx + [l/(sin X)2] 

X [Zyy - 2 cosxZzy + Zzz]. (6.S) 

Substituting (6.1) into (6.S) and using (6.2) and (6.3) we 
find 

3(p + q)1J4 + {3(p - q)1J5 

= - 6(S cos 2z + Tsin 2z) 

+ 2[ (p - q)/(p + q) ](Sxx + S) (6.6) 

and from (S .1Of) 

2(p + q)1J4 = - 4(S cos 2z + Tsin 2z). (6.7) 

Therefore 

1J4 = - [2/(p + q)](S cos 2z + Tsin 2z), (6.8a) 

1J5 = [2/{3(p + q)] (Sxx + S). (6.8b) 

We now integrate Eqs. (6.2) and (6.3). Equation (6.3c) 
implies 

T=fcosx +gsinx, (6.9) 

wherefandg are functions ofy only. 
Substituting into (6.3b) we obtain 

d 2f d 2g 
-2 +4/=0, --2 +g=O, 
dy dy 

(6.10) 

that is, 

f=acos2y+bsin2y, g=ccosy+dsiny, (6.11) 

where a, b, c, d, are arbitrary constant five-vectors. There
fore 

T = (a cos 2y + b sin 2y)cos x 

+ (c cosy + d siny)sinx. (6.12) 

We now integrate (6.2) in order to obtain Sand U as func
tions ofx andy. The results of this integration are as follows: 

S = A a(3 + cos 2x)sin 2y - A b(3 + cos 2x)cos 2y 

+! c sin 2x siny - ~ d sin 2x cosy 

+ A e( 1 - cos 2x), 

where e is the fifth constant five-vector, and 

(6.13 ) 

U = [(p - q)/(p + q)]{ - A a( 1 - cos 2x)sin 2y 

+ A b( 1 - cos 2x)cos 2y 

+! c sin 2x siny - ~ d sin 2x cosy 

+!e(l-cos2x)}+F, (6.14 ) 
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where Fis an arbitrary constant five-vector. 
At this stage all our equations are satisfied. We now turn 

our attention to the constant five-vectors entering our ex
pressions as arbitrary constants of integration. 

Since "14 given by (6.S) has to be a unit vector, Sand T 
therefore have to be orthogonal vectors of length (p + q) /2, 
which in turn implies that 

a = [(p + q)/2]A, b = [(p + q)/2]B, 

c = [(p + q)/2]C, 

d = [(p + q)/2]D, e = [(p + q)/2]v!JE 

have to hold, where A, B, C, D, E are mutually orthogonal 
unit five-vectors. 

Substituting into (6.1) we see that 

Z = A{[ (p + q)/S] (3 + cos 2x)sin 2y cos 2z + [(p + q)/2]cos x cos 2y sin 2z - [(p - q)/S] (1 - cos 2x)sin 2y} 

+ B{ - [(p + q)/S] (3 + cos 2x)cos 2y cos 2z + [(p + q)/2]cos x sin 2y sin 2z + [(p - q)/S] (1 - cos 2x)cos 2y} 

+ C{[ (p + q)/4 ]sin 2x siny cos 2z + [(p + q)/2]sin x cosy sin 2z + [(p - q)/4 ]sin 2x siny} 

+ D{ - [(p + q)/4 ]sin 2x cosy cos 2z + [(p + q)/2]sin x siny sin 2z - [(p - q)/4 ]sin 2x cosy} 

+ E{[ (p + q)/S]v!J( 1 - cos 2x)cos 2z + [(p - q)/S]v!J( 1 - cos 2x)} + F, (6.15 ) 

showing that our three-space is three-dimensional hypersur
face embedded into E5. There is a certain degree of ambigu
ity in picking b4ab and bSab but the rest of it is uniquely de
fined up to Euclidean motion in E5. 

SettingF = 0 and choosing the unit vectorsA, B, C, D; E 
in the direction of the coordinate axis we find 

5 1= Z I (x,y,z) = [(p + q)/S] 

X (3 + cos 2x)sin 2y cos 2z 

+ [(p + q)/2]cos x cos 2y sin 2z 

- [(p - q)/S] (1 - cos 2x)sin 2y, 

52 = Z2(X,y,z) = - [(p + q)/S] 

X (3 + cos 2x)cos 2y cos 2z 

+ [(p+q)/2]cosxsin2ysin2z 

+ [(p - q)/S] (1 - cos 2x)cos 2y, 

53 = Z3(X,y,Z) = [(p + q)/4 ] sin 2x siny cos 2z 

+ [(p + q)/2]sin x cosy sin 2z 

+ [(p - q)/4] sin 2x siny, 

54 = Z4(X,y,Z) = - [(p + q)/4 ]sin 2x cosy cos 2z 

+ [(p + q)/2]sin x siny sin 2z 

- [(p - q)/4 ] sin 2x cosy, 

55 = Z5(X,y,z) = [(p + q)/S]v!J( 1 - cos 2x)cos 2z 

+ [(p - q)/S]v!J(1 - cos 2x) (6.16) 

or introducing 

5 = 5 I + is 2, "I = 53 + is 4, t = 55 

we have 
5 = [(p + q)/2]{cos x sin 2z - (i/4) 

X(3 + cos 2x)cos 2z - [(p - q)/(p + q)] 

X ( 1 - cos 2x) )}e
2iY

, 

"I = [(p + q)/2]{sin x sin 2z - (i/2) sin 2x 

( 6.17) 

X (cos 2z + [(p - q)/(p + q) ])}e iY, (6.1S) 
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t = [(p + q)/S]v!J(1 - cos 2x)cos 2z 

+ [(p - q)/S ]v!J(1 - cos 2x), 

as our final result. 
Straightforward calculation shows that 

(dS)2 = d5 it + d7J dr, + (dt)2 

= {p2(COS Z)2 + q2(sin z)2}(dx)2 

+ (p2 _ q2)sin x sin 2z dx dy 

+ {(p2(sin Z)2 + q2(COS z)2)(sin X)2 

+ (p + q)2(COS x)2}(dy)2 + 2(p + q)2 

( 6.19) 

that is, (6.15) is indeed an embedding of our subfamily into 
E5. 

There is a distinguished member of this family at p = q. 
If we disregard the constant conformal factor p2 then the line 
element is given by 

(dS)2 = (dX)2 + (sin X)2 + 4(cos x)2)(dy)2 

+ S cos x dy dz + 4(dz)2 (6.20) 

and Eq. (6.1S) simplifies to 

5 = {cos x sin 2z - (i/4) (3 + cos 2x)cos 2z}e2iy
, 

"I = {sin x sin 2z - (i/2)sin 2x cos 2z}eiy
, (6.21) 

t = (v!J/4) (1 - cos 2x ) cos 2z. 

Observe the remarkable fact that 

5t + 7Jr, + (t) 2 = 1 ( 6.22) 

showing that (6.20) is actually embedded into S4. It would 
be nice to find-if possible-another equation of the Carte
sian coordinates of the form 

(6.23 ) 

We could then say that the three-space (6.20) is the intersec
tion of S4 with (6.23). Equation (6.20) is a member of an
other one-parametric family given by 
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(dS)2 = (ml)2 + (m2)2 + r 2(m3 )2 

= (dX)2 + ((sin X)2 + r 2(COS xflCdy)2 

+ 2r 2 cos x dy dz + r 2(dz)2. (6.24) 

This family has an additional symmetry generated by the 
vector field a / az in our coordinate system. The space sec
tions of the Taub solution5 have this symmetry. 

VII. MISCELLANEOUS REMARKS 

Is there any other subfamily that could be embedded 
into E5 or is everything else "too curved" for this? 

If the ambient space is E6
, however, then the calcula

tions are harder at every stage. 
The next task seems to be to embed (6.24). 
This family, due to higher symmetry, has other interest

ing features also. 
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We think that no member of the family (1.14), except 
S3, can be embedded into E4. 

Is there a subfamily of ( 1.4), that can be embedded into 
S4? 
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regarded as gauge theories of the group of space-time diffeomorphisms is given. The local 
conditions for the Lagrangian to be gauge invariant coincide with those found by other authors 
[A. Perez-Rendon Collantes, "Utiyama type theorems," in Poincare Gauge Approach to 
Gravity. I, Proceedings Journees Relativistes 1984; A. Perez-Rendon and J. J. Seisdedos, 
"Utiyama type theorems in Poincare gauge approach to gravity. II, " Preprints de 
Mathematicas, Universidad de Salamanca, 1986] in Kibble's and Hehl's approaches. 

I. INTRODUCTION 

This paper deals with gravitational theories that can be 
regarded as gauge theories of the group of space-time diffeo
morphisms. 1 In particular, we shall consider "metric-affine" 
theories, in the sense that the field variables are a Lorentzian 
metric «I> on the space-time four-dimensional manifold M 
and a linear connection r on the coframe bundle L (M).z 
The variational principle is constrained by the requirement 
that r is metric with respect to «1>, i.e., Dr «I> = o. 

Instead of using «I> as one of the field variables, one can 
as well use a vierbein Cor coframe) fields = {ea

}, namely, a 
section of LCM), provided that «I> is recovered a posteriori 
(so to say, after solving the field equations) by regarding s as 
an orthonormal coframe. Since coframes differing by a Lor
entz transformation yield the same «1>, in this case one must 
also require the theory to be invariant under a Lorentz 
gauge. 

In this paper we consider a generic gravitational theory 
as a gauge theory of the diffeomorphism group, whose field 
variables are the coframe field and a linear connection; we 
describe a suitable geometrical setting for giving a global 
characterization of the Lagrangians which are gauge invar
iant, in the sense that they are invariant under space-time 
diffeomorphisms and local Lorentz transformations (the 
precise mathematical meaning of these invariances will be 
clarified later on). 

An interesting result of this analysis is that the local 
conditions of gauge invariance appear to be the same as in 
Kibble's and Hehl's approaches,3--4 where Einstein-Cartan
type theories are regarded as gauge theories of the Poincare 
group. 

II. A GEOMETRICAL SETTING FOR UTIYAMA'S 
THEOREM 

In this section we review some differential geometric 
constructions, due mainly to Garcia5 (see also Ref. 6), 
which allow a very precise and elegant treatment of Utiya
rna's theorems-7 (let us recall that Utiyama's theorem pro
vides a characterization of the Lagrangians invariant under 
internal gauge transformations). Let M be a paracompact, 
connected, oriented manifold, P a principal bundle over M 
with structure group G and projection 1T: P --+ M; let g denote 

the Lie algebra of G. A connection r on P can be regarded as 
a splitting 

r: TM --+ QCM) 

of the exact sequence 
incl rr. 

0--+ Ad P--+ Q(M) --+ TM --+0, 

(2.1 ) 

where TM is the tangent bundle of M, Q(M) is the bundle of 
G-invariant vector fields on P, and Ad P is the subbundle of 
the vertical vectors in Q(M), usually called the adjoint bun
dle. Thus a connection r is a section of the affine bundle 
C(M), whose fiber ex over xEM is the set of homomor
phisms r x: TxM --+ Qx (M) such that 1T * 0 r x = id. 

The space Y [Ad P] of sections of Ad P is a Lie Y
algebra (where Y is the ring of smooth functions on M) and 
is called the gauge algebra; its elements, which are vertical 
vector fields on P, are usually called "infinitesimal gauge 
transformations." AnAEY[Ad P] can be represented by a 
vertical vector field X A on C(M) in a way that can be intu
itively described as follows, a more precise definition being 
given in Ref. 5. Y [Ad P] can be regarded as the Lie algebra 
of the group Autv(P) of the vertical automorphisms of P, 
which acts on C(M) by pullback, thus defining a mapping 
Aut v CP) X CCM) --+ CCM). Differentiating this mapping 
with respect to the first argument, one gets a mapping 
Y [Ad P] --+ vert TCCM), Af---+XA • The local expression of 
XA is the following: if {Db' b = 1, ... ,dim g} is a basis of g, 
A = A bDb is a section of Ad P, and {x'',rn are coordinates 
on CCM), then 

X ( aA b b ra d) a 
A = --. +cad;A --, 

ax' arf 
(2.2) 

where the C~d are the structure constants of g. The mapping 
Af---+XA is a morphism of Lie R-algebras. 

The rule that associates the curvature to a connection 
definesamap!l:J lC(M) --+A2T*M ® Ad P, whereJ lC(M) 
is the bundle of jets of sections of CCM). 8 It is easily shown 
that !l is a surjective bundle morphism. The gauge algebra 
Y [Ad P] can be represented on A 2T * M ® Ad P in the fol
lowing way: ifJis a function on A 2 T * M ® Ad P linear on the 
fibers, and AEY [Ad P], then ZA is the vertical vector field 
on A2T*M® Ad Psuch that 
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Introduced local coordinates {xi,R fk} on A 2 T * M ® Ad P, 
the local expression of Z A reads 

ZA = - c:b A a R fk a: 1k . (2.4) 

Definition: A function L: J ICCM) ...... R (a Lagrangian 
function) is said to be gauge invariant if 

2"j'XAL = 0 for all AEY [Ad P], 

where 2" denotes the Lie derivative andi the jet extension 
of vector fields on CCM) to vector fields on J lC(M). 8 

Theorem (Utiyama): A Lagrangian function L is gauge 
invariant if and only if L = Ioo, where I is a function on 
A 2T*M ®Ad Pinvariant under the representation (2.3) of 
the gauge algebra Y [Ad P], i.e., 

2"z I=Q 0 
A 

In less formal terms, we could say that a Lagrangian is 
invariant with respect to a local gauge if and only if it is a G
invariant function of the curvature. 

III. THE GAUGE ALGEBRA OF EINSTEIN-CARTAN 
THEORY 

In this section we wish to describe a geometrical setup 
for characterizing the set of gauge invariant Lagrangians for 
general relativity regarded as the gauge theory of the diffeo
morphisms group. According to the discussion of Sec. I, we 
assume the field variables to be sections of a bundle E over M 
obtained as the fibered product9 of L(M) with CCM). Here 
L (M) is the bundle oflinear frames on M, while C(M) is the 
affine bundle of connections on L (M) .5 The Lagrangian L is 
a function on J IE; the action functional is a mapping I: 
Y[E] ...... R (where Y[E] is the space of sections of E) de
fined as 

(3.1 ) 

with iu being the jet extension5 of the section 
u(x) = (e(x),r(x»), and vol(e) the volume form given by 
the coframe form {ea

, a = l, ... ,4}. 
Now we must define suitable global actions of the diffeo

morphism group Diff(M) and of O( 3, 1) on E and impose 
the invariance of (3.1). Let f) be the canonical (soldering) 
form of L (M), and ,8EDiff(M). There exists a canonical lift 
of,8 to a diffeomorphism j3 of L(M) such that the couple 
(,8)3) is an automorphism of L (M); j3 is determined by the 
condition j3 *f) = f). 

The simplest way to define a lift of,8 to the bundle C(M) 
of connections of L(M) is to intend a connection r accord
ing to (2.1). Then a lift.8 of,8 to CCM) is defined by requir
ing the following diagram to be commutative: 

TxM • Qx(M) 

I p. 1 p. . l p(rx ) 

Tp(x) M • Qp(X) (M) 

Combining the two lifts to C(M) and L(M) one gets a 
representation of Diff(M) into Diff(E) which induces by 
differentiation a representation of TM (the gauge algebra of 
the diffeomorphism group) into TE. 
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Now let us turn our attention to the gauge algebra of 
"local Lorentz transformations." A metric <I> on M deter
minesareductionK: OeM) ...... L(M), whereO(M) is the bun
dle of coframes on M orthonormal with respect to <1>. The 
Lorentz gauge algebra is to be identified with 
Y [Ad OeM) ]. This algebra can be naturally injected into 
Y[Ad L(M)] in the following way: let K': 0(3,1) ...... GI(4) 
be the Lie group morphism associated with the reduction K. 

Any AEY [Ad O(M)] can be written as 

A(u) =A b(x)Dt with uEO(M) and x =J-l(u), (3.2) 

where J-l: 0 (M) ...... (M) is the bundle projection and {Db} is a 
basis of the Lorentz algebra so(3,1); the index b runs over 
so (3,1 ). The above mentioned injection is realized by map
pingA toA b(X) (K~Db )*. Now Y[Ad O(M)] is represent
ed into Y [vert TL (M)] by means of the maps 

incl incl 

AdL(M) ...... Q(M) ...... TL(M). 

This gauge algebra is represented into vert TCCM) using the 
techniques summarized in Sec. II. Collecting all the results 
so far discussed, we have that to each vector field 

. a 
y= y'(x)-. 

ax' 
on M there corresponds a vector field X y on E, and to any 
section A of Y[Ad O(M)] a vertical vector field X A on E. 
These correspondences are morphisms of Lie R-algebras. In
troduced in E local coordinates systems {xi,rJ,ej}, the local 
expressions of these vector fields read 

Xy = yi~_ aYh(e~ ~+ q ~), (3.3a) 
ax' ax} ea r b 

} } 

X (aA b b A a rd) a aA b _8 a 
A = --+Cad k ---e 'ba~' aXk ar~ ae-; 

(3.3b) 

Here the C~d are the structure constants of the Lorentz alge
bra, while the ~ are the generators of the natural action of 
O( 3, 1) over R4. 

IV. UTIYAMA'S THEOREM 

The "gravitational" Utiyama's theorem asserts that the 
conditions of invariance under space-time diffeomorphism 
and local Lorentz transformations force the Lagrangian to 
depend upon the field variables (coframe, connection and 
their derivatives) only through the coframe, curvature, and 
torsion forms; moreover, the Lagrangian must be a Lorentz 
invariant function and the associated energy-momentum 
tensor must vanish identically. 

In this section we describe a suitable geometrical setting 
for expressing these conditions. 

(i) Consider the bundle Curv = A2T*M ® Ad L(M); 
the law that to any connection associates its curvature, com
bined with the natural projectionJ IE ...... J IC(M), gives a sur
jective bundle morphism 0: J IE ...... Curv. Introducing local 
coordinates {xi,e'k,r%,Hjk,B Jk} in JlE and {xi,R Jk} in 
Corv, 0 is described by 

R b Bb Bb b rard jk = jk - kj + Cad j k· 
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Y[Ad O(M)] is represented into vert T(Curv) according 
to Sec. II, while TM is represented into T( Curv) as follows. 
Any PEDiff(M) acts on Corv by pullback, mapping uECurv 
to P ... - I (u). Considering a one-parametric group of diffeo
morphisms and differentiating P ... - I (u) with respect to the 
parameter, one gets a mapping TM --+ T( Curv). 

(ii) In complete analogy, we consider the bundle 
Tor = A 2 T'" M ® TM; the law thatto any connection and any 
section of L(M) (coframe) associates the pullback of the 
torsion form through that section defines again a surjective 
bundle morphism T: J IE --+ Tor, which, after introducing co
ordinates {xi,TjiJ on Tor, is described by 

T'!k = H'!k - H~j + c~P (rJE{ - rZe7). 
Again, T(M) is represented into T(Tor) as in T(Curv), 
while Y[Ad O(M)], according to the methods outlined in 
Sec. II, is represented into vert T(Tor) as follows. Let· de
note the natural product (Ad O(M»x X TxM --+ TxM, let 
AEY[Ad O(M)], uETor,f Tor--+R a function li~aron the 
fibers. A is represented by the vertical vector field ZA on Tor 
defined by (2 AI) (u) = - I(A . u). In local coordinates, 

Z'" -A b a TP a 
A - cbP jh --. 

aT'ft, 

(iii) Let us now consider the fibered product F = Curv 
xTorxL(M) together with the surjective bundle mor
phism~:JIE--+F,~ = fiX T Xpr, wherepr:JIE--+L(M) is 
the natural projection. We shall call ~ the curvature-torsion 
morphism. Collecting the representations of TM and 
Y [Ad O(M)] on Curv, Tor, and L(M) that we have so far 
discussed, we obtain representations T(M) --+ T(F), YI---+Z y , 

and Y [Ad O(M) ]--+vert T(F), AI---+ZA • The first represen
tation is a morphism of Lie Y -algebras, while the second 
one is only a Lie R-algebra morphism. After introducing in F 
local coordinates {xi,R Jk,T'!k,ej}, the representing vectors 
read 

i a ayh (Ta aRb a a a) Zy = Y -. - --. hk --+ hk --b- + eh ----;; , 
ax' ax' aT'!k aR jk aej 

ZA = - Cbd ik --+ cbP jh-- + cbp e;- . A b (a R d a a TP a a _8 a ) 
aR ~ aT'ft, aej 

Definition: A Lagrangian function L: J IE --+ R is said to 
be locally Lorentz invariant if 

!L'j'xAL = 0 VAEY[Ad O(M)]; (4.la) 

it is said to be generally invariant if 

!L'j'xyL = 0 for all vector fields Yon M. ( 4.lb) 

Theorem: L is both local Lorentz and generally invar
iant if and only if the following conditions hold simulta
neously: 

(i) I filters through the curvature-torsion morphism, 
i.e., L = Io~, where I: F --+R; 

(ii) L is invariant under the action of Y [Ad O(M)], 
i.e., 

!L' ZA I = 0 VAEY[Ad O(M)]; 

(iii) I is invariant under the action of TM, i.e., 

!L' Z L = 0 for all vector fields Yon M. 0 y 
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Remarks: In local coordinates the conditions (ii) and 
(iii) read 

a d aI a TP aI a _8 aL - O· (42) Cbd R ik --+ Cbp jh --+ CbP e; - - , . 
aR fk aT'ft, aej 

aI = o. (4.3a) 
axi ' 

a aI b aI i aL 0 (43b) Thk --+Rhk --+eh -. = . . 
aT'!k aR Jk aej 

Moreover, the condition (4.3b) is equivalent to the fact that 
the canonical energy-momentum tensor associated to the 
Lagrangian density L'vol(e) vanishes identically. 

Proof The proof is the same as in the Yang-Mills case5
; 

namely, one writes the conditions (4.1) in local coordinates, 
thus obtaining a system of differential equations whose local 
solution is a function on F satisfying (4.3). The fact that ~ is 
a surjective bundle morphism implies that these local condi
tions are globally equivalent to those stated in the theorem. 

o 
The above mentioned set of local conditions is the same 

that Perez-Rend6n and Seisdedos find, in a different geomet
rical setting, for Kibble's and Hehl's approaches.3

,4 This fact 
is not trivial since those approaches rely on quite different 
geometrical constructions. 

v. CONCLUSIONS 

In this paper we have considered the Einstein-Cartan 
theory as the gauge theory of the group of space-time diffeo
morphisms; moreover, in order to allow the use of a coframe 
(vierbein) field as a field variable instead of the metric form, 
we have also considered the presence of a Lorentz gauge. 
Locally, the conditions of gauge in variance force the La
grangian to depend upon the field variables (coframe, con
nection) and their derivatives only through the coframe, 
curvature, and torsion forms; moreover, the Lagrangian 
cannot depend on the space-time position, and the canonical 
energy-momentum tensor of the gauge fields must vanish 
identically. These local conditions have been given a global 
formulation. 

It should be noted that, in the framework of a recently 
proposed variational formalism on supermanifolds, 10.1 I 
these results can be generalized to (global) superspace for
mulations of supergravity theories. 12 
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Nonautonomous Hamiltonian systems of one degree of freedom close to integrable ones are 
considered. Let € be a positive parameter measuring the strength of the perturbation and 
denote by €c the critical value at which a given KAM (Kolmogorov-Arnold-Moser) torus 
breaks down. A computer-assisted method that allows one to give rigorous lower bounds for €c 
is presented. This method has been applied in Celletti-Falcolini-Porzio (to be published in 
Ann. Inst. H. Poincare) to the Escande and Doveil pendulum yielding a bound which is within 
a factor 40.2 of the value indicated by numerical experiments. 

I. INTRODUCTION 

A problem that has been extensively investigated, both 
in physics and mathematics, is the stability of invariant sur
faces for perturbed integrable systems. 1.2 

Roughly speaking, most of the invariant surfaces for an 
integrable system are preserved under perturbation if the 
strength € of the perturbation is sufficiently small. But when 
€ exceeds a certain critical value €c, these smooth surfaces 
disappear. 

We are interested in analytical tools that allow one to 
give rigorous and nevertheless realistic lower bounds for €c 
in the case of Hamiltonian systems. 

For relatively simple dynamical systems, such as holo
morphic mappings of the plane ("Siegel's center problem") 
or some special examples of area preserving diffeomor
phisms of an annulus, rather complete results are now avail
able.3

-
9 To the best of our knowledge, the methods used in 

obtaining these results have not been extended to Hamilto
nian flows for which the only general tools rely on classical 
perturbation theory and on KAM theory. 10-16 

For concreteness, and in view of an application we will 
mention below, we will consider only nonautonomous Ham
iltonian systems with one degree of freedom. We remark, 
however, that our techniques extend easily to the general 
higher-dimensional situation. 

To be more precise, let us consider a Hamiltonian 

Ho=.ho(A) + €/o(A,,p,t) , €>O, 

which is a real analytic function defined on a complex do
main of the form DR" (Ao) XS~", where AoER, so>O, 
Ro> 0, DR" (Ao) is the complex disk 

{AEC: IA -Aol<Ro}, 

and S~" is the two-dimensional complex strip 

{(,p,t)EC2: 11m ,pI <So, 11m t I <So}, 

We assume that the perturbation/o has a period 217' both 
in the "angular" variable ,p and in the time variable t. In 
other words, the phase space of our system is the product of a 
real interval with the standard two-dimensional torus 
T2=.R2/217'1? 

The integrable part ho is assumed to be nondegenerate, 

a) Permanent address: Dipartimento di Matematica, IIa Universita' di 
Roma, 00173 Rome, Italy. 

i.e., for any AEDR" (Ao), 

h " =.d 2ho (A) """0. 
o dA 2 r 

Finally the center Ao is assumed to be such that the frequen
cy OJ=.h b (Ao) verifies the Diophantine condition 

IOJV I +v2 1- I <ClvI IT (1) 

for some C>O, 1'>1, and every (V1,V2)='VEZ2 with vl,!=O. 
For € = 0 the torus 5::(0) (OJ) =. {Ao} X T2 is invariant for ho 
and the flow is simply given by 

s, 
(Ao,,po,to) -+ (Ao,,po + OJt,to + t). (2) 

From KAM theory one knows that, for € sufficiently small, 
there exists, in an €-neighborhood of 5::(0) (OJ), a (unique) 
analytic torus 5::(€) (OJ) invariant for Ho and on which the 
flow is still given, in suitable coordinates, by (1). Numerical 
experiments (see e.g., Refs. 17-20 as well as Refs. 1 and 2) 
have shown that these KAM tori break down when, as men
tioned above, € reaches a critical value €C' We remark that 
the lower bounds obtained from standard KAM theory have 
always turned out to be several order of magnitude away 
from the numerical evidence. 

In this paper we are concerned with the problem of ob
taining "reasonable" (i.e., "in reasonable agreement with 
numerical evidence") rigorous lower bounds €. of ~c so as to 
insure the existence of KAM tori for € < € •. 

The method that we are going to present is based on the 
scheme used by Arnold in his proof of the theorem on con
servation, under perturbations, of quasiperiodic motions. II 

We recall briefly this scheme. 
One constructs a sequence of Hamiltonians H j of the 

form 

hj (A ';€) + €'YJ; (A ',,p',t ';€), t '= t, 

defined in shrinking domains D R
j 
(A j ) X S ~j' The centers 

AjER are chosen so as to keep the frequencies fixed, i.e., 
h; (Aj) = OJ. The Hamiltonian H j + I' for j = 0,1, ... , is ob
tained from Hj with the aid of a real analytic canonical trans
formation 

C,: DR (A,+I)XS; -+DR(A,)XS; 
J+l ~1+1 J ~j 

close to the identity transformation. In order to construct Cj , 
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there are a certain number of smallness conditions (in the 
literature usually referred to as "inductive hypotheses") 
that E has to satisfy. If E is small enough one can show that all 
the inductive hypotheses are verified and that, in a suitable 
sense, ll.i becomes, asj goes to infinity, closer to an integrable 
Hamiltonian. From this one can conclude that the invariant 
torus %(E) (lU) is obtained as a limit of the composed transfor
mations 

CO'CI ' ••• 'Cj _ 1 ({A)X'f2
). 

The inductive hypotheses consist of a set of estimates 
needed to control all the quantities entering in the scheme 
sketched above. These estimates involve also arbitrary 
choices of various auxiliary parameters. It is natural to try to 
obtain better stability estimates by varying these parameters. 
It will turn out that, in our situation, the dependence of the 
estimates on the auxiliary parameters is very simple so that, 
in concrete applications, it will be easy to make good choices. 
There is, however, a delicate choice that concerns the 
amount of shrinking of the analyticity domain in the period
ic variables ¢ and t. We will discuss this point in detail in 
Appendix C below. 

For the purpose of this introduction, let us denote by /j 
the set of specific conditions that will form our inductive 
hypotheses at the jth perturbative step leading from Hj to 
Hj + I' In this context, the weakest condition that E has to 
satisfy in order to insure the existence of the KAM tori 
%(E) (lU) is 

E < E 00 = sup {E> 0: /j are satisfied for every 
j = 0,1,2, ... }. 

Of course, such a condition has little practical interest since 
it involves checking an infinite number of estimates. So, we 
will introduce, for any preassigned integer jo, a new set of 
estimates /t., which will imply all the /j forj>jo' Then, 
for anyjo, 

Eju =sup {E> 0: /o'/I'''''/j",/t. are satisfied} 

will provide a concrete lower bound for Ec' In fact, with our 
choices, Ej" will form a strictly increasing sequence injo, so 
that one obtains better lower bounds by taking larger values 
ofjo' Now, forjo-20 the number of elementary operations 
(i.e., additions, multiplications, ... , taking powers, exponen
tials, ... ) needed in checking that E < Ej " is of the order of 105

_ 

106
• Thus, in carrying out these estimates, one is naturally 

led to the use of computers. 
Our method has been applied in Ref. 21, in conjunction 

with other rigorous numerical computations, in order to give 
rigorous stability estimates in the following case. Let 

Ho=A 2/2 + E(COS ¢ + cos (¢ - t»), 

and consider the stability of the golden-mean torus, i.e., the 
torus which for E = 0 is given by {A o} X T2 with 

Ao=lU= (1 + J"S)/2. In Ref. 20, Escande and Doveil gave 
numerical, as well as (nonrigorous) theoretical evidence in 
order to show that this torus disappears for E = Ec 

- 1/29.41. In Ref. 21 it is proved that the golden-mean torus 
exists and is analytic for E < E. =tio, and comparing with the 
experimental results one has 
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EJ€.<40.2. 

In Ref. 21, it is also pointed out that the best result it was 
possible to obtain by replacing the method of this paper with 
the more standard KAM techniques gives a lower bound 
€ •• = ~ for which EJE •• <2458. 

We conclude this introduction by remarking that the 
role of computers in obtaining the bounds discussed above is 
merely to perform lengthy operations with real numbers. By 
now it is well known how to employ computers in the evalua
tion of rigorous estimates using, for example, "interval anal
ysis." For more information on this point we refer the reader 
to Refs. 22-24 and to the literature cited there. 

The content of the rest of the paper is as follows. Section 
II contains the inductive scheme, Sec. III the KAM 
theorem, Sec. IV the inductive hypotheses /j~' and Sec. V 
rigorous numerical estimates; and Appendix A contains the 
self-contained description of the KAM algorithm construct
ed in this paper, Appendix B the implicit function theorems 
and a transcedental inequality, and Appendix C the choice 
of the analyticity-loss sequence {8). 

II. INDUCTIVE SCHEME 

In this section, maintaining the notations and assump
tions of Sec. I, we show how to construct the canonical trans
formation Cj • 

Let us denote by Fj, Gj , and Lj upper bounds on, re
spectively, sup I ./; I, suplh }'I, and suplh }'I-I, where the su
premum is taken over the domains of definitions 
DR/Aj)XS~j=DjXSt and the bars denote the standard 
norm of complex numbers. 

The analyticity assumptions imply the following esti
mates on the Fourier coeffiecients of./;: 

(3) 

where for integer vectors v, II vII = IVII + Iv2 1, and 

'( (A) =_1_ f J: (A,¢,t)e - ;(v,tP + v,l) d¢ dt. 
Jj.v (21T)2 T' J 

Another fundamental property of holomorphic functions, 
which we will often use, is the following. If g is holomorphic 
on a (smooth) domain D, then for any subdomain D ' CD 
one has 

sup Ig' I <sup Ig I [dist(aD ',aD)) -I. 
D' D 

(4) 

This estimate follows easily from Cauchy's integral formula 
for g' taking as contour of integration a circle of radius 
dist(aD ',aD) and center zoEf) '. 

Now, following Arnold, we fill in the technical details 
necessary to carryover the scheme sketched in Sec. I. 

Cutoff: Let us split the Fourier expansion of./; in the 
following way: 

f = f +/(1) +/(2) 
Jj Jj.O J J' 

where 

A. Celietti and L. Chierchia 2079 



                                                                                                                                    

f (2) = '" I: (A )ei(v,4> + v,t) 
} - £.,; Jj,v , 

Ilvll>Nj 

with ~, to be exactly determined later, such that 

fJ 2)-O(c\ 
Hamilton-Jacobi perturbative step: Following classical 

perturbation theoryl4 we remove (formally) the perturba

tion to order O(?+ ') via the generating function 

<l>j =A /¢J + ?ct>j (A ',¢J,t;E), 

ct>.= I }j,v(A /) ei(v,4> + v,/). 
) O<lIvll<N; -i[v l h;(A')+v2] 

In this case the new integrable part will be 

hj+ I (A /) =hj (A /) + E~ }j,o (A '). 

Analyticity loss in the action variables and the 0+ l)th 
approximation to the invariant torus: To make rigorous the 
formal step described above we have to take care of the small 
divisors appearing in ct>j and to do this we have to restrict the 
analyticity domain in the new action variables. Let Y> 1 and 
~ be such that 

(5) 

From (5) it follows easily that for each A 'EDR' (Aj) and 
)+1 

Ilvll<~, vI#O, 

(6) 

Using an elementary implicit function theorem 
(Lemma 1 of Appendix B), we can determine the (j + 1) th 
approximation to the w-torus: If, for some YI > 1, 

(7) 

then there exists a uniqueAj+ I ER[(y, -1)/y,JR/Aj) such that 

h;+ I (Aj+ I )=h;(Aj+ I) 

+ E~ J;,o (Aj+ I) = h ;(A) = w; 

moreover one has 

IAj+1 -Ajl<YIE~FjLjRj-l. (8) 

The numbers Y and Y I are the first "auxiliary parameters" 
(Sec. I) which we introduce in order to have complete con
trol of the quantities entering in the estimates. 

Now, defining 

Rj+ I =R;+ I - YIE~FjLjR j-I, 

it follows from (8) and (5) that 

Dj+ I =DR (A) + I ) CDR' (A).) CD) .. 
J+ I j+ 1 

In order to have complete control on Rj + I we require 

YI?FjLjR j-I < (1 - l/YI)( l/Y2) (CGjNJ H) -I, 

l/Y2= 1 - l/y, 

and obtain the bounds 

(9) 

(Y3CGjNJ +T) -1<Rj+ 1< (Y2CGjNJ + T) -I, (10) 

with Y3=YIY2- Notice that (5) and (9) imply (7). 
Control of grad ct>j and analyticity loss in the periodic 
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variables: In order to control the derivatives ofct>j we have to 
restrict the analyticity domain in the (¢J,t)-variables. Let 
~j < Sj andA /ED R' (Aj ), (¢J,t)ES~. _ 0' Using (6) and the 

J+ I J J 

estimates (3) and (4) we obtain 

I 
act>j (A / '" t) I <: yCP '" I V II + T e - ojll vII = k (1) CF 
a'" ''f'' '" ) £.. I -))' 

'f' v#O (11) 

-) (A''''t) I 
act> I 
aA' ''f'' 

<A.;yCFjRj-1 (I IvIITe-O)lvll + I e-OjIV,I) 
v#O v,#o I v2 1 

+ yC 2FjGj I I VIII + he - Ojllvll 
v#O 

=k (2)CFR .- 1+ k (3)C 2PG (12) 
) )) ) ))' 

where A. ; denotes a (strict) upper bound on 
[ (1 - R ; + 1/ Rj ) ] - I. Analogously one gets 

I a2ct>j I <:k (4)CFR .-1 + k (5)C 2FG. (13) 
a¢J aA / "') )) ) ) ) 

with 

k?)=A.;y I IVIIIHe-Ojllvll, 
v#O 

k?)=y I IVI12+2Te-0)lvll. 
v#O 

The jth canonical transformation: At a fixed time t, the 
canonical transformation generated by <l>j is obtained by in
verting the functions of mixed variables 

j act>· _'}J act>. 
A =A / + c -) (A /,¢J,t), ¢J/ = ¢J + c-) (A /,¢J,t). 

a¢J aA' 
(14) 

First of all we have to make sure that AEDj if A /EDj + I . 

Using (8), (10), and (11) it is readily checked that this will 
be achieved by requiring 

( CGN I+T)-I ~FLR -I k(l) 2jC'F R Y2 j j + YIE j j j + j E j< j' 

(15) 

Notice that (15) implies (5), thus (15) and (9) imply (5) 
and (7). Now, using (13) and (10), itis readily checked that 

E~(k (4)CPR- 1+ k (5)C 2PG.)< 1 (16) 
) )) ) )) 

implies the injectivity on Dj + I of the first map in (14), 
which can therefore be inverted in the form 

- ~- / AEDr->A + E rj (A,¢J,t) = A EDj+ 1> 

where Dj denotes the image of Dj + I under the direct map. 
Moreover 

_ I act> I sup I rj I <sup a¢ . 

In order to invert the second map in (14) we have to allow 
another analyticity loss in the angle variables (however, in 
practical applications, this second analyticity loss will turn 
out to be irrelevant with respect to the first one). Let 8j > 0 
be such that Sj+ I = Sj - ~j - 8 j > O. Then, using another 
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elementary implicit function theorem (Lemma 2 of Appen
dix B), we have that if 

?(k (2)CFR .-1 + k (3lC 2FG.)8.- I<1 (17) , " , '" 
the second map in (14) is inverted by 

""ES I --+"" + E~ tl.. (A' "', t) = "'ES I 
'f' Sj+' 'f' "'f' , 'f' 5j - 8j 

with 

supltl.jl<supl :~ I. 
We can finally define the canonical transformation Cj and its 
inverse Cj , 

Cj : (A,,p,t) --+ (A ',,p',t) = (A + ?fj (A,,p,t) , 

,p + ?3.j (A,,p,t) , t), 

Cj : (A ',,p',t) --+ (A,,p,t) = (A' + E~rj(A ',,p', t), 

,p' + E~ tl.j (A ',,p',t), t), 

with 

- J<I>-
tl.,. (A,,p,t) =-' (A + ?r,. (A,,p,t) , ,p, t), 

JA' 

J<I>. . 
rj (A ',,p',t) =-' (A', ,p' +? tl.j (A ',,p',t), t); 

J,p 

the domain of holomorphy in the new variables being Dj + I 

and S~J+ " 
Estimates on Hj+l: The new Hamiltonian 

Hj+ I (A ',,p',t;E) is given by 

. A ( J<I>. ) + E- 2J I fj.v A' + E2J --' ei(v,</> + v,tl 
0< Ilvil <") J,p 

. A ( .J<I» 
+ E- 21 I fj.v A' + E21 __ ' 

Ilvll>Nj J,p 

~ J<I>. 'ei(v,</> + v,tl + E- __ '. 
Jt 

Denoting by Aj an upper bound on 

[ 1 - R .- I (R + ejk (\ lCF) ] -I a straightforward 
, ,+1 " ' 

computation yields 

SUP2 Ifj+ I (A ',,p',t) I<Gj (Cfjk pl)2 + k J6 lCFJR j- I 
Dj+ IXS Sj + I 

(18) 

where 
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k(6l=.k[k(\l/(I_e- 8j )2]. , -, , 
At this point we choose Nj • Let a > ° be a new auxiliary 
parameter and set 

~ = OJ- I [log Qj + 210g(k F) + log Qj)]' 
where 

Q. = (ak (8)?C 2FG.) -I k (8)= (k (\l)2/4/3 0- 1 ,-, "" -, '" 
Bj =e - 8j/(1 - e - 8j), k F) = C/3j + 1)0j' 

With these definitions it is easy to see that (Lemma 3, Ap
pendix B) 

FE-~ t e -8)lvll <aG.(CFk (1»2 , , " 
Ilvl>") 

(19) 

provided 

16e- kJ7)(ak (8)?C 2FG.)<1. , , , (20) 

Notice that since OJ < 1, k J7) < (1 - e- I
) -I and 

16e- kJ 7) >e; hence (20) implies~>oj-I. 
Denoting by ~ an upper bound on ?C2fjGj and using 

( 18), (19), and (10) we get the basic recurrence relation 

p ={P~[uo+1'oI(CGR)]' j=O, 
j+l- P2[ NI+T] . 1 j uj + 1'j j _ I' J> , 

with 

_Gj +l1 k(\)2 _{G l k 6
6
)/Go, j=O, 

uj=-G ( +a)( j ), 1'j= G. k(6)/G. . 1 
j ,+IY3, "J>. 

Next we indicate the necessary bounds on hi', 
sup Jhi'J<Gj +E~A.JfjRj-2=Gj+p 

sup J hi' J-I<Lj (1 - E~A. JLjfjR j- 2) -1=Lj+ I' 

provided 

E~A. JLjfjR j- 2 < 1. 

As for the A. 's one can set 

A. ~ = {[1 - (Y2CGRN 6 +r) -I] -I, j = 0, 

, [1-YI'(~_I/~)I+r]-I, j>l, 

(21) 

.k = {[1- (Y2CGRN6+r)-I_k61)ECFR -1]-1, j=O, 

, [1-YI'(~_I/~)I+T_PjkJl)Y3NJ~t]-I, j>1. 

III. KAM THEOREM 

We need now to fix the analyticity-loss sequences {OJ} 
and {8j }. First notice that we must have 

00 

I (OJ + 8j ) <S· (22) 
o 

Let 0 be an auxiliary parameter such that ° < 0 < S. Set 

OJ = Of'}} + I, j>O, 

. {Ek 62lCFR -I + k63)Po, j = 0, 

OJ = p. (Y k (2) N 1+ T + k (3» J" 1 
, 3, ,-I "" 

and require the condition 
j . 

IOn <s-o. 
o 

(23) 

Then it is clear that (22) and (17) are automatically veri
fied. 

A. Celletti and l. Chierchia 2081 



                                                                                                                                    

Remark: In principle any sequence {Dj } such that 

is admissible. Our choice is related to the "quadratic" char
acter of the inductive scheme that we are following. For a 
fuller discussion, see Appendix C. As in Sec. I, let us denote 
by J'j the inductive hypotheses (9), OS), (6), (20), (21), 
and (23) and by E", the number sup {E> 0: J'j are verified 
for every integeri = 0,1,2, ... }. 

KAM Theorem: If E < E", then the map 

(<,h',t ')E']['2 

->J(<,h',t ') = lim Co' ... 'Cj _ I (Aj,<,h',t ')ER X ']['2 
j-oo 

yields an (analytic) embedding of ']['2 into the (generalized) 
phase space of Ho so that J(']['2) is invariant for the flow S, 
generated by H 0 and 

S,(J(<,h',t '») = J(<,h' + OJt,t + t '). (24) 

Proofof(24}: Since Co' ... 'Cj _ 1 is a canonical trans
formation, denoting by S~) the flow generated by Hj' we 
have 

S,(J(<,h',t '»)= limS, (Co' ... 'Cj _ I (Aj,<,h',t '») 
j-oo 

= lim Co' ... 'C}- I (S ~)(Aj,<,h',t '») 

= lim Co' ... 'Cj _ 1 (Aj + O(?FjDj- I)t, 

<,h' + OJt + O(C'FjGjDj- I)t 2 

+O(E
2j
FjR j-

l )t, t'+t) 

= lim Co' ... 'Cj _ 1 (Aj,<,h' + OJt,t' + t) 

= J(<,h' + OJt,t' + t). 

The step before the last identity follows from the inductive 
hypotheses. 

IV. THE INDUCTIVE HYPOTHESES J'!" 
Assume that the inductive hypotheses are satisfied for 

O<i<io, io> 1; we present now a method to control them 
fori> io. To do this we have to simplify the conditions at the 
expense of stronger requirements. 

Remark: This step, in standard KAM theory, is taken at 
io = 0 and is one of the reasons for the inaccuracy of stan
dard estimates. 

Let us start by imposing 

(
kJ"'lI)2 Qj_1 

kF) Qj 

(
k (7) 1)2 k (8) 

= ~ _J_[P. (u. +T. NI+7)]":1 
- (7) (8) J-I J-I J-I J-2 "", k j k j _ 1 

(25) 

Since k J7) U one sees that Qj is increasing ini so that (25) 
implies easily 

~_IINj<~' i>io. (26) 

Next we split condition (15) in two pieces: Let Y4 be a 
new auxiliary parameter such that Y4 < YI- 121 + 7 and let 
Y5= 0 - Yi l ). If we require 
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Y4(y I0/21 + 7) +Pjk]l)Y3N)..::n<l, (27) 

Y5PjYt"'}~LjGjNJ"::I2T<I, (28) 

it is clear that, by (26) and the choice of Y 4 and Y 5' 05) is 
recovered. Moreover 

Aj <A=Y4/ (Y4-1), A;<A'=Y5/ (Y5-1)· 

Finally we strengthen (21) and to do this we introduce the 
last auxiliary parameter. Let I> 1 and require 

[/I(l-1)]Pj(AY3)2GjLjNJ"::127<1. (29) 

This is done so that, since GjLj > 1, one gets 

Lj+ IILj <l, Gj+ I/Gj <g=2 - 1//. (30) 

At this point we need a simple upper bound on 
~ (j>io)' To do this we disregard "logarithmic correc
tions'" Use u· + T.N I +7> (k (1»2 to get forJ'~1 . J J J-I J ,P , 

Now use (31) to check 

N /4j+1 
j+j" "'" Xj+ I' 

with 

O<Xj+ I 

i>l, 

=X. (P) ='2!"- ID-I log [(ak (8) .) 1/2'p. 'II~ ].r I 
1+1 }() }o+) 10 J 

+ (1/'2! - I) log{k (7) . Jo+J 

+ '2! log [ak (8) .) 1/'2!P. '11*] -I}. 
10+1 io J 

Finally using (32) we obtain the estimate 

P 11+2' . <P 'II. 
lo J Jo ] 

with 

'II = (u. + T. N I +7 )1/2 
1 10 In 10 - 1 , 

and 

u;=gO +a)(k]l»2, 

T;=gY0k J\)0-e-
c5j

)-2, i>io' 

i>3, 

(31) 

(32) 

(33) 

Notice that 'IIi, Xj' and 'IIj converge monotonically and 
very rapidly asii 00; we will denote the corresponding limits 
by '11*, X, and'll, 

'IIj* i I{I*, Xj ! X, I{Ij i I{I. 

We are now in a position to control easily all the induc
tive hypotheses [(9), (27), (28), (6), (20), (29), (23), 
and (25)] fori>io + 1. Consider, for example, (9), which 
can be rewritten as 

[yl/(YI - 1) ]y;PjGjLj(~_I~)(\ +7) < 1. (34) 

Using (33), (30), and (32) one sees that, fori = io + nand 
n > 2, (34) is implied by 

(35) 

where 

A. Celletti and L. Chierchia 2082 



                                                                                                                                    

()(l)=[(y/(y -l»)-.2G.L. (glt(42n + IX v )1+T]1I2". nIl r3 Jo j() nA.n + 1 

Now, it is not hard to see that () ~ll! 1 and that the func
tion n .... ()~I)I/Jn (n;>2) has a unique maximum that will be 
achieved for some value n = nT- Therefore (9) will be im
plied, for any j;>jo + 2 , by 

PJ' () (!)I/J .< 1. 
o nl n l 

Completely analogous considerations apply to the rest 
of the inductive hypotheses; for a complete and explicit list of 
all the conditions entering in /t" see Appendix A. 

V. RIGOROUS NUMERICAL ESTIMATES 

The condition E < E 00 in the KAM theorem of Sec. III 
can now be replaced by the more practical condition E < Ejo' 
wherejo is any integer greater than 2 and, as in Sec. I, 

Ejo =sup {E>O: /o,/I""/jo'/t, are verified}. 

From the preceding sections it follows that Ejo is a strict
ly increasing function ofjo, so that, in concrete applications, 
one is interested in takingjo as large as possible. Already for 
jo greater than, say, 5, it will be readily realized that, in order 
to check that E < Ejo' the use of a computer becomes neces
sary (in applications a reasonable choice might be jo - 30; 
compare Ref. 21. In this case one can proceed as follows. 

Let us denote by n the set of auxiliary parameters 
{0,a,Y,YI'Y4,l} and, to stress that the estimates depend on 
the choice of n, let us replace Ejo by and Ejo ( n). One can then 
write a program that, for any choice of n, checks if a given 
number E verifies or not the conditions /o'/I""/jo'/t,. 
By "trial and error," it will be easy to find a (close) lower 
estimate, E. (n) of Eju (n). At this point, varying n, one can 
"maximize" E. (n) so as to obtain the final result. Because 
of the simple dependence of Eju on n, this latter operation will 
tum out to be rather straightforward. 

Important remark: Our method, as well as all KAM 
theorems, deals with very general situations and, a fortiori, 
does not exploit the peculiarities of the system at hand; such 
peculiarities might include the geometry of the phase space, 
singularities in the action variables, special properties in 
Fourier space, symmetries, etc. Thus, before applying our 
method, one might use the more flexible finite-order pertur
bation theory to conjugate the given Hamiltonian to a new 
one with a smaller perturbation and which, in general, hav
ing lost all its special properties, will be closer to a "generic" 
Hamiltonian. For a detailed discussion and illustration of 
these ideas we refer the reader to Ref. 21. 
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APPENDIX A: SELF-CONTAINED DESCRIPTION OF THE 
KAM ALGORITHM CONSTRUCTED IN THIS PAPER 

Let 

Ho(A,t/J,t;E) =ho(A) + E/o(A,t/J,t), (A,t/J,t)e1Ru (Ao) XT2, 

where 

BRJAO) = {AER: IA - Aol <Ro}, T2=R2/21TZ2 

and AoER is such that w=h ~ (Ao) satisfies 

IwvI +v2 1- I<ClvIIT 
for any (VI' v2)EZ2, VI 1=0 and for some C, 7> 0. 

Assume thatHo can be extended to a holomorphic func
tion on 

DoXSO=DRu (Ao) XS to 
= {AeC: IA -Aol<Ro} 

X {(ZI,z2)EC
2
: 11m z;j <50' i = 1,2} 

and denote by Fo, Go, Lo upper bounds on, respectively, 

Finally, letjo;>2 be a fixed integer. 

1. KAM theorem (compare Sees. III and IV) 

If /j (j = O,I, ... ,jo) and /j! are the inductive hypoth
eses described below and if E<Eju = sup {E>O: 
/O'/I""'/ju and /j! are verified} then there exists an 
analytic torus E close to {Ao} X T2 invariant for the flow gen
erated by Ho. On such a torus the flow is given (in suitable 
coordinates) by 

(t/J',t')ET2 
.... (t/J' +wt,t' +t). 

The rest of this appendix is devoted to the description of 
the conditions /j and ,ft,. These conditions are expressed 
in terms of recursive objects. To introduce such objects we 
start with the following. 

2. Definition of the auxiliary parameters 

Let 0, a, y, YI' Y4' I, be such that 0 <50' a> 0, Y> I, 
YI> I, Y4<YI- 12 1 

+T, I> 1. 
Now, define 

Y2=(l-lIy)-I, Y3=YIY2, 

Ys=(l-lIY4)-I, g=2-l/I, 

Ii=Y4(Y4 - 1)-1, Ii '=Ys(Ys - 1)-1. 

Then, forj;>O, we set 

OJ =0/2 j+I, Sj(p)=L Iv I IPe-.5)lv ll (p>O), 
VEZ' 

kJll=YSj(l + 7), k?)=rSj(1 + 27), 

k?)=rSj(2 + 27), !3j=e-.5j (1_e-
Oj
)-I, 

k (7)= (/3. + 1 )0. 
J J J' 

k ;S)= (k Jll)2/(4!3A- I). 

Next we will introduce the recursive quantities ~, Qj' 
N ' "k(2) k(4) k(6) G L Th .. '11 p/Lj,/Lj, j , j , j , j' i,uj,1j. esequantltleswl 
be computable according to the following "computational 
sequence" ('" .. .... x -> Y" means "from the set of quantities 
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X and the quantities known before the computation of X one 
can compute the set of quantities Y"): 

E,C,Fo,Ro,Go,Lo --

Po--Qo--No--Ao-1 ~ ..... k 62),k 64>,k 66 ),GI,L I , --uo//"o--

P.={P~[UO+TO/(CGoRo)-I], i= 1, 

J PJ- d uj_ 1 + Tj_INJ~{], i>2, 

Q.= (ak (8)p.)-1 
J - J J ' 

N; =Djl [log Qj + 210g(kF) + log Q)], 
PI--QI ..... NI ..... AI, A; ..... k l2),k l4),k l6),G2,L2--UI,TI-- Aj = (1- YI' (N;-I/N;)' +7" -ljk?)Y~J~n -I, 

A; = (1 - Y I' (N; _ liN; ) I + 7"] - I, 

3. Definition of the recursive quantities 

We have 

Po=EC 2FoGo, Qo=( ak 68)Po)-I, 

No=Do- I [log Qo + 210g(q7) + log Qo)], 

kF)=A;Y(Sj(T) +2 f e-t;jn) , 
n~ I n 

k (4)=A ~y.'S. (1 + T) k (6)=A.k (1)( 1 _ e -OJ)_2 
J-JJ 'J JJ ' 

Gj+I=Gj (1 + (AjY3)2ljNJ+27"], 

Lj + I =Lj [1 - (AjY3 )2ljNJ + 27"GjLj ] -I, 

uj =(Gj+I/Gj )(1 +a)(k?»2, 

Tj = (Gj+ JG)Y3k?). 
Ao= (1- (Y2CGoRo N6 +7") -I - k61)ECFoR 0- I] -I, 

A~=(1- (Y2CGoRo N 6+7")-I]-I, 

k62)=A~Y(SO(T) + 2 ntl e-
n

6on
) , 

Remark: At the moment, some of the above quantities 
may be ill defined but this will not be the case as soon as the 
correspondent conditions /j are verified. 

k64)=A~yso(1 + T), k66)=Aok61)(1- e- 6,,)-2, 

4. The inductive hypotheses /, (O<i<io) GI =Go + E A 6FoR 0- 2), L, =Lo(1 - E A ~LoFoR 0- 2)-1, 

uo=(G,/Go)(l +a)(k61»2, To=GI k66)IGo' 

Fori> 1 we set 
The following set of inequalities, (AI )-(A5), consti

tute the set of inductive hypotheses /j withi = O,l, ... ,io: 

[yJ(YI - 1 )]Y3EFoLo R 0-
1 (CGjNJ + 7") < 1 (j = 0), 

[yl/(YI - l)]~ljGjLj(N;-IN;)1 +7" < 1 (1<i<io~ 

(Y2CGO N6 +7")-1 + YIEFoLoRo-1 + qI)ECFo<Ro (j = 0), 

YI[ (N;_I/N;I +7" + ~PjGjLjNJ~127" + Yzk?)ljNJ~n <1 (1 <i<io), 

Ek{/)CFoRo- 1 + k6S)Po<1 (j= 0), 

[Y3ktWJ~{ +k?)]lj<l (1 <i<io), 
k(7) 8 

16e- j akJ )Pj<l (1 <i<io), 

EA 6LoFoR 0- 2 < 1 (j = 0), 

(Y3A)2ljGjLjNJ~127"< 1 (1 <i<io), 
j 

k 62)ECFoR 0- 1+ q3)Po + In (k ~2W!:!= ~ + k ~3»Pn <s - D. 
I 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

[(Al)-(A6) correspond to, respectively, (9), (15), (16), (20), (21), and (23) ofSecs. II and III.] 

5. The inductive hypotheses /t, 
In order to describe the set of conditions in /j! we need the following definitions: 

u;=g(1 +a)(k?»2, T;=gY0kJI)(1-e- 6j )-2, i>io, 'I'~=ftm(kj~l~m_I)1I2m-l, 
I 

X ='}jo - 'D-'log [ (ak (8) ) 112" - 'p. '1'*] -I + (Ian - 2)log{k (7) + r - I log [ak (8) ) 112" - Ip. '1'*] -I} 
n 10+n-l ]0 n 10+n-l Jo+n-l J() n , 

,TI _( + NI+7")1/2 ,Tt _,TI (~, +' NI+7")1/4 _ n-I, , k 1+7" 112k + 1 

"rl= Uj" Tj" jo-I ,"r2="rI'f.'jo+1 Tjo +1 jo ,'I'n='I'2 Ilk [Ujo +k +Tjo +k(4Xk) ] ,n>3, 
2 

k j~2~ n =A 'Y~o + n (T), k j~4~ n =A 'Y~o + n (1 + T), 

() ~I)= [(yl/( YI - l))~Gj"Lj..<gl)n( 42n + IXnXn + I ) 1+ 7"] 112", () ~2}= [Y3k j~IL (4nXn) 1+ 7"(1 _ Y4YI;21 + 7") -I] 1/2", 

() (3)=[y,:z.yG.L.(lg)n(4nX )2+27"]112" ()(4)=[yk(4) (4nv)I+7"+k(S) ]112" ()(Sl=[16ak(8) -k;;~"]1I2" 
n If3 5 }o Jo n 'n 3 10 + nAn 10 + n , n - 10 + n e , 
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() (7) == [(11(1 _ 1 »)(Ar )'1(;. L. (gl)n( 4nX )2 + 2T] 1/2" () (8) = [k (2) 4nX + k (3) ] 112" 
n 3 111 j() n 'n - 10 + n n 10 + n . 

Now, denoting by'll the limit of the 'lin's, one has that 

'lin t'll and () ~i) !1 (i = 1 ,2, ... ,S); 

moreover the functions n-+'IIn (} ~;) (n>2) have a unique maximum achieved at some value n = nr. 
The following set of inequalities, (A7)-(AI4), constitutes the set of inductive hypotheses /t,: 
(AI) with j = jo + 1, 

Pl' 'II .() ( ~) <:;; 1 , 
o nl nl 

r r 2 - I (I + T) + r p. k (\) N I + T ~ 1 
41 ).1:)0+1 Jo+l 10 " 

(A3) with j = jo + 1, 

lju'lln:(}~;)<:;;I, n>2, 

(A4) with j=jo+ 1, 

lju 'II nr(} ~~) <:;; 1, n>2, 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

(k Y)lk J:> d 2
( k J!\lk ys»[ lj (a, + 'T,NJ..:rn] <:;; 1 with j = jo,jo + 1, 

Pl' 'II .(}(:)<:;;I, n>2, 
II n6 n6 

(AI2) 

(A13) 
[11(/ - I)]lju+ I (rA3)'1(;,u+ ILju+ INfo+ 2T<:;; 1, 

lj 'II r() (;), n>2, 
11 n n ju + 1 nf - 1 00 

ki})€CFrfl.o- 1 + k63)Po + L (k~W~~TI +k!,;»Pm + L (lju'llm(}~»2m + L (lju'llnr(}~;»2m<:;;So-D. 
m= I m=2 m=4 

(AI4) 

Remark: Because the convergence of 'II nand () ~;) to 
their limits takes place at a very fast rate, it is clear that to 
find explicitly the values nr in concrete applications is not a 
difficult task. 

APPENDIX B: IMPLICIT FUNCTION THEOREMS AND A 
TRANSCENDENTAL INEQUALITY 

Lemma 1: LetIbe the interval (xo - r, Xo + r), letgbe a 
continuous function on I, and let h be a differentiable func
tion on I. 

If (sup! Igl ). (sup! I h 'I-I) < r then there exists a 
unique point xlEl s.t. 

h(x l ) + g(x l ) = h(xo)· 

Moreover Ix) - xol <:;; (sup Igl ). (sup I h 'I-I). 
Proof: The map XE I -+ h - I o(h (xo) - g(x») is a contrac

tion from I into I. 
Lemma 2: Letg be a holomorphic map on Ss and denote 

by 1·1 s the sup norm on Ss. If 

max{lg'ls,lglsD- I}< 1 

then the map zESs -+Z + g(z) is one-to-one from Ss onto 
Ss _ t; and the inverse map Z'E SS _ t; -+z' + h (Z')E SS satis
fies Ih Is-t;<:;;lgl s . 

Proof: Injectivity is plain from 

Iz+g(z)-[z'+g(z')]I>lz-z'I(l-lg'l s )' Z,z'ESs · 

To prove surjectivity let WE Ss-t;. Then the map 
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zEB=={ZEC : Iz - wi <D}-+W - g(z) 

is a contraction from B into itself. 

Lemma 3: If /"a>I6 then ~(x+xo)-I>a for any 
x>log a + 2 log(xo + log a). 

The proof is elementary and is omitted. 

APPENDIX C: ON THE CHOICE OF THE ANALYTICITY· 
LOSS SEQUENCE {6/ } 

The size ofthe perturbation./j + I at the (j + 1) th stage 
is given inductively by lj+ I = PJ(uj + 'TjNJ..:rn, NJ-I be
ing a logarithmic correction in lj _ I. If we disregard such 
logarithmic correction we get lj + I ~P Ja,. 

Let us assume, for the moment, that So < 1. Then Dj < 1 
for eachj and 

aj ~SDj - n, some s> 0 and nEZ., 

so that 

P P 2 p2£-n p2I+'rrj £ 2I- k 
j + I ~ jUj ~ ,SUj ~ 0 k (SUk- n) . 

o 

From this one deduces that the best (up to the above loga
rithmic corrections) choice of {Dj } is the one that minimizes 
the functional 

IT D
k
- l/2

k 

o 

over sequences satisfying ~Dk = Sf)' This is an easy minimum 
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problem that can be immediately solved using Lagrange 
multipliers obtaining 

Ok = s0f2k + I. 

Now, if So> 1, one can replace the auxiliary parameters 
a of Sec. V by a'={a,j',oo,ol""'oj'}' where}' and 00, ... ,0/ 
are new auxiliary parameters such that 

j, 

S'=So- IOj<1. 
j~O 

Then, fori>}' one can repeat the above argument and 
set OJ' + 1 =S '12k for k> 1. 
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Solitary wave solutions of a system of coupled nonlinear equations 
c. Guha-Roy 
Department of Mathematics, Jadavpur University, Calcutta 7(}()()32, India 

(Received 19 August 1986; accepted for publication 13 May 1987) 

~ class of coupled nonlinear wave equations is presented. It is shown that the coupled equation 
possesses solitary wave solutions. Some comments are made on the previously obtained 
solutions of a similar class of equations. 

I. INTRODUCTION 

Following the work of Hirota and Satsuma, I the study 
of a system of coupled KdV equations has assumed crucial 
significance. Recently, several studies concerning the cou
pled KdV equation have been done.2

-6 However, no work on 
the coupled version of the higher KdV equation seems to 
have been reported. 

In this work, we study a new system of coupled nonlin
ear wave equations dealing with the coupled version of the 
combined form of the higher (modified) KdV equation and 
the KdV equation. We also extract the solitary wave solu
tions of this coupled equation and make some comments on 
the previously obtained solutions of a similar class of equa
tions. 

II. BASIC EQUATION AND MATHEMATICAL 
FORMULATION OF THE MODEL 

We begin by writing down a set of coupled equations in 
the form 

u, + av2vx + (3u2ux + AUux + YUxxx = 0, (la) 

v, + O(uv)x + €VVx = 0, (1b) 

involving the variables u(x,t) and v(x,t). In (1), a, (3, A, y, 
8, and € are arbitrary parameters. For v = 0, Eq. (1) reduces 
to mixed form of the modified KdV equation and the KdV 
equation. 

Let us consider the following ansatz: 

U = u(x - ct), v = vex - ct). (2) 

A similar set of equations also holds if the argument is of the 
form (x + ct). 

Using (2), Eqs. (1) become 

a3 {33 ,12 
-CUs +"3(v )s+"3(U )s+"2(u )s +yusss =0, 

(3a) 

- cVs + O(uv)s + (€l2)(v2)s = 0, (3b) 

where s denotes the quantity (x - ct). 
Integrating (3b), we get, after rearrangement, 

U = k/v + c/8 - (€/28)v, (4) 

where the integration constant k may be treated as an arbi
trary parameter. However, we have to impose k = ° in order 
to have a regular U everywhere and in particular when v .... 0. 
It may be noted that u(s) satisfies4 the following boundary 
conditions: 

u,us,uss .... o as lsi .... 00. (5) 

Thus (4) reduces to 

v:= (2I€)(c - 8u). (6) 

This shows that v(s) is directly related to u(s) and is differ
ent from those obtained by Kawamot04 using a coupled 
KdVequation. In Kawamoto's case v(s) was found to be 
inversely related to u(s). 

We now substitute (6) and (3a) and then integrate the 
result twice w.r.t. s. We get, on using (5), 

where the parameters a2, a3, and a4 stand for 

a2 = (lIy)(c + 8a&2/€3). 

a3 = - (1I3y) (A + 16ac82/c), 

and 

(7) 

(8a) 

(8b) 

a4 = (1I6y)(8a83/c -(3). (8c) 

It is interesting to note that the classical Boussinesq equa
tion7 can also be transformed to Eq. (7). 

In the following, we are going to investigate the possible 
solitary wave solutions that follow from (7). 

III. SOLITARY WAVE SOLUTIONS 

Setting u = lIqJ, we transforms Eq. (7) into 

qJ; = a2qJ2 + a3qJ + a4 • 

This equation has a solitary wave solution of the form 

u(s) = 2a2/{A cosh [~(s + so)] - a3} (9) 

for a2 > 0, a3 < 0, and a~ > 4a2a4• In (9), A = ,ja~ - 4a2a4 

and So is an integration constant. It may be remarked that a 
solution corresponding to a3 > ° is not physically admissible 
since in this case the denominator of (9) may vanish leading 

to a singularity. Further when a3 = - 2.,ja2a4 , Eq. (7) leads 
to the kink-antikink solutions as 

u(s) = (a2/a3) [1 ± tanh ( ~/2)(s + so)]. (10) 

Let us now distinguish some interesting cases of ( 7) that also 
exhibit solitary wave solutions. 

Case .... 1: When {:J= 8a83/c, a4 reduces to zero. We 
have then, from (7), 

(11) 

If a2 > ° and a3 < 0, (11) yields the solitary wave solution 

u(s) = - (a2/a3)sech2[(~/2)(s+so)], (12) 
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for 

- (a2/a3 );>U(s);>0. 

It is worthwhile to note that if one applies a similar proce
dure as given in Sec. II to extract a traveling-wave solution, 
the coupled KdV equation, 

U, + avvx + /3uux + YUxxx = 0, 

v, + 8(uv)x + EVVx = 0, 

(13a) 

( 13b) 

reduces to the same form as in (11) and the solution turns 
out to be that given by (12). On the other hand, for the 
coupled modified KdV equation one has to adjust the pa
rameter A., which we consider below. 

Case-2: When A. = - 16ac82/~, a3 vanishes and we 
have, from (7), 

(14) 

Now if a2 > ° and a4 < 0, we again have the solitary solutions 

u(s) = ±~I(a2/a4)lsech[fci;"(s+so)]' (15) 

It is readily seen that the coupled modified KdV equation of 
the form 

(16a) 

V, + 8(uv)x + EVVx = 0, (16b) 

can be converted into (14) so as to obtain the solutions (15). 
It is needless to mention that the corresponding solu

tions for v(s) may be obtained by inserting the solutions of 
u(s) into (6). 

IV. APPLICATIONS OF THE SOLUTIONS 

The solutions obtained in the previous section bear a 
close similarity to those following from a restricted class of 
flow fields dealing with large amplitude Rossby waves. In a 
recent work,9 Benney has obtained some interesting solu
tions of such a class of waves by relaxing the assumption that 
the nonlinearity is weak. It may be noted that when the non-
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linearity is weak, at large times each long wave mode is gov
erned by the standard KdV equation. By considering strong 
nonlinear counterparts, finite amplitude solitary wave solu
tions may be obtained that are similar to those obtained in 
Eqs. (10) and (12). 

It may be noted that the steady form of the combined 
KdV -modified KdV equation has also been analyzed by 
Wadati. 1O For a detailed study of the properties oflarge am
plitude Rossby waves, we refer to the work of Ref. 9. 

V. CONCLUDING REMARKS 

We have obtained several forms of solitary wave solu
tions from a set of coupled nonlinear wave equations. It may 
be remarked that the nature of these solitary wave solutions 
depend remarkably on the signs of the parameters a2' a3, and 
a4 • Apart from the solitary wave solutions, we have also ob
tained the kink-antikink solutions. In addition, a number of 
applications of such solutions have been discussed. 
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It is proved that the Newman-Penrose constants associated with zero-rest-mass spin-1 fields 
on Minkowskian space-time are inherited from the Newman-Penrose constants associated 
with the complex wave function from which these fields are constructed. This latter 
construction is also given and a possible extension of these results to spin-s ( = 0,1,2, ... ) fields 
is indicated. 

I. INTRODUCTION 

This paper is concerned with some of the constants or 
conserved quantities associated with zero-rest-mass free
fields discovered by Newman and Penrose1,2-specifically 
those associated with spin s ( = 0,1,2, ... ) fields on Minkow
skian space-time. We address the question: can one say more 
than that the constants exist only because of a special choice 
of boundary conditions? A study by Goldberg3 of the rela
tionship between the Newman-Penrose constants and invar
iant transformations for spin-1 fields on Minkowskian 
space-time seemed to suggest, with some reservation, a nega
tive answer to this question. We begin here by considering 
spin-l fields on Minkowskian space-time. Having estab
lished in Sec, III that such fields can be constructed using a 
complex wave function (or pair of real wave functions), we 
proceed to prove in the following section that the Newman
Penrose constants associated with zero-rest-mass spin-1 fields 
on Minkowskian space-time are inheritedfrom the Newman
Penrose constants associated with the complex wave function 
from which these fields are constructed. We thus appear to 
have an affirmative answer, for spin-l fields, to the question 
posed above, In Sec, V we indicate how this result might be 
extended to fields of integral spin s> 1. Some useful formulas 
are given in the appendices. 

II. NEWMAN-PENROSE CONSTANTS 

The line element of Minkowskian space-time in rectan
gular Cartesian coordinates and time.r = (x,y,z,t) is given 
by (taking c = 1) 

ds2 = 'TJij dX; dXj = dx2 + dy2 + dz2 - dt 2, (2.1) 

Alternatively, in coordinates «(J,¢>,r,u) with 

x+iy=re;<Psin(J, z=rcos(J, u=t-r, (2.2) 

the line element (2.1) reads 

d~ = r(d(J 2 + sin2 (J d¢>2) - 2 du dr - du2. (2.3) 

Let Q(X) be a wave function. Thus 

a 2Q a 2Q a 2Q a 2Q 
OQ=-+-+---=O. (2.4) 

ax2 ay2 az1 at 2 

In general Q(X) may be complex, i.e., Q(X) = U(X) 
+ iV(X), where U,Vare real-valued wave functions. In 

terms of the coordinates «(J,¢>,r,u) introduced in (2.2) the 
wave equation (2.4) reads 

a
2
Q _ 2 a

2
Q + ~(aQ _ aQ) = _ ~aQ, (2.5) 

ar ar au r ar au r 

where 

aQ=_I_~ (sin (JaQ ) + _1_ a
2
Q. 

sin (J a(J a(J sin2 (J a¢>2 
(2.6) 

Consider now solutions of (2.5) of the form 

(2.7) 

where the functions Qn , n = 0,1,2, ... , are assumed to possess 
continuous derivatives of all orders for - 00 < u < + 00, 

0<(J<1T, 0<¢><21T, with values at ¢> = 0 the same as at 
¢> = 21T. In the course of this work, when we make series 
expansions of the form of (2.7), we shall always assume that 
the coefficients of the various inverse powers of r are func
tions having these properties. Substituting (2.7) into (2.5) 
results in 

- 2(n + l)Qn+ 1= aQn + n(n + 1)Qn (n>O), 
(2.8) 

where the dot indicates partial differentiation with respect to 
u. Let Y1,m«(J,¢» (/=0,1,2, ... ; Iml<l, mel) be the (spin
weight-O) spherical harmonics. These are solutions of 

(2.9) 

Let Y1,m denote the complex conjugate of Y1,m' Using (2.8) 
and (2.9) we find 

- 2(n + 1) f Qn+ lYn,m dw = 0, (2.10) 

where dw = sin (J d(J d¢> and the integration is over the unit 
two-sphere. Thus we have 

G· n+l 0 
o n.m = , (2.11) 

where 

G n + I = fQ n + ly dw o n.m n.m (n>O, Iml<n). (2.12) 

The quantities 0 G ~,;;; I are the Newman-Penrose constants 
or conserved quantities associated with a (complex) wave 
function or spin-O field on Minkowskian space-time. 

If Fij = - Fj; are the components of a real bivector field 
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then the anti-self-dual bivector Fij + i *Fij can be expanded 
on a basis of complex, anti-self-dual bivectors Nij' Mij' Lij as 
[see (A7)], 

Fij + i *Fij = <1>0 Nij + <1>1 Lij + <1>2 Mij' (2.13) 

where <1>0' <1>1' <1>2 are the components of Fij on a null tetrad 
[given in our case by (AI)] and have spin weights 1,0 and 
- 1, respectively. For the concept of "spin weight," the spin 

raising and lowering operators a and d, and spin-s spherical 
harmonics, see Newman and Penrose,I,2 Goldberg et al.,4 
and Penrose and Rindler.5 In Appendix B we note, from 
these references, some results we will make use of in this 
paper. If we assume <1>0 in (2,13) to have the form 

<I> = ~ <I>~(u,e,tP) (2.14) 
o n~o r"+3 ' 

and then require (2.13) to satisfy Maxwell's vacuum field 
equations we find, among other things, that <I>~ satisfies (cf. 
Newman and Penrose2 with whom we have some slight dif
ferences in notation and convention) 

- 2(n + 1)<i>~+ I = do<l>~ + n(n + 3)<I>~ (n;;;.O), 
(2.15 ) 

Proceeding in the same manner as in the scalar case above, 
but using the spin-l spherical harmonics I Y/,m (see Appen
dix B) rather than the ordinary (spin-O) spherical harmon
ics, we find from (2.15) that 

G· n+1 ° 1 n+t.m = , 

where 

(2.16 ) 

G n + I - f ..,.n + I -Y d I n + I,m - '¥o I n + I,m U) (n;;;.O, Iml<n + 1). 

(2.17) 

The quantities I G ~ ! Lm are the Newman-Penrose con
stants associated with a spin-l (Maxwell) field on Minkow
skian space-time. 

In general if s Q (s = 0,1,2, ... ) is the spin-weight-s com
ponent of a spin-s field and if we write 

Q= ~ sQn(u,e,tP) 
s n~o rn + 2s + t ' 

(2.18 ) 

then the Newman-Penrose constants are given by 

G n+1 f Qn+1 -Y d 
s n + s,m = s s n + s.m OJ, (2.19 ) 

where n = 0,1,2, ... , Iml<n +s, and s Yn+s,m are the com
plex conjugate spin-weight-s spherical harmonics. Compar
ing (2.18) with (2.7) and (2.14) we see that 

(2.20) 

III. CONSTRUCTION OF SPIN-1 FIELD 

We first indicate a proof that every solution of the vacu
um Maxwell equations on Minkowskian space-time can be 
constructed out of a pair of real wave functions and a constant 
real bivector.6 

If Fij = - Fji are the components of a real bivector, in 
coordinates X , on Minkowskian space-time, then, as shown 
in Appendix A, we can write 
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(3.1 ) 

where nij' lij' mij are complex, anti-self-dual bivectors with 
constant components, while tPo, tPI' tP2 are the components of 
Fij on the null tetrad k i , Ii, mi, mi given by (A3). If the 
bivector (3.1) satisfies Maxwell's vacuum field equations 

(Fij + i *Fij)J = 0, (3.2) 

then one finds that these are in fact integrability conditions 
for the existence of a complex-valued function Q of X such 
that Q is a wave function, 

DQ=O, (3.3 ) 

and 

tPo= -j.kimjQ,ij' 

tPI = - j.k i I j Q,ij = - j.mi m j Q,ij' (3.4 ) 

tP2 = Vi m
j 

Q,ij' 

The two expressions for tPI arise on account of (3.3). Substi
tuting (3.4) into (3.1) we find 

Fij + i *Fij = j.Uambmij - kalblij - kambnij)Q,ab' 
(3.5) 

If we define the constant, complex, self-dual bivector 

Kij - i *Kij = j.(mimj - mimj + Ijkj -Ijkj ), (3.6) 

we can show, using (3.3) and the equation 

mjmj + mimj - k;lj - kii = 21Jij' 

that (3.5) may be rewritten as 

(3.7) 

Fij + i *Fij = (K/ - i *K/)Q,/j - (K/ - i *K/)Q,/i' 
(3.8) 

Writing Q = U + iV, where U and V are real-valued wave 
functions, we obtain 

Fij = (K/U,/ + *K/V,')J - (K/U,/ + *K/V" ),i' (3.9) 

and this field can clearly be derived from the four potential 
(modulo a gauge transformation) 

Ai =K/U" + *K/V,/. (3.10) 

Thus every solution of the vacuum Maxwell equations on 
Minkowskian space-time can be constructed from a pair of 
real wave functions U, V and a constant real bivector Kij' 
Maxwell fields with four-potentials of the form (3.10), but 
with the second term on the right missing, have been dis
cussed by Synge7 along with some detailed examples. Whit
takerS demonstrated in 1904 that, in effect, the four-poten
tial due to an arbitrarily moving point charge could be put in 
the form (3.10). Recently Synge9 has established (3.9) us
ing an argument based on the Cauchy problem for Max
well's equations and the wave equation. Using the spinor 
formalism (3.9) has already been proved by Penrose. 10 If the 
bivectorFij has spin or componentstPAB =tPBA then (3.9) is 
equivalent to 

tPAB =r''jiD'VAC'VBD,Q, (3.11) 

for some constant one-spinor f1A. Furthermore Penrose lO 

has extended this result to spin-s fields in general. It is also 
interesting to note in the present context that Stewart II has 
shown that source-free electromagnetic perturbations of 
vacuum space-times can be described by a complex scalar 
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field and that this generalizes to the case of gravitational 
perturbations when the background vacuum space-time is 
algebraically special. 

IV. INHERITANCE OF CONSERVED QUANTITIES 

The relationship between the components <1>0' <1>1> <1>2 of 
a Maxwell field which appear in Sec. II and the components 
ifJo, ifJI' ifJ2 used in Sec. III is given by Eq. (A8). Ifwe substi
tute into (A8) the expressions (3.4) for ifJo, ifJI' ifJ2 in terms of 
the complex wave function Q and for Q the expression (2.7) 
we obtain an equation of the form (2.14) with 

<1>0 = - -sm ()-- - ------ + n + -n 1 {I. J 2Q n 1 J 2Q n ( 3 ) 
,fi 2 J(} 2 2 sin () JifJ2 2 

JQn 1 
X cos ()-- - -en + l)(n + 2)sin (}Qn 

J() 2 

J2Qn JQn} -+ i-- + i(n + 1 ) cot ()-- . 
J(}JifJ JifJ 

(4.1 ) 

Since Qn satisfies (2.8) we can show directly that this <I>~ 
satisfies (2.15). Ifwe substitute for <I>~ + I from (4.1) into the 
Newman-Penrose constants for a spin-1 field (2.17) and 
then integrate by parts we find 

G n+1 - 1 JQn+IW d I n + I m - - n m i1J, ',fi . 
(4.2) 

with 

W = -sm(}--------- n +- cos(}-[ 
1. J2 1 J2 ( 1) J 

n,m 2 J(} 2 2 sin () JifJ2 2 J(} 

J J2 (n+1) 
- i(n + 1) cot ()- + i-- - ---

JifJ J(} JifJ sin () 

1 .] --2n (n+ l)sm(} IYn+l,m' (4.3) 

Using the complex conjugate ofEq. (B4), giving in particu
lar I Yn + I,m in terms of Yn + I,m' and taking into considera
tion Eq. (2.9) satisfied by YZ,m, we can simplify (4.3) to read 

Wn,m = [(n + 1) (n + 2)] 1/2 

{ 
JYn+ I m -} 

X sin () J(} , - (n + l)cos () Yn + I,m . 

(4.4 ) 

The well-known recurrence formula for spherical harmonics 
(cf. Abramowitz and Stegun,12 p. 334) 

JYn + lm -
sin () J(} , - (n + 1) cos () Yn + I,m 

= (n + m + l)Yn,m' ( 4.5) 

allows us to simplify (4.4) and upon substitution of Wn,m 
back into (4.2) we obtain 

IG~!:'m = (n +m + l)[(n + l)(n +2)/2r/2oG~,;!;I, 
(4.6) 

with 0 G ~,;!; I given by (2.12). We thus arrive at the remark
ably simple conclusion: For n = 0,1,2, ... , 1m I <n, the con
served quantities associated with a zero-rest-mass spin-l field 
on Minkowskian space-time are inheritedfrom the conserved 
quantities associated with the complex wave function from 
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which the spin-l is constructed. We note from (4.4) that 
Wn•m = 0 for Iml = n + 1, so that 

(4.7) 

V. GENERALIZATION TO HIGHER SPIN FIELDS 

In addition to the operators i'l, d we find it convenient to 
introduce two further operators 

D ns 1 {( 1)' () J . J '== - ,fi n+ sm J(} -IS JifJ 

+(n+1)2COS(}}, (5.1a) 

D-ns 1 { . (}J . J 2 (}} (SIb) '== - ,fi nsm J() +IS JifJ -n cos , . 

which act on spin-weight-s functions. These have the follow
ing effect on the spin-s spherical harmonics: 

Dn,s sYn,m = (n - m + 1){(n -s + l)(n +s + 1)/2}1/2 

XsYn+ I,m' (5.2a) 

Jj n,s s Yn,m = - (n + m){(n - s)(n + s)/2}112 s Yn- I,m' 
(5.2b) 

Jjn+I,sDn,ssYn,m = -H(n+ 1)2_m2} 

X{(n + 1)2 _S2} sYn,m' (5.2c) 

One can show, using (5.2a) and (5.2b), that if,., is a spin
weight-s function then so are the functions Dn,s,., and Jjn,s,.,. 
Also (5.2c) is a disguised version of (B6). Further proper
ties of Dn,s and Jjn,s , essential to the argument that follows, 
are given in Appendix C. 

Extensive calculations have suggested the following 
generalization of our results to spin s> 1 fields: given the 
spin-weight-O functions Qn introduced in (2.7) we define a 
sequence of functions t Qn}, S = 0,1,2, ... of spin weights 
s = 0,1,2, ... , respectively, to be substituted into (2.18), by 
the recurrence formula 

+ (i'lDn+s-I,s-I_Dn+s-l.si'l) s_IQn, (5.3) 

for s = 1,2,3, ... , with 

oQn = Qn. (5.4) 

If we write out (5.3) explicitly we can see that I Q n = <I>~ 
given by (4.1). Also we can prove by induction on s, using 
the formulas (C1)-(C6) thatsQn satisfies 

Thus upon substitution of these s on into (2.19) we confirm 
that s G ~ ! ~.m are constants. Obviously one must verify, us
ing spinors, that these are the Newman-Penrose constants 
for spin-s fields. To see how they are related to the Newman
Penrose constants for s = 0 we substitute for s i;t + I from 
(5.5) into (5.3) and thenputsQn+ I into (2.19). An exactly 
similar procedure to the spin-1 case then yields 

G n+1 _( ){(n+2s)(n+2s-1)}1/2 
s n + s,m - n + m + s 2 

(5.6) 
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for s = 0,1,2, ... , n = 0,1,2, ... , Iml<n +s. Thus, in general, 
the conserved quantities s G ~ ! ~.m , for any positive integral 
value of s, are multiples of the conserved quantities 0 G ~.;:; J 

associated with a complex wave function. 
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APPENDIX A: BIVECTORS ON A NULL TETRAD 

In terms of the coordinates (O,t/J,r,u) introduced in 
(2.2) define the vector fields 

a I a a 
K=-, L=----, 

ar 2 ar au 

1 ( a i a) 
M = r.J2 ao + sin 0 at/J ' (AI) 

- 1 (a i a) 
M = r.J2 ao - sin 0 at/J . 

These vectors constitute a null tetrad. In the text we require 
the components of spin-l zero-rest-mass fields on this null 
tetrad. These fields arise in our work in the form of compo
nents of tensors given in the coordinates Xi = (x,y,z,t). 
Hence we require the components of the vector fields (AI) 
in the coordinates X'. If these components are denoted Ki, 
Li, At, M i, then they are given by 

. 20.. 20. 1",. . 
K' = cos -k' + sm -I' +-e-''I' sm Om' 

2 2 2 

1 .... . 
+ -e''I' sin 0 m' 

2 ' 
. 1. 20 . 1 20. 1",. . 

L'=-sm -k ' +-cos -/I--e-I'I'smOm' 
2 2 2 2 4 

1 .... . 
- -e''l' sin {} m' 

4 ' 

M i__ 1. ilki 1 . illi - -- sm 17 + -- sm 17 

(A2) 

2.J2 2.J2 

1 .... 2 O· 1",. 2 0 _ + --e -1'1' cos -m' - --e''l' SIn - m', 
.J2 2.J2 2 

M-i-_ 1. (}k i 1 . il/i ---sm +--smu 
2.J2 2.J2 

1 .",. 2 {} . 1... 2 {} -' - --e - ''1' SIn - m' + --e''l' cos - m', 
.J2 2 .J2 2 

where 

k i a _ a + a I i~ = _.E..- + .E..-
ax i - az at' ax i az at' 

i a a .a -i a a .a m--=-+l-, m--=--l-. 
ax i ax ay ax i ax ay 

(A3) 

A basis of complex (constant), anti-self-dual bivectors is 
given by 
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If 

mij = mikj - mjki' nij = m;lj - m)" 

lij = mimj - mimj + likj - kJj' 

Mij = MiKj -MjKi, Nij = MiLj -MjL" 

Lij = MiMj - MiMj + LiKj - KiLj' 

then using (A2) and (A 4) we find 

Fl2M -i¢> 20 1. ill i¢>' 20 
Y'<' ij = e cos -mij + -sm 17 ij - e sm -nij, 

2 2 2 

(A4) 

(A5) 

2 F12N -i¢>' 20 1. ill i¢> 20 
Y'<' ij = - e sm -mij + -sm 17 ij + e cos -nij' 

2 2 2 

2Lij= -e-i¢>sin{}mij+ cosOlij-ei¢>sin{}nij' (A6) 

If Fij = - Fji are the components of a real bivector in co
ordinates X' then the complex, anti-self-dual bivector Fij 
+ i*Fij' where *Fij = !EijklFkl (with Eijkl the Levi-Civita 

permutation symbol), can be written 

Fij +i*Fij =t/Jo nij +t/JJ/ij +t/Jzmij' 

= $oNij + $JLij + $2Mij' (A7) 

where 

$0 = 2.J2e - i¢> COS2~0 + 2.J2 sin 0 t/JJ - 2.J2ei¢> sin2~2' 
2 2 

$J = -e-i¢>sinOt/Jo +2cosOt/JJ -ei¢>sinOt/J2' (A8) 

$2 = -.J2e - i¢> sin2~0 +.J2 sin 0 t/JI + .J2ei¢> COS2~2' 
2 2 

APPENDIX B: SPIN-WEIGHTED FUNCTIONS 

For convenience we list here some properties of spin
weighted functions which can be found in Newman and Pen
rose2 and the other sources quoted in Sec. II. 

If'TJ is a spin-weight-s function on the unit two-sphere (s 

may be integral or half-integral), then the operator 0, which 
raises the spin weight by unity, is defined in terms of the 
polar coordinates 0, t/J by 

O'TJ= -(Sino)'(~+-i-~)(SinO)-S'TJ' (BI) 
a{) sin 0 at/J 

while the operator~, which lowers the spin weight by unity, 
is defined by 

'i' (. il) - s( a i a) (. il)S U'TJ = - sm 17 - - -.- - sm 17 'TJ • 
ao sm 0 at/J 

(B2) 

When these operators act on the spherical harmonics 
Y1,m (O,t/J) (/ = 0,1,2, ... ; Iml <I, mEl) they produce the (in
tegral) spin-s spherical harmonics 

{ 

(/ - s)! oSY
I 

(O<s</), 
Y _ (/+s)! .m (B3) 

s I,m-

(_I)S U+s)! ~-sYI (-I<s<O). 
(1- s)! ,m 

These functions form a complete, orthonormal set for each 
integral s. A spin-weight-s function defined on the unit two
sphere can be expanded in spin-s spherical harmonics (see 
Goldberg et al.4

). 
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Finally we note that the S Y1,m satisfy 

d sY1,m = [(I-s)(I +s + 1)]112 s+ I Y1,m' (B4) 

dsY1,m = -~(l +s)(I+s+ 1) s-IYI,m' (B5) 

and 

dd S Y1,m = - (I - s) (I + s + 1) S Y1,m . (B6) 

APPENDIX C: FORMULAS INVOLVING U,S AND d 

When acting on a spin-weight-s function, Dn,s and d 
satisfy the following equations: 

d(dD n,s _ D n.S+ Id) = (dD n,s- 1_ Dn,Sd)d _ 2D n,s, 

(C1) 

3(dDn,s_D n,s+ld) = (dD n,s+I_D n,s+2d)d, (C2) 

(dDn,S _ D n,s+ Id)dd = dd((lD n,s _ Dn.s+ 1(1) + Wn,s+ 1(1, 

(C3) 

(dD n+l.s _Dn+I,s+I(I) _ ((lDn,s_Dn,s+I(I) 

= _I_{cos e ~ - (2n + 3 )sin e 
J2 ae 
__ s_ + i cot e~}, 

sin e acp 
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(C4) 

D n,s+ 1(1 = (n + 1 )(sin e /J2){dd + (n - s)(n + s + I)} 

Finally, if?] is a spin-weight-s function, then 

dd (?] sin e) - sin e dd?] 

= 2 cos ()a?] + 2i cot ()a?] -~?] + 2s?] sin e. ae acp sin e 
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A search for bilinear equations passing Hirota's three-soliton condition. 
II. mKdV-type bilinear equations 

Jarmo Hietarinta 
Department of Physical Sciences, University of Turku, 20500 Turku, Finland 

(Received 5 January 1987; accepted for publication 29 April 1987) 

In this paper (second in a series) [for part I, see J. Math. Phys. 30,1732 (1987)] the search 
for bilinear equations having three-soliton solutions continues. This time pairs of bilinear 
equations of the type PI (Dx,D, )F'G = 0, P2 (Dx,D, )F'G = 0, where PI is an odd polynomial 
and P2 is quadratic, are considered. The main results are the following new bilinear systems: 
PI = aD~ + bD~ +D~Dt + Dy' P2 =D~; PI = aD! + bD; + Dy, P2 = DxD,; and 
PI = DxDtDy + aDx + bD" P2 = DxD,. In addition to these, several models with linear 
dispersion manifolds were obtained, as before. 

I. INTRODUCTION 

In a recent paper I (hereafter referred to as I) we 
searched for bilinear equations of the type P(Dx ,D, )f"f = 0 
which also had three-soliton solutions (3SS) of the standard 
Hirota form. In this paper we report the results of a similar 
kind of search for pairs of bilinear equations on two functions 

PI(Dx,D,)F'G=O, P2 (Dx,D,)F·G=0. (1) 

In this paper we furthermore assume that PI is an odd func
tion in its variables and P 2 is a quadratic even function. There 
are also other possibilities that should be investigated, but 
even under the present assumptions we do obtain new re
sults. 

The best known nonlinear evolution equation whose bi
linear form is of type (1) is, no doubt, the modified 
Korteweg-de Vries (mKdV) equation 

(2) 

If one introduces a new function w by v = Wx it is also possi
ble to cast (2) in the following form [integrate (2) once and 
set the constant to zero] : 

w, - 2w! + Wxxx = O. (3) 

Hirota introduces next a dependent variable transforma
tion2

--4 by expressing w in terms of two new functionsfandg: 

w = - 2i arctan(g/f). (4) 

When this is substituted to (2) the resulting equations van
ish, provided that 

(D, +D!)/"g=O, D~(/"f+g'g) =0. (5) 

This is not yet in the form ( 1 ), but if we define F = f - ig and 
G = f + ig so that 

w=log(F/G), (4') 

then (5) becomes 

(D, +D!)F-G=O, 

D~F-G = O. 

(6a) 

(6b) 

For some of the higher-order members of the mKdV 
hierarchy one can also write a bilinear formulation like (6). 
For the even equation one always takes (6b) but the odd 
equation can be 5-7 

(Dt +D~ )F-G = 0, (7) 

for which, corresponding to (2), we get6
•
7 

v, + [vxxxx - lOvv~ - lOv2vxx + 6v5
] x = 0, (8) 

and 

(D,+D~)F'G=O, (9) 

v, + [vxxxxxx - 14v2vxxxx - 56vvxvxxx - 42v~xv 

- 70vxxv~ + 70vxx v4 + 140v~v3 - 20v7 ]x = O. (lO) 

There are also other equations that can be written as a 
pair of bilinear equations, but which are not of the particular 
form studied here. For example, the sine-Gordon equation 

ux , = sin u 
goes over the3

•
8 

(DxD, - 1 )(F'F - G'G) = 0, 

DxD,F'G=O, 

(11 ) 

(12) 

when one uses the substitution u = 4 arctan [ (F - G)/ 
(F + G) ]. Now the first equation is not as in ( 1). 

Bilinear equations of type (1) appear also as Backlund 
transformations for single equations.9 Usually the P;'s in 
these cases contain both odd and even terms and therefore 
some of their reductions fit into the form studied here. 

1t01 tested numerically the three-soliton condition 
(3SC) for bilinear equations oftype (1), where PI is odd and 
P2 even in the variables. His results with a quadratic P2 were 
(6b) together with (6a) or (7) or (8), and the following 
pairs: 

and 

(D;D, -Dx -D,)F'G=O, 

DxDtF'G=O 

(D! +aDt +bDx +cDy)F'G=O, 

DxD,F·G=O. 

(13 ) 

(14) 

Ramane studied also the existence of 3SS and found 
that systems having 3SS also passed the Painleve test. He 
obtained in this way the above results and some others with 
higher degree Pz. 

Pairs of bilinear equations on two functions are also con
tained in the Kyoto-school approach to bilinear formal
ism. II For example, (6) can be obtained as a two-reduction 12 
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from the first two equations of the modified KP hierarchy 
and similarly (14) from the modified DKP hierarchy. 

II. THE N-SOLITON CONDITION 

We will now discuss the conditions for the Pj's that 
guarantee the existence of standard form N-soliton solutions 
for (1). We assume that thePj's have definite parity and are 
without constant terms: 

Pj ( -X. - Y) = (-l)
j
p j (X.Y). 

P2 (0.0) = O. 

For the one-soliton solution we take the ansatz 

F= 1 + aen• G = 1 + ben. 

with 

n =px+Ot+m. 

(15) 

(16) 

(17) 

(For generalizations, see Ref. 13.) When we recall the def
inition of the operators Dx and Du 

D~D':'F'G = (ax - ax, )n(at - at,)m 

XF(x,t)G(x',t') /x'=x,t'=t (18) 

it is easy to show that ( 16) is a solution of ( 1 ) if b = - a and 
if P and 0 are related by 

PI (p,O) = o. (19) 

(The possibility b = a leads to a trivial result.) Thus for the 
pair ( 1) it is the odd equation that gives the dispersion rela
tion. The overall factor a can be absorbed into m and we take 
subsequently a = I, b = - 1. 

For the two-soliton solution we take the natural general
ization 

(20) 

where the n;'s are constructed as before in (17) with the 
parameters (PuO;) satisfying (19). When this is substituted 
into ( I ) we find that (20) is a solution if A and B are given by 

A = B = P2 (PI - P2,01 - 02)/P2(PI + P2,01 + O2), 
(21) 

This procedure does not work for those pairs of par am
eters for which P2(PI + P2,01 + O2 ) = O. For such "reson
ances"14 one has to use different methods to obtain the two
soliton solution. We will not go into the details of this but just 
note that multiplication of F and G by exp ( - n2 ) [which 
does not change w of (4') J can be used to convert n2 to - n2, 

which helps sometimes. Systems where (19) factors into lin
ear factors are especially prone to resonances. In the follow
ing we will not take these complications into account, and 
therefore the final results guarantee three-soliton solutions 
only if a nonresonating set of three parameter pairs can be 
chosen. 

With the above caveats we find that a pair of equations 
of type (I) with (15) has two-soliton solutions given by 
(20), and that the dispersion relation (19) is given by the 
odd equation. 
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The existence of higher-soliton solutions is again a rath
er restrictive condition. For the general N-soliton solution 
( 20) is generalized as 10 

[

(N) N ( itT)] 
F= L exp LAijPdlj + L P; n; +- , 

1'=0.1 i>j ;=1 2 
(22) 

[

(N) N ( iTr)] 
G= L exp L.AijPd-lj + L pj n; -- . 

1'=0,1 I>} 1=1 2 

Here the n;'s are given as before in (17). the extraiTr/2 takes 
care of the sign reversal, cf. (20) . The parameters 
P; and OJ in n; must again satisfy the dispersion relation 
(19) while the constants A ij are determined as in (21): 

expAij = -P2(p; -Pj.Oj -OJ)/P2 (p; +Pj'O; +OJ)' 
(23) 

If N > 2 one obtains two kinds of conditions for the polyno
mils P; (Ref. 10): 

Sodd [PI ,P2,n J 

( 
n n ) . ( n Tr) = uX I PI ;~I O"iPi' ;~I O"iOi sm ;~I O"j 2 

(n) 

xII P2(0";Pj -O"jPj.O";O; -O"jOj) =0. (24) 
i>j 

= L P2( ± O";Pi' ± O";O;)cos( ± 0"; ~) 
u=±1 ;=1 ;=1 ;=1 2 

(n) 

XIIP2(O"iPi -O"jPj'O"iOi -O"jOj) =0. (25) 
i>j 

for each n = I .... ,N, and for allpk' Ok subject to (19). We 
note first of all that both equations are satisfied identically 
for n = 1,2. Also Sodd is identically zero if n is even. and 
conversely Seven =0 when n is odd. For other combinations 
Eqs. (24) and (25) are not identities and the first nontrivial 
conditions are on Sodd [PI,Pz,3 J and Seven [P2,4 J. Note also 
that Seven does not depend on PI' it enters only implicitly 
through (19). 

In this paper we consider only cases for which P2 is qua
dratic. In that case Seven [P2,4 J vanishes identically. Thus if 
the system has 3SS then it will automatically have 4SS as 
well. Our attention focuses therefore on the condition 
Sodd [PI .P2,3 J = O. To study this equation we use the same 
algebraic geometrical approach as in I. We recall that the 
3SC can be formulated as 

Sodd [P I .P2,3 JEl( Vp ,,3 ), 

where 

(26) 

Vp ,,3 = {(X.t)EC6 /P I (xut;) = O. Vi = I,2,3}, (27) 

and I ( V) is the ideal of those polynomials that vanish on V. 
The polynomial PI can be factorized as 

PI(X.T) = II Qj(X,T)nj
• (28) 

j 

where each Qj is a monic irreducible polynomial. (The pos
sible overall constant has been dropped.) For the purpose of 
classification it is often useful to group the irreducible fac
tors according to their multiplicity as 
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s 

PI(X,T)=IIPI,i(X,T)n i
, nj>n j fori>j. (29) 

;=1 

We introduce the definition of '\/ PI: 

'\/PI(X,T) = "jQj(X,T) = lljPI,j(X,T). (30) 

Then, according to the theorem in Sec. III A of I we can 
express the 3SC as follows: The bilinear system (I) has 
three-soliton solutions of type (22) if we can write 

Sodd [PI,P2,31 = '\/ PI (XI,TI)A + '\/ PI (X2,T2 )D 

(31) 

where A, D, and Care some polynomials in the variables XI' 
X 2 , X 3, T\> T2 , and T3• 

To implement the above formulation in a practical way 
suitable for computer algebra systems we introduce a consis
tent ordering in the set of monomials X m T n (for example, 
first by m + n and then by m among those with the same 
m + n). Then for each i = 1,2,3 we take the leading mono
mial of '\/PI(xj,t j ), let us call it ,\/MI(xj,tj ), and replace it 
everywhere in Sodd by ,\/MI(xj,tj ) - ,\/PI(xj>tj ). It is easy 
to see that Sodd vanishes under this rewriting rule iff it can be 
written as in (31). Note that the rewriting rule decreases the 
order of Sodd and therefore eventually '\/ MI's can no longer 
be extracted and the procedure terminates. In REDUCE the 
rewrite rule is accomplished by a LET statement. 15 For the 
LET statement it is important that the polynomial '\/ MI be 
monic. 

III. RESULTS 
The property of passing the 3SC is clearly invariant un

der any linear change of variables. To avoid needless repeti
tion we should therefore choose the variables in a systematic 
way. The first step in the classification process goes accord
ing to P2• As a quadratic function in its variables P2 has two 
linear factors, so if these factors are identical we transform 
P2 toX 2

, while if they aredifferentwetransformP2 toXT. In 
the former case we still have the freedom of defining the T 

TABLE I. Classification of PI when P2 = X2. 

Type 

(3.0) 

(2.1 ) 

( 1.2) 

(0.3) 

(5.0) 

(4.1 ) 
(3.2) 

2096 

Leading 
monomial 

[X]' 
[X'] 

[X]2[11 
[X 2 11 

[11 2 [X] 

[11' 

[X]' 
[X]3[X2] 
[x]2[X'] 
[X2]2[X] 
[X'] 

Possible 
generalizations 

[X'+T] 

[XJ'[X 2 
- 1] 

[xj2[X'+ T] 
[X 2 - 1]2[X] 
[X'+R,+R.l 
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variable, and we will use it by defining the first factor that is 
not identical to X as T. In the latter case we can at most scale 
or reflect the variables. 

A. P2=)(Z 

The classification process is given in Table I. During it 
we must keep in mind the full factorization (29); we have 
used square brackets to isolate the factors that belong to 
different multiplicities as described in (29). 

Since the rewrite rule decreases the order we should as 
the first step find the acceptable leading monomials. We 
found the following possibilities: 

(l.1):PI =X 2N + 1, '\/PI =XK, whereO<K<2N + I 
when N<3 and 0 <K<2[ (N + 1 )/3 J + 3 otherwise; 

(1.2):PI =X 2M + IT 2M
, '\/P1 =XT; 

(1.3):P1 =X 2T 2M + 1
, '\/P1 =XKT, K= 1,2; 

(1.4):P1=T 2M
+ 1, '\/P1=T L

, 0<L<[2MI3J+1. 

(Here [a1 = integer part of a.) We have checked these re
sults explicitly up to total degree 21 and conjecture that they 
are true for general Nand M. Note the interesting dip in the 
maximum value of Kin (1.1) at N = 4. 

In the first column of Table I we have given the type of 
the monomial; (n,m) stands for xnTm. In the second col
umn we have written the combinations that fit into one of the 
above forms (1.1 )-( 1.4) and which can arise as the leading 
monomial of some PI as described in (29) and (30). Combi
nations that would lead to contradiction with the definitions 
of the leading monomial or PI are not included. 

Next we should consider the possible homogeneous gen
eralizations of these. For case (1.1) there are no such possi
bilities because the first factor different from X would be 
renamed as T and therefore would be contained in the other 
cases. Case ( 1.2) would in principle generalize to 

Accepted final 
result 

[X]' 
[X 3 +T] 

[X]2[T] 

[X 2T + aX + bl1 

[T]2[X] 

[T]' 

[X]' 
[Xl'[X 2 

- I] 
[X2][X3+ T] 
[X 2-1]2[X] 
[X' +X 2T+aX + bl1 

[X]3[TF 

Generalizations 
with Y 
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TABLE I. (Continued.) 

Leading Possible Accepted final Generalizations 
Type monomial generalizations result with Y 

(2.3) 
[X]2[T]3 [Xf[T]' 
[X2][ T]' [X 2 - 1] [T]' [X 2 _ 1][T]' 

(1.4) 
[XJ[T]4 [XJ[T]4 

(0.5) 
[T]' [T]s 

(7.0) 
[X]7 [xl' 
[X]'[X2] [X]'[X 2 - 1] [X]'[X 2_1] 
[X]4[X'] [X]4[X' + T] 
[X]'[X 2]2 [X]'[X 2 _ 1]2 [X]'[x 2-lf 
[X]'[X 4] [X]'[X 4 + R2 + Ro] [X]'[X4 + aX 2 + I] 
[X 21'[X] [X 2 - I]'[X] [X 2 - II'[X] 
[X]2[X'] [X]2[X5 + R, + R.l [X]2[X5 +aX' + T] 
[X 2f[X'] [X2-1]2[X'+R.l [X 2 - If[X' + aX] 
[X']2[X] [X' + T]2[X] 

(6.1) 
[X>] [X 7 +R, +R, +R.l [X 7 + eX' +X2T+aX +bT] [X 7+eX5+X2T+ y] 

(5.2) 
[X]'[T]2 [X]'[T]2 

(4.3) 
(3.4) 

[X]3[T]4 [X]3[T]4 
(2.5) 

[X]2[T]' [X2][ Tl' 
[X2] [T]' [X 2 _ I][T]' [X2-1][T]' 

( 1.6) 
[XJ[T]6 [XJ[T]6 

(0.7) 
[T]7 [T]7 
[T]5[T2] [T]5[T2 - I] 
[T]3[T 2f [T]'[T2-IF 
(TJ[T2]3 [T][T 2_I]3 

(9.0) 
[X]9 (X]9 
[X]7[X2] [Xj'[X 2+ 1] (X),[X 2+ 1] 
(X]6[X'] (X]6[X' + T] 
[Xl' [X2f [XI'[X 2+ If [X]'[X 2 + 1]2 
(X]'[X4] (X]'[X4 + R2 + Ro] [XI'[X4+aX 2+ I] 
[X][X2]4 [X][X 2 + 1]4 [Xj[X 2 + 1]4 
[X']' [X' + T]' 

[X' + xl' [X 3+X]' 
[xl'[X'f [X]'[X' + T]2 
[Xj'[X 2f[X 2] [X]'[X 2+ I]2[X2+a] [X]'[X 2 + 1 ][X 2 + a] 
[X 2]'[X'] [X 2 + I]'[X' + T] 

[X 2 + I]'[X' + aX] [X2 + I]'[X' + aX] 
[X 4f[X] [X 4 + R2 + Ro]2[X] [X4+aX2+ I]2[X] 

(8.l) 
(7.2) 

[X)'[T]2 [XnT]2 
(6.3) 
(5.4) 

[XI'[T]4 [XI'[T]4 
(4.5) 
(3.6) 

[X]'[T]6 [X]'[T]6 
(2.7) 

[X]2[T]7 [X]2[T]7 
[X 2J[T)' [X 2 - IJ[T]7 [X 2 - IJ[T]7 

(l.8) 
[XJ[T]" [X][T]" 

(0.9) 
[T]9 [T]9 
[T]7[T2] [T)'[T2-I] 
[T]'[T2]2 [T]'[T2 - 1]2 
[Tj[T2]4 [T] [T2_1]" 
[T']' [T'+R.l 3 
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N TABLE II. Classification of PI when P2 XT. 0 
<0 
()) 

Leading Possible homogeneous Allowed homog. Possible nonhomog. Allowed nonhomog. Generalizations 
Type monomial generalization generalizations generalizations generalizations with Y 

~ 
s: a (3,0) 
?' [X]3 [X -aT]' [X]' [X]' 
"'0 
::r [X - T]3 [X Tl' [Yj' 
'< 
f' [Xj2[Xj [X aT]2[X - bTl [X- Tj2[X+ T] [X- Tj2[X+ T] 
< [X3] [X 3 + aX 2T + bXT2 + eT'] [X3] [X 3 +aX + bTl [X 3 +aX +bT] [X' + y] 
~ [X' - T 3] [X' - T3 + aX + bTl [X 3 _ T 3+aX+bT] [X 3-T'+y] 
N 
SX' (2.1) 
Z [X]2[T] [X-aT]2[Tj [XJ 2[T] [X]2[T] 
~ [X2T] [(X 2 + aXT + bT2)T] [X2T] [X 2T + aX + bTJ [X 2T+ aX + bTl 50 
(IJ [XT(X- n] [XT(X - n + aX + bTl [XT(X - n + aX + bTJ [XTY + aX + bTJ 
\I) (5.0) ¥ [XJ' [X aT]' [X'] [XJ5 
3 [X - T]5 [X - T]' [y]' 
~ [X]4[X] [X - aT]4[X - bTl 
~ 

<0 [X] 3 [xj2 [X - aT]3[X - bT]2 [X - Tl'[X + T]2 [X - T]3[X + T]2 
()) 
"-I [X]3[X 2J [X - aT]3[X2 + bXT + eT2J 

[Xj[X 2j2 [X - aT] [X 2 + bXT + eT2j2 
[Xf[X 3] [X aT]2[X3 + bX 2T + eXT2 + dT3] 

(4.1) 
[X]4[T] [X - aT]4[T] [X]4[T] [X]4[T] 
[X]3[XT] [XP[(X -anT] [X]3[XT] [X]3[XT-I] 

[X - T]3[(X - a)T] [X- T]3[XT] [X- T]3[XT+a] [X Tl'[XT] [ Y]3[XT] 
[X2j2[ T] [Xl + aXT + bT212[T] [X2]2[T] [X 2 - 1j2[T] [X 2 _l]2[T] 

(3.2) 
[X]3[T]2 [X -aTnT]2 [X3][ T]2 [X]3[T]2 
[X]3[T 2 J [X-aT]'[T2] [X]3[T2] [XJ3[T 2-1] [X]'[T2-11 

(7.0) 
[Xr [X -aT]7 [Xr [Xr 

[X - T]7 [X-Tr [Y]7 

[XJ 6[X] [X]6[X_ T] 
[X - T]6[X - bTl 

[X]'[Xj2 [XJ'[X - T]2 
[X - T]'[X - bT]2 [X - T]'[X + T]2 [X T]'[X+ TF 

[X]'[X 2] [Xl'[X l + ... ] [XJ'[X 2J [X]'[X 2 
- I] [X]'[X 2 -I] 

[X-T]'[X 2 + ... ] [X T]'[(X n2] [X - T]'[(X - n 2 -I] 
[X]4[Xl' [X]4[X - T]3 

[X- T]4[X bT]3 

<- [X]4[X]2[X] [X]4[X - T]l[X - bTl 
~ rX - T]4[X - bT]2[X - eT] 
3 [X]4[X3] [X]4[X3+ ... ] [X)4[X3] [Xj4[X 3 + aX + bTl 0 
I [X_T]4[X3+ ... ] 
i [X 2]'[X] [X2+ ... ]3[X] [X 21'[XJ [X 2 InXJ [X 2 _ IJ3[Xj I» 
::!. [X 2 + .. ·J'[X T) [(X - n 2]'[X - T] [(X n 2 - Il'[X - T] ;? 
I» [X]'[X 1 J2 [X]'[X 2 + ···f [Xj'[X 2F [X)'[X2-IF [X]'[X2-IF 

[X - T]3[X2 + ... F [X - T]'[ (X - n2]2 [X - T]3[(X - n 2 -IJl 

N 
[X]'[X]2[X2] [X]3[X - T]2[X2 + ... ] 

0 [X - T]3[X - bT]2[X2 + ... J 
<0 
()) 



                                                                                                                                    

I\) 
o :g 

~ 

~ 
?' 
~ r 
~ 
.~ 
z 
P 
!D 
(f) 
<D 
"0 
lii 
3 
~ 
~ 
-..j 

<
I\> 

3 o 
:r 
iir 
iii 
::3. 
~ 

iii 

g 
<0 

TABLE II. (Continued.) 

Leading 
Type monomial 

[X]3[X4] 

[X3]2[X] 

[X 2F[X'] 
(6.1) 

[X]6[T] 
[X]'[XT] 

[X]4[X]2[T] 

[X2]3[T] 
(5.2) 

[X]5[T]2 
[XJ'[T2) 

(4.3) 
[X]4[T]3 
[Xj(TX]3 

[X2j2[T]3 

Possible homog. Al10wed homog. 
generalization generalizations 

[X3][X4+ ... ] [X], [X4] 
[X - T]'[X4 + ... j 
[X 3 + ... j2[X] [X3j2[X] 
[X 3 + ... ]2[X_ T] 
[X2+ ... ]2[X'+ ... j [X2]2[X3] 

[X-aT]6[T] [X)6[T] 
[X]'[XT] 

[X]'[(X - nT] 
[X - T]'[(X -anT] [X - T]'[XT] 
[X]4[X - T]2[T] 
[X - T]4[X - aT]2[T] 
[X 2 + aXT + bT2]3[ T] [X 21'[T] 

[X - aT]'[T]2 [X]'[T]2 
[X-aT]'[T2] [XF[T2) 

[X - aT]4[ T]3 [X]4[T]' 
[Xj[T(X-an]3 [Xj(TX]3 
[X - T][T(X -an]3 
[X 2 + aXT + bT2]2[ T]3 [X 2 J2[Tl' 

Possible nonhomog. 
generalizations 

[Xl' [X 4 + R2 + Ro] 

[X 3+R,P[X] 

[X 2 - I f[X' + Rd 

[XP[XT-l] 

[X - T]'[XT - a] 

[X2_1]3[T] 

[X]5[T2 -IJ 

[XJlTX - 1]3 

[X 2 - InT]3 

Allowed nonhomog. 
generalizations 

[X]'[X4 - 1] 

[X 2 - 9J 2 [X(X2 + 4)] 

[X)6[T] 

[X - T]5[XT] 

[X 2 -InT] 

[XP[T]2 
[X]'[T2 - 1] 

[X]4[ Tl' 

[X 2 _ 1]2[ T]3 

Generalizations 
with Y 

[ y]'[XT] 



                                                                                                                                    

PI = (X - aT)T2n, ylPI = (X - aT)T, but this did not 
pass the 3SC except for a = 0; a similar result holds for case 
(1.3). For case (1.4) no X variable is acceptable because 
then T 2n + I would not be the leading term. Since no homo
geneous generalizations were possible we did not include this 
step in the table. 

In the next column we have written the possible nonho
mogeneous generalizations, and after that the cases that do 
pass the 3SC. We considered only those generalizations 
which kept the polynomial PI odd. The classification in the 
table was first made in two dimensions (X and T), but when 
a completely arbitrary term of type aX + bTwas allowed we 
tried next the same system with aX + b T replaced by Y. The 
accepted higher-dimensional generalizations are given in the 
last column. 

The results can be combined as follows. 
(i) First we have the genuinely nonlinear system 

PI = aX 7 + bX 5 + X 2T + Y, P2 = X2. (32) 

(lfherea and/or b is nonzero they/it can be scaled to 1.) As 
particular cases (32) contains (6) (a = 0, b = 0, T ..... X, 
y ..... T), (7) (a = 0, b = 1, T ..... O, Y ..... T), and (9) (a = 1, 
b = 0, T ..... 0, Y --> T). The full generality of (32) is a new 
result. 

(ii) In addition to the above nonlinear result we obtain, 
as in I, several sequences that have a dispersion manifold 
that consists of lines. 

(l.A) up to degree 9 any polynomial in X subject to 
( 1.1) above. 

(l.B) X 2M + IT2N (alsoX 2T 2N + I, but it can be re
garded as a special case of the one below] . 

(1.C) (X2_l)T2M+I. 

(l.D) T2M+ I. 

Probably these systems pass the 3SC for any value of Nand 
M; we have checked them to the order IS-20. 

B.P2=XT 

In this case theX and Tvariables are already fixed up to 
scaling and reflections. As a consequence the classification 
process is longer; it is described in Table II. 

As before we start with the leading monomial of Pl' 
Using reflections we may assume that it is xnT m

, n + m 
odd, with n > m. Our results are 

(2.1):PI =X 2N + I, ylPI=X K, O<K<;(2N/3] +3; 

(2.2):PI=X2N+IT2M, ylPI=XT L
, L=I,2; 

(2.3):PI =X2NT2M+I, ylPI =XKT, K= 1,2. 

In this case there are nontrivial homogeneous general
izations. The full analysis of all possibilities is rather tedious. 
In the third column in Table II we have given the various 
possibilities, and we have furthermore divided the cases so 
that one nonzero constant is scaled to - 1. Some of the cases 
turned out to be quite demanding even for the computer, the 
worst one being [X - T]4[X - bT]2[X - cT]. (In this case 
we may assume that b =/= 1 =/=c and b =/=c, but then we have no 
cases that pass 3SC.) 

After obtaining the homogeneous results we continue 
by trying the possible nonhomogeneous generalizations indi-
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cated in column 3, the accepted results are given in column 4. 
It contains the full results in two dimensions. 

To get the higher-dimensional results we reconsidered 
those cases that had a term aX + b T (or its scaled version 
X - T) and tested whether the term could be replaced with 
Y. [Note that it is not necessary to try in this way polynomi
als (X - T)N(X + T)M for they cannot be scaled to a form 
where the free constants a and b appear only through 
aX + bT.] 

The full results can be classified as follows. 
(iii) The nonlinear results can be combined into the fol

lowing two cases: 

PI =aX 3 +bT 3 + Y, P2=XT (33) 

and 

PI = XTY + aX + bT, P2 = XT. (34) 

Note the interesting symmetry: X and T are treated on equal 
footing while Y is the extra variable. As a special case (34) 
contains (13) (y ..... X, a=b= -1) and (33) can be re
duced to (14) (a = 1, b = 0, Y ..... aT + bX + c¥). Again the 
full generality is a new result. 

(iv) The cases with linear dispersion manifolds are the 
following. 

(2.A) We have several one-dimensional results. At 
degree 5 any polynomial is acceptable but already at 
degree 7 we get conditions. In general a degree 7 polyno
mial can be written as X[X 2 

- a] (X 2 
- b] [X 2 

- c]. 
We find that a, b, and c cannot all be different from each 
other and zero, and even for the remaining free pair we 
get conditions. The acceptable results at this degree are 
X 3 [X 4 

- 1] andX(X 2 
- 9]2(X2 + 4], where we have 

scaled the result to a convenient form. 

(2.B) y2N+ I. 

(2.e) [X_T]2N+I(X+T]2. 

(2.D) XNTM. 

(2.E) y2N+ IXT. 

(2.F) [X 2 _ 1]NT2M + I. 

We checked these results to a rather high degree and conjec
ture that they hold for arbitrary N, M. 

IV. CONCLUSIONS 

In this paper we have studied a subclass of pairs ofbilin
ear equations. The main results are given in Eqs. (32 )-( 34 ). 
Equation (33) can be considered as an extension of the origi
nal mKdV equation (6). The results (33) and (34) are in
teresting because of their X-T symmetry, which their pre
viously known special cases did not possess. All of these 
results are three dimensionaL 

As far as the models with linear dispersion relations are 
concerned the pattern follows the one obtained in I. The 
meaning of these sequences of polynomials is still open. 

One interesting question that can be raised is how, or 
whether, these models fit in the Kac-Moody algebra ap
proach to bilinear equations. II An integral part of that ap
proach has been the assignment of different weights to the 
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variables so that the polynomials Pi are weighted homogen
eous. For the models found here such assignments are diffi
cult, because we have either the same variable appearing 
with different powers, or two different variables appearing 
with the same power. 

Since new results were obtainable even with the present 
restrictions on P2, it seems likely that many other models can 
still be found. 

ACKNOWLEDGMENTS 

I would like to thank A. Ramani for discussions. The 
computations were done with IBM 3033 at University of 
Turku. I would like to thank the staff of the Computing 
Center for their help. 

2101 J. Math. Phys., Vol. 28, No.9, September 1987 

'J. Hietarinta, J. Math. Phys. 30,1732 (1987). 
2R. Hirota, J. Phys. Soc. Jpn. 33, 1456 (1972). 
'R. Hirota, Prog. Theor. Phys. 52,1498 (1974). 
4R. Hirota, in Backlund Transformations, the Inverse Scattering Method, 
and TheirApplications, edited by R. M. Miura (Springer, Berlin, 1976), p. 
40. 

'A. Sym, Phys. Lett. A 65,383 (1978). 
6y. Matsuno, J. Phys. Soc. Jpn. 49,787 (1986). 
7 A. Ramani, "Inverse scattering, ordinary differential equations of Painle
ve type and Hirota's bilinear formalism," preprint L.P.T.H.E Universite 
Paris-Sud,Orsay, 1980. 

gR. Hirota, J. Phys. Soc. Jpn. 33, 1459 (1972). 
9R. Hirota, in Solitons, edited by R. K. Bullough and P. J. Caudrey 
(Springer, Berlin, 1980), p. 157. 

10M. Ito, J. Phys. Soc. Jpn. 49, 771 (1980). 
"M. Jimbo and T. Miwa, Pub!. RIMS, Kyoto Univ. 19, 943 (1983). 
12See Ref. 11, p. 962. 
I3A. Nakamura, J. Phys. Soc. Jpn. 48,1365 (1980). 
I4R. Hirota and M. Ito, J. Phys. Soc. Jpn. 52, 744 (1983). 
I5A. C. Hearn, REDUCE User's Manual Version 3.2 (Rand, Santa Monica, 

1985), Pub!. CP78, Rev. 4/85. 

Jarmo Hietarinta 2101 



                                                                                                                                    

Non-Abelian Berry's phase, accidental degeneracy, and angular momentum 
Jan Segert8

) 

Physics Department, Princeton University, Princeton, New Jersey 08544 

(Received 23 December 1986; accepted for publication 13 May 1987) 

The non-Abelian Berry's phase effect for a family of operators Ho + k·V is considered, where 
H is rotationally invariant, V is a vector operator, and k varies over the unit vectors in R3. The 
p:rameter space is the two-sphere. The time evolution in the a~iabatic li~it is gi~en by a 
connnection on a fiber bundle over the two-sphere. All connectIOns consistent with the 
rotational symmetry are classified, and the time evolution is explicitly calculated for a 
nondegenerate Hamiltonian, as well as for a Hamiltonian with a double degeneracy. In the 
nondegenerate case, the connection is uniquely determined by the symmetry. In the doubly 
degenerate case, the connection is in some instances .not dete~ined by the sy~metry. T~e case 
of approximate degeneracy is also discussed. A possible expenmental test of this effect usmg 
optical pumping is described elsewhere. 

I. INTRODUCTION 

The time evolution of a quantum system governed by a 
slowly changing Hamiltonian can be analyzed geometrical
ly. This was first noted in the work ofBe~ry, 1 ~nd elaborat.ed 
by Simon.2 The case of degenerate Hamdtomans, otherwise 
known as non-Abelian Berry's phase, was considered by 
Wilczek and Zee. 3 The main results of these papers is that 
the time evolution is given by the parallel transport in a cer-

. tain connection on a fiber bundle over the parameter space. 
We shall call this the Berry connection. In this paper, we 
shall analyze a certain class of such systems. The systems 
described here can be experimentally realized in a number of 
ways. In another paper,4 we propose an optical pumping 
experiment using Pb208 atoms. The analysis of such experi
ments requires the results of the work presented below. 

We shall consider a family of Hamiltonians parame
trized by the unit vectors k in R3. To each unit vector k we 
associateaHamiltonianHk = Ho + k·V, whereHoisa rota
tionally invariant operator, and V is a vector operator. This 
generalizes the example of Berry of an atom in ~ magnetic 
field. l For example, the Hamiltonian of an atom 10 constant 
colinear electric and magnetic fields is of this form. 4 The 
results of this paper are, in fact, valid for a more general class 
of Hamiltonians than those of the form Hk = Ho + k·V. 
This class, which will be fully characterized, includes such 
potentially interesting examples as the quadratic Zeeman 
Hamiltonian for an atom in a strong field. 

The rotation group acts transitively on the parameter 
space, since any unit vector can be rotated ~nto any o~he~ unit 
vector. Thus all the operators in the famlly are umtanly e
quivalent and have the same spectrum. Consider first the 
nondegenerate case. We choose an eigenvalue En' Following 
Berry and Simon, we form a line bundle Fn over parameter 
space, where the fiber over a point k of S 2 is the space of 
scalar multiples of eigenvectors of Hk with eigenvalue En. If 
the spectrum has a double degeneracy at En' we must consid
er a two-dimensional complex vector bundle over S 2, which 
we will also denote by Fn. The rotation group acts on the 

.) Address after September 1987: Department of Physics, California Insti
tute of Technology, Pasadena, California 91125. 

bundle Fn' The Berry connection must be invariant under 
this action. We shall topologically classify the bundles Fn in 
the case of no degeneracy, and in the case ofa double degen
eracy. This degeneracy is an accidental, where we use the 
term to mean that the symmetry group of the Hamiltonian 
does not act irreducibly on the degenerate subspace.5 We 
will detennine the action of the rotation group on the bun
dles Fn. We then classify all the invariant connections. The 
classification depends only on the angular momentum quan
tum numbers of the state or pair of degenerate states under 
consideration. 

In the nondegenerate case, we find that there is only one 
rotationally invariant connection, which must then be the 
Berry connection. In the degenerate case, the results are 
more interesting. If the two degenerate states have consecu
tive J·k quantum numbers, e.g., m 1 - m 2 = ± 1, then there 
is more than One invariant connection. In fact, there is an 
uncountable infinity of invariant connections. If the quan
tum numbers of the two degenerate states do not satisfy this 
condition, then the connection is unique, and we can imme
diately identify the Berry connection as the unique invariant 
connection. If the two degenerate states satisfy the above 
condition, we have to do some additional work to identify 
the Berry connection. 

The work of Berry and Simon can be divided into two 
statements: (1) The evolution of a system under adiabatic 
change of parameters is determined by some connection on a 
certain bundle over parameter space. (2) The Schrodinger 
equation uniquely determines this connection. Statement 
( 1 ) follows almost immediately from the definition of a con
nection. 4

•
6 When the connection is already uniquely deter

mined by the symmetry group, as is often the case, then state
ment (2) contains no information. But ifthere is more than 
one connection compatible with the symmetry group, state
ment (2) has nontrivial content, and is subject to experimen
tal confirmation. We comment here on some recent related 
papers. The work of Chiao and Wu7 interprets the polariza
tion rotation oflight in a bent optical fiber as a manifestation 
of Abelian Berry's phase. The Berry connection for this sys
tem is uniquely determined by the symmetry. This is a conse
quence of the results of the present paper. The polarization 
rotation can alternately be interpreted as a purely classical 
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effect,6.8 and the result is again uniquely determined by the 
rotational invariance.6 The results of the classical and quan
tum derivations are identical, and have been confirmed by 
the experiments of Tomita and Chiao.9 This experiment can
not test statement (2), since the symmetry alone is enough to 
determine the result. Moody, Shapere, and WilczekJO have 
proposed a spin-resonance experiment to look for manifesta
tions of Abelian Berry's phase. The family of Hamiltonians 
for this system is ofthe form Hk = Ho + k·V, with each Hk 
nondegenerate. Thus by the results of the present paper, the 
rotational symmetry again uniquely determines the result, 
and this experiment also cannot test statement (2). In the 
same paper, Moody, Shapere, and Wilczek discuss the ef
fects of non-Abelian Berry's phase on the energy levels of a 
diatomic molecule. This is formally similar to the systems 
studied in the present paper. We consider a system governed 
by a Hamiltonian of the above form, Ho + k·V. When this 
Hamiltonian has accidental degeneracies of a certain type, 
the Berry connection cannot be determined just from the 
rotational invariance. Then statement (2) is a nontrivial pre
diction, which is experimentally testable.4 We shall find the 
Berry connection explicitly using Simon's prescription. We 
also study the case of approximate degeneracy. This is im
portant for the analysis of experimental tests. 

In Sec. II we fix conventions and collect standard angu
lar momentum results. In Sec. III we review the construc
tion of vector bundles using projection operators. In Sec. IV 
we study vector bundles over S 2. In Sec. V we determine the 
topological structure of eigenvector bundles over S 2. In Sec. 
VI, we determine the action of the rotation group on the 
eigenvector bundles, and present the results ofthe invariant 
connection classification. In Sec. VII we calculate parallel 
transport in the Berry connection. Section VIII concerns the 
case of approximate degeneracy. Section IX consists of con
cluding remarks. The Appendix contains the technical de
tails of the invariant connection classification. 

II. CONVENTIONS 

We now specify some of our conventions. The group of 
rotations in lR3 is SO(3), the group of orthogonal real matri
ces of dimension 3, with positive determinant. A rotation can 
be specified by giving the axis of the rotation, a unit vector k, 
and the angle of rotation in the positive sense a. We define 
the matrices 

L,~G 
0 

~} L'~( ~ 
0 

~), 0 0 

o -1 0 

L, ~( ~ 1 ~). 
(2.1 ) 

0 

0 

which act on lR 3 • The SO ( 3) matrix corresponding to the 
rotation is exp(ak·L). Recall that the group SU(2) is a dou
ble cover of SO (3). The Lie algebra of SU (2) is isomorphic 
to the Lie algebra of SO ( 3 ). We shall take as our basis of the 
Lie algebra of SU(2) the matrices (i/2)ux,(i/2)uy, 
(i/2)uz), with the usual convention for Pauli matrices, 
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1= (~ ~), U x = (~ ~), 
u =(0 ~ i), Uz = (~ ~ J . (2.2) 

y i 

The obvious Lie algebra isomorphism is Lx ...... (i/2)ux' 
Ly ...... (i12)uy, L z ...... (i/2)uz' We shall call SU(2) the rota
tion group. This lets us treat half-integral spins as well as 
integral spins. We denote by (iJx,iJy,iJz ) the standard basis 
of a representation of the Lie algebra of SU (2), where the 
generators ( Jx, Jy, Jz) are self-adjoint. The corresponding 
unitary representations of SU (2) will be denoted by U. We 
shall denote by R the vector representation of SU(2), the 
real three-dimensional representation generated by the Lie 
algebra of SO ( 3 ), using the isomorphism (i/2) u x ...... Lx, 
(i/2)uy ...... L y, (i/2)uz ...... L z. This is, in fact, the adjoint 
representation ofSO(3), and is unitarily equivalent, but not 
identical, to the usual spin-1 representation of SU(2). We 
list for convenience some standard results, 

[Jx,Jy] =iJz ' [Jy,Jz] =iJx , [Jz,Jx ] =iJy , (2.3) 

J21j,m) =j(j+ 1)lj,m), Jzlj,m) =mlj,m), (2.4) 

(j,ml Jz Ij,m - 1) = H (j + m) (j - m + 1)] 1/2, (2.5) 

(j,ml Jy Ij,m - 1) = (i/2)[ (j + m) (j - m + 1)] 1/2. 

(2.6) 

A vector operator V is a triplet of operators ( Vx, Vy, Vz ) sat
isfying5•

11 

[Jx,vy] =iVz , [Jy,Vz ] =iVx , [Jz'Vx ] = iVy . 

(2.7) 

We let i, y, z denote the standard orthonormal basis of 
lR3

• We shall use the standard conventions for spherical co
ordinates in lR3

, 

z=rcos(O), x=rsin(O)cos(cp), y=rsin(O)sin(cp). 

(2.8) 

On the unit sphere S2, the south pole corresponds to the 
vector - z, the north pole to the vector z. By the equator of 
S 2 we shall mean the map eq: S I -+ S 2 by cp ...... (1T 12,cp ). We 
shall alternately represent a point on S 2 by k or (O,cp). 

III. MATHEMATICAL PREREQUISITES ON VECTOR 
BUNDLES 

We discuss a characterization of complex vector bun
dles over a compact connected metric space M, for example a 
compact finite-dimensional smooth manifold. This charac
terization is appropriate for the bundles of eigenstates over 
parameter space. Consider the product space M X K, where 
K is a complex separable Hilbert space. The Hilbert space 
K may be finite or infinite dimensional. 

Denote by 9 (K) the space of compact positive self
adjoint projection operators on K. An operator P is in 
9 (K) if and only if all the following conditions are satis
fied: PP = P, P t = P, the range of P is finite dimensional, 
and (xIPlx»Oforalllx)EK. We give 9(K) the opera
tor norm topology. In this topology, 9 (K) consists of dis
joint components 9 n (K). Here 9 n (K) consists of all 
projections whose range has dimension n. This follows easily 
from the spectral theorem for normal operators,12 and the 
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fact that the group of unitary operators, with the operator 
norm topology, is connected. 

Consider a continuous map I: M - fJI (JY'). The range 
of I must be contained in fJI n (JY') for some n. So for any 
two points s,vEM, the dimensions of the projections 
I(S),J(V)EfJI (JY') coincide. Denote by r the range map r: 
fJI (JY') -JY'. The range map assigns to a projection opera
tor P the subspace of JY' which is not annihilated by P, the set 
of vectors xEJiY' satisfying Px = x. The composition r ° I 
maps Minto subspaces of JY' of constant dimension. The 
graph reM xJY' of the map r ° lis a vectorbundleAfover 
M. The projection map 1T: Af -M is the restriction of the 
projection 1T: M xJY' -M. We shall now demonstrate the 
local product structure. Each pointsEM has a neighborhood 
Ns which is contractible to the point s. The restriction f Ns 
- fJI (JY') is then homotopic to the constant map Cs : 

Ns -/(s). The local product structure follows. Let g be an
other map from M to fJI (JY'). This map specifies another 
vector bundleAg over M. The two vector bundles are topolo
gically isomorphic if and only if the maps l,g: M - fJI (JY') 
are homotopic. 

There is an analog for real vector bundles which may be 
more familiar. We shall construct the tangent bundle of the 
two-sphere S2. Consider the usual embedding of S2 as the 
unit sphere in R3. A unit vector k defines a point on S 2. The 
tangent space at the point k consists of all vectors orthogonal 
to k. This is nothing but the range of the two-dimensioinal 
projectionPk which acts on a vector a by Pk a = a - (k·a)k. 

In fact, any finite-dimensional complex vector bundle 
over M can be constructed this way if the dimension of JY' is 
sufficiently large. In particular, if the dimension of JY' is 
infinite, all finite-dimensional vector bundles can be con
structed. This follows from a theorem of Serre and Swan. 13 

In other words, fJI n (JY') is the universal classifying space 
for U (n), also known as the infinite Grassmanian. Any bun
dle over M is the pullback of the universal bundle over the 
classifying space. 14 In fact, there exists a universal connec
tion on the universal bundle. This follows from the work of 
Narasimhan and Ramanan. 15 Any Hermitian connection on 
a complex vector bundle over M can be obtained as the pull
back of the universal connection by the appropriate map of 
M into the classifying space. If M is the parameter space for a 
family of Hamiltonians, then the spectral projections l2 of a 
given eigenvalue give a map of M into the classifying space. 
The pullback of the universal bundle by this map defines the 
eigenstate bundle, which will be studied in detail in Sec. V. 
We can also use this map to pull back the universal connec
tion. The resulting connection is simply the Berry connec
tion. We shall not discuss these results in any detail, but we 
mention that the classification of rotationally invariant con
nections, given in the Appendix, can alternately be proved 
using these results. The classification then reduces to a ques
tion in representation theory, which is easily answered. We 
choose instead to present the direct proof in the Appendix, 
because it uses only elementary techniques. 

IV. VECTOR BUNDLES ON THE TWO-SPHERE 

We now study the manifold S 2. Define an atlas on S 2 in 
the following way. Denote by D 1T the open disc in R 2 of radi-
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us 1T. Let (fJ,¢) denote the polar coordinates on D 1T' where fJ 
is the radial coordinate, and ¢ the angular coordinate. Let 
DA be the S2 minus the south pole. Let UA: DA -D1T by 
(fJ,¢ )t--+( fJ,¢) , where in the first instance (fJ,¢) are the 
spherical coordinates on S2, and in the second instance the 
polar coordinates on D 1T' Similarly, let DB be the sphere S 2 
minus the north pole. We now define the map UB: DB -D1T 
by (fJ,¢ )t--+( 1T - fJ,¢). The choice of coordinates is a little 
unfortunate, but the map is clearly nonsingular. The inter
sectionDA nDB is the sphere minus both poles. The image of 
this region under U A is the disc with the origin removed, 
D1T - O. The image under UB is also D1T - O. We see that 
UBO(UA) -I: (D1T - 0) - (D1T - 0), by (fJ,¢) _ (1T - fJ,¢). 

We examine vector bundles on S 2. First note that each of 
the coordinate patches defined above is contractible. Recall 
that any vector bundle over a contractible space is trivial. All 
the topological information is contained in the transition 
function. The transition function is a map g: DA nDB -G, 
where G is the structure group of the bundle, which is U(n) 
in our case. The toplogical structure of the bundle is deter
mined by the homotopy class of the transition function g. 
SinceDA nDB is homotopic to the circleS I around theequa
tor, we need only consider homotopy classes of maps 
S 1-- U(n). This is simply the fundamental group 1T1(U(n»), 
which is known to be Z, the integers. It is easy to verify that 
1T1(U(n») = Z, corresponding to the winding number. Con
sider the determinant map det: U (n ) -+ U ( 1 ). One can show 
that two maps g, g': S I _ U (n) are in the same homotopy 
class if and only if the composition maps detog, detog': 
S I -+ U ( 1) are in the same homotopy class, i.e., have the 
same winding number. One can then conclude that 
1T 2( fJI n (JY'») = Z if the dimension of JY' is sufficiently large. 

The theory of characteristic classes l4
,I6,I7 provides an

other approach to the classification of vector bundles. The 
integer invariant, determined above from the winding num
ber, can also be expressed as - C I , where C I is the first 
Chern number of the bundle. This is valid for complex bun
dles over S2 of any dimension. The Chern-Weil theory l7,18 

gives an expression for the first Chern number as the integral 
over S 2 of a differential form C I of degree 2. This differential 
form is explicitly constructed from the curvature of a con
nection on the bundle. Chern showed that although the form 
c i depends on the choice of connection, the integral C) of c i 

over S 2 does not, and is always an integer. In the case of a line 
bundle, the two-form CI is equal to the curvature two-form 
:!Il. For bundles of higher dimension, the curvature form:!ll 
is matrix valued, and the Chern class C I is the trace of :!Il. The 
theory of Chern classes is not necessary for what follows, but 
it facilitates understanding of the rather abstract classifica
tion of invariant connections. 

V. STRUCTURE OF THE EIGENSTATE BUNDLES 

In this section we shall study the family of Hamiltonians 
Hk = Ho + k·V, where k is a unit vector in R3

, V is a vector 
operator, and Ho is a rotationally invariant operator. The 
parameter space is the space of unit vectors in R3

, or the two
dimensional sphere S2. By definition, [J,Ho] = 0, so 
[J,Hk ] = [J,k'V] = ikXV. Obviously Hk is invariant un
der rotation about the k axis, [k'J,Hk ] = O. In fact, this is 
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the only property that we require. All the results of this pa
per actually hold for a more general class of Hamiltonians 
H k • Consider a single Hamiltonian Hi.' satisfying 
[ Jz ,Hi] = O. We obtain a family of Hamiltonians by letting 
the rotation group act on Hi' Let g be an element of the 
rotation group, and U(g) the corresponding unitary opera
tor on the Hilbert space. The Hamiltonian Hz is mapped to 
the Hamiltonian Hk = U(g)Hi ut(g), where the unit vec
tor k is defined by k = R (g)i. One easily checks that 
[Jok,Hk ] = O. We thus obtain a family Hk of Hamiltonians 
parametrized by the sphere S2 of unit vectors in R3. It is 
easily verified that Hk = Ho + koV is a family of this type. 
Since all the Hamiltonians in the family are unitarily related, 
they have the same spectrum. The representation U of 
SU(2) on the Hilbert space is generally reducible. We shall 
be interested only in the discrete spectrum of the Hamilto
nian. If the Hamiltonian also has a continuous spectrum, we 
shall restrict attention to the subspace of Hilibert space 
spanned by the eigenvectors of the Hamiltonian. We will 
thus assume from now on that the Hamiltonian has only a 
discrete spectrum. 

Assume that the Hamiltonian H k is nondegenerate. We 
now construct a one-dimensional complex vector bundle 
over S 2 corresponding to each eigenvalue En of the Hamilto
nian. Let Ik,n) be a normalized eigenvector of H k, Hk Ik,n) 
= En Ik,n), (k,nlk,n) = 1. This is unique only up to a 
phase. Construct the one-dimensional spectral projections 
Pk •n = Ik,n)(k,nl. This is determined uniquely, the phase 
ambiguity cancels. Consider the map In: S 2 -+ .9' 1 (,Jr"') by 
k -+ P k.n' Each In defines a one-dimensional complex vector 
bundle Fn over S2. Since [Jok,Hk ] = 0, Ik,n) is an eigen
vector of Jok. We denote by m the eigenvalue, 
Joklk,n) = mlk,n). The span of the vectors Ik,n) for all k 
defines a subspace J7'" n of J7"'. The rotation group acts irredu
cibly on J7"'n. The dimension of an irreducible representation 
of SU(n) determines the spin quantum number j, by 
dim J7"'n = 2j + 1. Each eigenvalue En of the Hamiltonian 
carries the angular momentum quantum numbers (j,m), 
determined in the above manner. Usually, the operator Vok 
can be considered a small perturbation to the rotationally 
invariant H 0' and is obvious how to define (j,m). In general, 
however, since [ J2,Hk ] #0, we need the above procedure to 
determine j. 

We will now determine the topological structure of such 
a line bundle. We choose one of the eigenvalues En, and omit 
the n subscript in the following. Recall that every bundle is 
trivial when restricted to D A or DB' We will give a trivializa
tion and find the transition function. We first fix a product 
structure for the restriction to D A • Make a specific choice of 
phase for li,n), which will remain fixed from now on. We 
will follow the usual conventions and call this vector I j,m). 
Here (O,cp ) are the spherical coordinates on S 2, and 
PUJ.<P) = Pk , where k = cos(O)i + sin(O)cos(cp)x 
+ sin (0) sin (cp ) Y . We define a local section of Fn over D A as 

follows: 

IA(o.<p) ) = exp( - iO ( - sin(cp )Jx + cos(cp )Jy» I j,m) . 

(5.1 ) 

Similarly, we define a section IB(o.<p» over DB' 
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IB(o.<p» = exp(i(1T - 0)( - sin(cp)Jx + cos(cp) Jy ) 

Xexp( -i1TJx )lj,m). (5.2) 

One can easily check that these are indeed local sections of 
the bundle by verifying p(O,<p) IA(o,<p) ) = IA(o,<p) ), and, like
wise, for IB(o,<p»' A global section does not generally exist, 
as we will see. We now find the transition function relative to 
this trivialization. The transition function gBA satisfies 
gBA (O,cp)IA(o,<p» = IB(o,<p»' This can be expressed as 
gBA (O,cp) = IB({;J,<p) ) (A (O,<p) I· The projection p(O,<P) acts as 
the identity operator, so 

gBA (O,cp) = p(O,<P) gBA (O,cp) 

= IA(o.<p) ) (A (O.<p) IB(o,<p) ) (A (O,<p) I 
= (A (O,<p) IB(o,<p) )p(O,<P) . (5.3 ) 

We need to compute the matrix element (A (O,<p) IB(o,<p»' 

(A(o,<p) 1= (j,mlexp(iO( - sin (cp)Jx + cos(cp)Jy) , (5.4) 

IB(o,<p» = exp(i(1T - 0)( - sin (cp)Jx + cos(cp)Jy) 

X exp( - i1TJx ) I j,m) , (5.5) 

(A({;J,<p) IB(o,<p» = (j,mlexp(hT( - sin(cp)Jx + cos(cp)Jy) 

xexp( - i1TJx ) Ij,m) , (5.6) 

(A (O,<p) IB(o,<p» = (j,mlexp( - 2icpJz ) Ij,m) . 

We then find 

gBA (O,cp) = exp( - i2mcp)P(o,<p) . (5.7) 

We need to compute the winding number ofthe map ofthe 
equator into U ( 1), gBA : S 1 -+ U ( 1). The winding number is 
clearly - 2m. 

We now consider a Hamiltonian for which the eigenval
ue En is doubly degenerate. Now the bundle Fn is two di
mensional, given by a map In : S 2 -+ .9' 2 (J7"'). It is clear that 
the bundle Fn is just the direct sum of two one-dimensional 
bundles with the appropriate quantum numbers. The sub
space J7"'n spanned by the eigenvectors need not be an irredu
cible subspace under the action of SU (2). If it is irreducible, 
we shall say the two vectors are in the same j multiplet. We 
again omit the n index. 

Since [Jok,Hk ] = 0, we can choose normalized eigen
vectors Ik,l), Ik,2) satisfying Hk Ik,i) = En Ik,i), Joklk,i) 
= milk,i), and (k,1Ik,2) = O. Define Pk,1 = Ik,l)(k,ll, 

Pk,2 = Ik,2) (k,21, p(O,<P) = Pk = Pk,1 + Pk,2' The rest is 
analogous to the one-dimensional case. We can find the tran
sition function for the bundle exactly as above. The transi
tion function gBA is in this case a map into U(2), given by 

gBA (O,cp) = exp( - i2m ICP)P(o.<p),1 

+ exp( - i2m2CP )p(O,<P),2 . (5.8) 

We could also note that the bundle is the direct sum of two 
line bundles, and obtain the U(2) matrix gBA by imbedding 
U ( 1) xU (1) diagonally in U (2). It is easy to see that the 
result is the same. The topological classification requires de
termining the winding number of the map detogBA : 
S 1-+ U( 1). This is easily seen to be equal to - 2(m l + m 2 ). 

This is also clear from the fact that the Chern class of a sum 
of bundles is the sum of Chern classes. 
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VI. CLASSIFICATION OF ROTATIONALLY INVARIANT 
CONNECTIONS 

We now discuss the action of the rotation group on the 
bundles defined above, and the classification of the connec
tions which are invariant under this action. In the one-di
mensional case, most of the results can be deduced from the 
rotational in variance of the curvature and the Chern
Gauss-Bonnet theorem. In the two-dimensional case, we ap
peal to a generalization of a theorem of Wang. 19 The details 
are discussed in the Appendix. 

We discuss now the action of the rotation group on the 
eigenvector bundles. We first consider the one-dimensional 
complex vector bundles corresponding to a nondegenerate 
eigenstate with quantum numbers (),m). The fiber over a 
point kES 2 is a one-dimensional subspace of a finite-dimen
sional complex vector space, the irreducible subspace of the 
Hilbert space under the action of the rotation group. Recall 
that such an irreducible subspace has dimension (2) + 1). 
The entire bundle space is the (2) + 1 )-dimensional com
plex vector space, the fiber is a one-dimensional complex 
vector space, and the base space is S 2. The structure group is 
U ( 1 ). The action of SU (2) on the bundle space is the action 
of the corresponding irreducible representation. The action 
induced on the base space is the usual action of the rotation 
group on S 2. The discussion for the two-dimensional vector 
bundles corresponding to a doubly degenerate eigenstate is 
similar. Let (); < mi ), i = 1, 2 be the quantum numbers of 
the two degenerate states. The bundle is just the direct sum 
of two one-dimensional bundles. The fiber is now a two
dimensional complex vector space, the base space is again S 2, 
and the entire bundle space is a (2)1 + 2)2 + 2)-dimensional 
vector space, the sum of the bundle spaces of the two corre
sponding one-dimensional bundles. The structure group is 
U ( 1 ) xU ( 1 ). The action of the rotation group on the vector 
bundle is clear. It is straightforward to deduce the action of 
the rotation group on the corresponding principal bundles. 
We remark that the action of the rotation group is transitive 
on the U ( 1) principle bundle corresponding to the non de
generate eigenstate, but is not transitive on the U ( 1 ) xU ( 1 ) 
principal bundle corresponding to the doubly degenerate ei
genstate. 

We consider the one-dimensional case. Choose an eigen
valueEn of the Hamiltonian, and denote by (j,m) the corre
sponding angular momentum quantum numbers. Construct 
the bundle Fn as above. Consider a connection ~ on Fn, and 
let yt denote its curvature. The curvature is a two-form tak
ing values in the Lie algebra of U ( 1 ), which we identify with 
R. The curvature is then an ordinary two-form on S2. The 
Chern-Gauss-Bonnet theorem states that the integral of 
21Tyt over S 2 is equal to C1, the first Chern number of the 
bundle Fn . We have determined above that C 1 = 2m. A rota
tionally invariant connection has a rotationally invariant 
curvature form. The only rotationally invariant two-forms 
on S2 are constant multiples of the area two-form 1], 

1] = sin (e) de A d¢ in spherical coordinates. The integral of 
1] over S 2 is simply the area of S 2, which is 41T. Thus we find 
yt = m1]. 

The curvature is, in this case, sufficient to determine 
holonomy. Consider a region n c S 2, such that the boundary 
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r = an is a smooth simple closed curve on S2. Then the 
holonomy for the path r is simply the integral of yt over n. 
This follows from the definition of curvature as the holon
omy of a small path. We recover Berry's result that the ho
lonomy for r is equal to m times the area of n. The curvature 
is not quite sufficient to determine the connection. There are 
connections with the same curvature which are not rotation
ally invariant. There is, however, a unique rotationally in
variant connection. One could show this explicitly by noting 
that in this case two connections with the same curvature are 
related by a principal bundle automorphism, or gauge trans
formation. A rotationally invariant connection remains in
variant under gauge transformation if and only if the gauge 
transformation commutes with the action of the rotation 
group. One may verify that there are no nontrivial gauge 
transformations commuting with the rotation group action. 
We will instead rely on the classification results of the Ap
pendix to prove the uniqueness of the invariant connection. 

The two-dimensional case is more complicated. The 
curvature yt is now a matrix-valued two-form. It is much 
more complicated to determine all such two-forms compati
ble with rotational invariance. Even if we could determine 
the curvature form, the holonomy is not easy to find. In the 
U ( 1 ) case we had a formula relating the holonomy for r to 
the integral of yt over n. There is no analogous formula for 
the U (2) case. The holonomy may be different for two paths 
r, r' which enclose, respectively, regions n, n' of the same 
area, but different shape. We must then appeal to the meth
ods of the Appendix. 

We now present the results of the invariant connection 
classification. In the one-dimensional case, we find there is a 
unique invariant connection. In the two-dimensional case, 
the results depend on the quantum numbers of the two states 
under consideration. Let ()i ,m i ) be the angular momentum 
quantum numbers of the two degenerate states. Since each 
one-dimensional bundle has a unique invariant connection, 
the direct sum of the bundles must have at least one invariant 
connection,corresponding to the sum of the connections on 
the line bundles. We shall say that a connection splits if it is a 
sum of connections on each of the line bundles. The holon
omy ofa connection which splits is U( 1) XU( 1) CU(2). It 
is clear that there is only one invariant connection which 
splits, since the invariant connections on the line bundles are 
unique. The results of the classification are the following. If 

m I - m2 =1= ± 1, then there is a unique invariant connection. 
This connection must then split. If m I - m 2 = ± 1, then 
there is a two-parameter family of invariant connections, 
indexed by (a,/1)ER2. The connection corresponding to 
a = {3 = 0 splits. No other connection splits. There is now a 
nontrivial subgroup of the gauge transformations which 
commutes with the action of the rotation group. We find that 
two invariant connections (a,{3) and (a',{3') are gauge 
equivalent if and only if a 2 + {3 2 = a,2 + {3 '2. The connec
tion (a,{3) is thus equivalent to a connection of the form 
(~a2 + {3 2,0). Up to gauge equivalence, the set of invariant 
connections can then be parametrized by R + , the non-nega
tive real numbers. 

This classification has important consequences. In the 
one-dimensional case, we do not need to do any work to find 
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the Berry connection. The Berry connection is just the 
unique invariant connection. In the two-dimensional case, 
we can immediately determine the Berry connection if 
m I - m 2 # ± 1. The Berry connection is again the unique 
invariant connection. When m 1 - m 2 = ± 1, we have to ac
tually do some work to find the Berry connection. This is 
unfortunate, but not tragic. We shall do this in the following 
section. 

VII. THE BERRY CONNECTION 

In this section we determine parallel transport in the 
Berry connection. We use Simon's prescription,2 generalized 
by Wilczek and Zee3 to the degenerate case. We do the two
dimensional case for arbitrary (ij ,mj ). Recall that the split 
connection is unique for any bundle. We shall find that if 
il #i2' then the Berry connection splits for any m l, m 2. For 
m l - m 2 # ± 1, this follows from the classification, but if 
m I - m 2 = ± 1, this is a nontrivial result. Using this result 
and the classification, we see that the only possible case 
where the Berry connection might not split is il = i2' 
m l - m 2 = ± 1. We will, in fact, find that if the two eigen
vectors are in the same i multiplet, and m l - m 2 = ± 1, 
then the Berry connection never splits. Note that il = i2 is a 
weaker statement than saying that the states are in the same 
i multiplet. 

Choose an eigenvalue En' and define Pk as before. Sup
pose we have an eigenstate of Hk which we wish to transport 
to an eigenstate of H k " where k' = k + Ea, and a is in the 
tangent space at k, a·k = 0, and E is small. We thus want a 
partial isometry Uk',k from the range of Pk to the range of 
Pk" Uk',kPk = Pk, Pk' Uk',k = Uk'.k' When k = k', this 
should simply be the identity on the range of P k' Uk,k = P k • 

It is easy to check that ifk' = k + Ea, Uk'.k = Pk,Pk has the 
desired properties to first order in E, Uk',k t Uk',k 
= P k + 0 (E2) , According to Simon,2 and Wilczek and Zee,3 

this is the correct prescription for the Berry connection. To 
parallel transport along an arbitrary path ron S 2, starting at 
kj and ending at kf , choose N + 1 points (kj 
= ko,kl, ... ,kn , ••• ,kN _ l,kN = kf ) equally spaced along r, in 

the end taking the limit N ----+ 00. The partial isometry 
Ur =PkNPkN_t "'Pkn "'Pk,Pk" maps the range ofkj to the 
range ofkf . This determines parallel transport along r in the 
Berry connection. 

Since the action of the rotation group SU (2) on S 2 is 
transitive, there exists for any two unit vectors k, k' an 
aESU (2) such that R (a) : k ----+ k'. Let Gk denote the isotropy 
group of the vector k, the set of hESU (2) satisfying R (h) : 
k ----+ k. The elment a above is not unique, since h ' ahESU (2) 
also maps k ----+ k' if hEGk , h ' EGk ·• Consider the path r, and 
take again N + 1 equally spaced along the path. We can 
choose (a l ,a2, ... ,an, ... ,an ), where a n ESU(2), and R(an ): 
kn _ I ..... kn • We can choose these so all the an are close to the 
identity e of SU(2). It is convenient to define hn 

= anan _ I .. 'a2a l , so that R (hn ): ko ..... kn • Recall that U de
notes the representation of SU(2) on the Hilbert space of 
states &". Define Un = U(hn ), then Pkn = UnPk" Un t. 

It is straightforward to write a formula for Ur ' 

Ur = UNPk" UNtUN_IPk" UN_I tUN_ 2 
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(7.1 ) 

Now 

Un tUn_I = U(h n -1)U(hn_ l ) = U(h n _ 1 -Ian -lhn_ l ) . 

(7.2) 

Thus Un tUn _ I is always close to the identity operator. We 
write Ur as 

Ur = UNANAN_ I .. 'A n " 'A2 AI' (7.3) 

where An = Pk" Un tUn _ I Pk". Each An is a partial isometry 
from the range of Pk" onto itself. We can write Un tUn _ I 

= exp(iGn oJ) for some vector Gn. Since Un tUn _ I is close 
to the identity operator, we can take Gn to have small norm, 
and approximate Un tUn _ I = 1 + iGn oJ + o( IGn 1

2). Since 
we are interested in the limit N ..... 00, we need only consider 
the first-order term. 

It is convenient to assume that k; = ko = z. We wish to 
evaluate expressions of the form 

An = Pz (1 + iGn°J)Pz . (7.4) 

By definition, we have 

Pz = lil,ml)(il,mll + 1i2,m2) (i2,m 21, (7.5) 

Pz JzPz = mllil,ml)(il,mll + m 2Ii2,m2)(i2,m21, (7.6) 

Pz JxPz = Ijl,ml)(il,mll Jx li2,m2)(i2,m21 

+ li2,m2) (i2,m 21 Jx lil,ml)(il,mll . (7.7) 

Recalll that <il,mll Jx li2,m2) vanishes if lil,m l ) and 
li2,m 2 )are not in the same i multiplet. If lil,m l ) and 
1 i2,m 2 )are in the same i multiplet, the matrix element van
ishes if m I - m 2 # ± 1. The same statement holds for ma
trix elements of Jy • If these matrix elements vanish, the Ber
ry connection splits, and is determined by the classification. 
We can now see that the only instance in which the Berry 
connection might not split is when lil,m l ) and li2,m2) are 
in the same imultiplet, and m l - m2 = ± 1. We shall from 
now on use the shorthand il = j2 to mean that the states are 
in the same i multiplet, and define i = i I = i2' We need only 
consider the case m I - m 2 = 1, and define 
m = !(m l + m2). We then have m l = m +!, m 2 = m -!. 
We will use the shorthand Im+) = li,m + ~), 
1 m _) = 1 i,m - p. In the following equations, all matrices 
act on the two-dimensional complex space spanned by 1 m +) 
and Im-): 

Pz = Im+)(m+1 + Im_)(m_1 = (~ ~) = 1, (7.8) 

Pz Jz Pz = m(lm+)(m+1 + Im_)(m_l) 

+ !(lm+)(m+I-lm_)(m_l) 

= m(ol 0) 1 (1 
1 +2 ° 0) 1 =ml+-u - 1 2 z, 

Pz JxPz = H (j + m + !)(i - m + P] 1/2 

X(lm+)(m_1 + Im_)(m+l) 

= ! [(j + m + !) (j - m + p ] 1/2 (~ ~) 
= [(j + m + P (j - m + P] 1/2 !ux , 
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Pz Jy Pz = H (j + m +!) (j - m +!) ]1/2 

x ( - i/m+) (m_/ + i/m_) (m+ /) 

=! [(j + m +!) (j - m +!) ]1/2(~ - ~) 
(7.11) 

We now study a class of paths for which we can compute 
parallel transport explicitly. These are the paths which are 
the orbit of a point on S 2 under rotation about an axis. Let G 
be a unit vector. Consider the rotation about the G axis by 
angle t. Let a denote the corresponding element of SU (2), 

a = exp( - itG-u). For simplicity, we assume that the ini
tial point of the path is k; = z. The final point of the path is 
given by kf = R(a)z. The action on vectors in the Hilbert 
space is by exp ( - it GoJ). We recall the rule (7.3) for paral
lel transport. Consider t N = tiN. Parallel transport is given 
by the operator Uy , 

Uy=exp(-itGoJ)T, (7.12) 

T= lim (A(tN)t. (7.13) 
N-oo 

We write A for An' since all are the same, and let t N denote 
the dependence on N, 

A(tN) =Pz +itNPz(GoJ)Pz +O(tN)2. (7.14) 

We recall an elementary formula, 

lim (1 + xln)n = exp(x) . 

In our case this gives 

T= Pz exp(itPz (GoJ)Pz)Pz , 

Uy = exp( - it GoJ)Pz exp (itPz GoJ p.JPz . 

(7.15 ) 

(7.16) 

(7.17) 

We are interested in the probability of a transition 
between eigenstates of Jok. The projection pz. + projects 
onto eigenstates ofk;oJ with eigenvalue m + !. The operator 
exp( - it GoJ)Pz. _ exp(it G-J) projects onto eigenstates of 
k["J with eigenvalue m -~. We define 

C'=exp(-itGoJ)Pz._ exp(itGoJ)UyPz.+' (7.18) 

We consider C'/m+). First note that p z.+ /m+) = /m+), 
then Uy gives the result of parallel transporting to 
kf = R(a)z, and the remaining part projects onto the eigen
state ofk["J with eigenvalue m - !. The transition probabil
ity between eigenstates is thus given by 
W= (m+/C'tC'/m+). Equivalently, W is the operator 
norm ofC'tC'.1t is convenient to define 

(7.19 ) 

which has the property ctC= CitC'. Note also 
Pz CPz = C. This property lets us restrict attention to the 
two-dimensional range of Pz' the subspace PzPt"CPt". This 
has a basis /m+), /m_). 

We represent operators as matrices in the obvious way, 

Pz=l, p z.+ =!(l+uz )' p z.- =!(1-uz )' (7.20) 

PzJzPz=!(ml+uz ), (7.21) 

Pz JxPz = H(j + m + p(j - m + !)]I/2ux , (7.22) 

Pz JyPz = H(j+ m + p(j- m + !)]1/2Uy . (7.23) 
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We need to exponentiate these matrices. For any vector B, 
we have 

exp(iBou) = cos ( /B/)1 + sine /B/) (iBoul/B/) . 

Now Pz GoJ Pz = Bol + Bou, where 

Bo = !tmGz , 

Bx =!t [(j + m +!) (j - m + p ]1/2Gx , 

By =!t [(j + m + P (j - m + p ]1/2Gy , 

Bz = !tGz . 

We find 

C = exp(iBo)Pz. _ (cos ( /B/)1 

+ sine /B/) (IBoul/B/) )Pz. + 

Using the identities 

pz.- uzpz.+ = 0, p z.- uxpz.+ = !(ux - iUy ) , 

pz. _ uyPZ, + = (i/2) (ux - iuy ) , 

we find 

C = exp(iBo) [sine /B/ )I/B/] (Bxux - iByuy ) . 

(7.24 ) 

(7.25 ) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

It is now easy to compute the transition probability W. Re
call Wis equal to the operator norm ofCtC, 

W = [(B; + B; )1/B/2] sin2( /B/) . (7.32) 

We express G in spherical coordinates, 
Gx = sin(O)cos(tP), Gy = sin(O)sin(tP), Gz = cos(O). 
Then 

Bx =!t sin(O)cos(tP) [(j + m +!) (j - m + p ]1/2, 

(7.33) 

By =!t sin(O)sin(tP) [(j + m +!) (j - m +!) ]112, 

(7.34) 

B z = ~tcos(O), (7.35) 

/B/ =!t [(j + m + P (j - m + !)sin2(O) + cos2(O) ]1/2, 
(7.36) 

B; +B; 
/B/2 

_ (j+m+!)(j-m+psin2(O) 
- (j + m + p(j - m + psin2(O) + cos2(O) . 

(7.37) 

The transition probability W is given by 

W=A sin2qOt) =!A (1 - cos(Ot)), (7.38) 

where A and 0 depend on 0, 

A= (j+m+!)(j-m+psin
2
(O) ,(7.39) 

(j + m +!) (j - m + psin2(O) + cos2(O) 

0= [(j + m +!) (j - m + !)sin2(O) + cos2(O) ]1/2. 

(7.40) 

We see that the transition probability is an oscillating 
function of t, which is the angle of rotation about the axis G. 
We check some basic properties, 0 should be real. Note that 
- (j - p<m<(j - !), so 

0 2 = (j + p2 _ m 2 
_ l)sin2(O) + 1;~0. (7.41) 
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Next, we see that as 0 --+ 0, A --+ 0, so W --+ O. W is invariant 
under 0 --+ ( 1T - 0), and also under t --+ - t. 

VIII. APPROXIMATE DEGENERACY 

We now consider the case of approximate degeneracy. 
This is important in the analysis of experimental data, and is 
further discussed elsewhere.4 Consider a nondegenerate ei
genvector bfthe Hamiltonian H k • We denote the time vari
able by 7. The Hamiltonian is time dependent, H ( 7) the time 
dependence is specified by the motion of unit vector k ( 7) on 
the parameter space S2. We shall denote by kj the initial 
point of the path, and by kf the final point. We denote by 
U( 7) the unitary time evolution operator. This satisfies the 
Schrodinger equation 

(8.1 ) 

Denote the time derivative ofk by k'. Here k' (7) is a vector 
tangent to S2 at the point k(7). Let UJ be the length ofk', 
UJ( 7) = Ik'( 7) I. 

We wish to apply the adiabatic theorem.2o We first note 
that since all the j multiplets are mutually orthogonal, the 
adiabatic parameter change we are considering cannot cause 
mixing between different j multiplets. We need only consid
er one j multiplet at a time. We shall from now on assume 
that all states are in the same j multiplet. This reduces the 
problem to finite dimensions. The adiabatic theorem in this 
setting is quite simple. Suppose that k(O) = kj = Z. Consid
er a normalized eigenstate 1m) of Hz, with Hz 1m) 
= Em 1m). Consider the quantity 

8m = min IEm - Em' I, (8.2) 
-j<m'<j 

where 8m is the splitting between 1m) and the state in the 
same j multiplet closest to it in energy. The adiabatic 
theorem in this case states that 

kf·J U( 7) 1m) = maU( 7) 1m) , (8.3 ) 

where a is a complex number with unit modulus, if the fol
lowing condition is satisfied: 

sup UJ(X) <t,8m . (8.4 ) 
O<.x<T 

In fact, we can simplify even further. Let k' be close to k. 
Then an eigenstate ofk·J with eigenvalue m is orthogonal to 
all eigenstates ofk'·J except, possibly, those with eigenvalues 
m, m ± 1. We can then define 

8m = min(E'; ,E,;;) , (8.5) 

whereE,; =IEm -Em_II,E,;; =IEm -Em+ll,andthe 
adiabatic theorem as stated in (8.3) still holds. 

We are interested in approximate degeneracy between 
two states 1m!), 1m2 ) in the same j multiplet. By approxi
mate degeneracy, we mean that the energy difference 
between the states is the same order of magnitude as UJ. From 
the adiabatic theorem above, we see that no mixing between 
eigenstates of k·J is possible unless m! - m2 = ± 1. This 
was already apparent for the case of exact degeneracy from 
the classification of invariant connections. We define as be
forem+ = m! = m +!, m_ = m2 = m -!. Define8as the 
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smallest splitting between states, excluding the approxi
mately degenerate states, 

8 = mine minE k-' minE n+) . (8.6) 
k<m_ n>m+ 

Let € = IEm+ - Em_I. We suppose that UJ<t,8 for all 7. The 
adiabatic theorem then determines up to a phase the time 
evolution of all states except 1m + ) and 1m _ ). All eigenstates 
ofkj·J, except possibly Im+) and Im_), evolve into eigen
states ofkf·J. We can then deduce from the unitarity of the 
time evolution that the states Im+) and Im_) can evolve 
only into linear combinations of states with kf·J eigenvalues 
m+ and m_. If €<t,UJ, then the states are effectively exactly 
degenerate, and time evolution is governed by Berry's con
nection. If €~UJ, then the states are effectively nondegener
ate, and the adiabatic theorem tells us that there is no mixing 
between states of different J·k eigenvalues. We are, however, 
interested in the intermediate case. 

We shall again consider paths generated by rotation 
about a unit vector G. Let 7 be the time variable, and UJ the 
rate of rotation. The meaning of UJ is slightly different than in 
the previous section, but this should cause no difficulties. 
The angle of rotation is t = UJ7 as before. We can formally 
give an exact solution for the time evolution operator U( 7). 
The Schrodinger equation states 

i
dU 

=HU. (8.7) 
d7 

When H is time independent, this has the familiar solution 
U(7) = exp( - i7H). When His time dependent, the situa
tion is more complicated. Suppose the time dependence of H 
is given by H(7) = exp( - i7A)H(0)exp(i7A). Then it is 
easy to check that the following is the solution for the time 
evolution operator U: 

U( 7) = exp( - i7A )exp( - i7(H - A») . (8.8) 

We are specifically interested in the case A = UJG·J. Since we 
need only consider the finite-dimensional restriction to a giv
en j multiplet, we can, in principle, find an exact expression 
for U( 7). In practice, this is a little difficult. The simplest 
interesting case is j = 1, where we can have a degenerate 
pair without the whole multiplet being degenerate. We must 
then exponentiate three-dimensional matrices, which is 
most easily done by first diagonalizing. The secular equation 
is cubic, and explicit formulas exist for the roots. This gets 
very messy very quickly. We can greatly simplify by using 
the adiabatic theorem. 

We study the time evolution operator in the case of ap
proximate degeneracy. The adiabatic theorem tells us that 
U( 7) maps a nondegenerate eigenstate ofkj·J with eigenval
ue m' into an eigenstate of kf·J with the same eigenvalue. 
Now the operator exp( - i7UJG'J) also maps a nondegener
ate eigenstate ofkj·J with eigenvalue m' into an eigenstate of 
kf·J with the same eigenvalue. So we see that 
exp( - i7(H - UJG·J») must map a nondegenerate eigen
state of kj·J into itself, up to a phase. This tells us that the 
operator exp( - i7(H - UJGoJ») is diagonal in the basis of 
eigenstates ofkj.J, except possibly on the pair of degenerate 
states. In other words, an eigenstate ofkj·J with eigenvalue 
not equal to m + or m _ is mapped onto itself times a phase. 
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Recall that Pi. is the two-dimensional projection onto the 
approximately degenerate subspace, the subspace spanned 
by Im+) and Im-). It follows that 

[Pz' exp( - i'T(H - wG·J»)] = o. (8.9) 

Restricted to the degenerate subspace, the time evolution 
operator then takes the form 

U( 7) = exp( - i7WG·J)Pi. 

X exp( - i7Pz (H - wG-J)Pi.)Pz . (8.10) 

We now proceed exactly as in the previous section. It is con
venient to use t = 7W. We must now consider the operator 

(8.11 ) 

Here we define /1 = (E+ - E_ )/w, E = (E+ + E_ )w, 
then the coefficients are 

A 

Bo = ~t(mGz - E) , 

Bx = ~tGx [( j + m + !) (j - m + ~)] 1/2, 

By = ~tGy [(j + m + !) (j - m + !)] 1/2, 

Bz = !t(Gz -/1) . 

(8.12 ) 

(8.13 ) 

(8.14 ) 

(8.15 ) 

We note that when /1 = 0, all the coefficients except Bo re
duce to the values in the previous section. The Bo just gives 
the overall phase, which was neglected in the previous sec
tion. Alternately, we could redefine our energy scale so 
E = O. The value of Bo does not affect the transition proba
bility W. Expressing G in polar coordinates as before, we 
find 

IBI = !t [(j + m + P (j - m + !) 

xsin2(8) + (cos(8) _/1)2] 1/2, 

B~ +B; 
IBI2 

(8.16 ) 

(j + m + !) (j - m + psin2(8) + (cos(8) - /1f . 
( 8.17) 

We then find a similar expression for the transition probabil
ity W, 

W = A sin2(~Ot) = !A (1 - cos(Ot)) , (8.18) 

where A and 0 depend now on /1 as well as 8, 

A= (j+m+!)(j-m+!)sin
2
(8) , 

(j + m +!) (j - m + psin2(8) + (cos(8) - /1)2 

0= [(j + m + P (j - m + !)sin2(8) 

+ (cos( 8) - /1)2] 1/2. 

( 8.19) 

(8.20) 

The possible transition probability is maximum at 
/1 = cos(8). The maximum has a value of unity, so a transi
tion probability of unity is possible. 0 has its minimum at 
this value of /1. Now as /1 moves away from this value, A 
decreases, and 0 increases. At /1 = 0, the case of exact de
generacy, we recover our previous result. As a function of /1, 
A is Lorentzian centered around /1 = cos(8), with width 
(j + m + !) (j - m + !)sin(8). Thus the effect is harder to 
observe at small 8, since /1 must be close to the maximum. 
We now see why at /1 = 0, A decreases as 8 decreases. In the 
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limit 8 ..... 0, the above result can be obtained from time-de
pendent perturbation theory. II 

IX. CONCLUSIONS 

We have studied the family of Hamiltonians of the form 
Ho + k·V. If a Hamiltonian in this family is nondegenerate, 
we have seen that the adiabatic behavior is determined 
uniquely by the rotational symmetry. Experiments on such 
systems can only yield limited information. If the Hamilto
nian has a double degeneracy, or approximate degeneracy, 
between two states m I and m 2 in the same j multiplet, then 
the rotational symmetry suffices to determine the adiabatic 
behavior if and only if m l - m 2 # ± 1. If m l - m 2 = ± 1, 
we need to invoke the Schrodinger equation, in the guise of 
Simon's prescription for the Berry connection. Experiments 
on such systems can then yield more information. An exam
ple of such an experiment is discussed in the paper.4 

APPENDIX: INVARIANT CONNECTIONS 

We discuss the classification of rotationally invariant 
connections on the eigenstate bundles over S 2. The results 
are summarized in the main text. Here we present the techni
cal details of the classification. 

Consider a principal fiber bundle P, with structure 
group H and base space B. Recall that there is a free right 
action of H on P, and B is the quotient by this action. Sup
pose, furthermore, that there is a Lie group G of bundle auto
morphisms of P. This is a left action of G on P, which com
mutes with the action of the structure group. The G action 
on P thus induces a G action on B. We will be interested in 
classifying connections on P which are invariant under the 
action of G. We shall always assume that the induced G ac
tion on B is transitive. The following can be generalized to 
nontransitive G action on B, but the discussion becomes 
more cumbersome. We shall assume that P, G, H, and Bare 
all compact. 

We shall formulate a generalization of a theorem of 
Wang. 19 Wang's theorem gives a classification of invariant 
connections for a special case. Consider a point yEiJ, and 
denote by G y the isotropy group of y, G y is the subgroup of G 
which leaves y fixed. Wang gives a classification in the case 
when Gy acts transitively on the fiber Py over y. Recall that 
G is assumed to act transitively on the base B. We shall ob
tain a result for the case when Gy does not necessarily act 
transitively on the fiber over y. 

Let hEll, and denote by R h : p ..... p the right action of the 
structure group. Note that Rh -, gives a left action of H on P. 
This action is not by bundle automorphisms, since it clearly 
does not commute with the action of the structure group, 
unless the structure group is Abelian. This left action of H 
does, however, commute with the left action of G on P. We 
thus have a left action of G X H on P. It is easy to check that if 
the G action on B is transitive, then the G XH action on P is 
also transitive. The action of G XH is not by bundle auto
morphisms, so we cannot use Wang's theorem. 

We recall the construction of a connection on a princi
pal fiber bundle. 17 Consider a point yEP, and the tangent 
space Ty = TyP. Consider the orbit of y under the right ac-
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tion of the structure group H. Recall that the vertical space 
Vy C Ty is defined as the subspace tangent to the orbit of y 
under the action of the structure group. Here Vy has the 
same dimension as H. A connection @ is a one-form on P 
taking values in the vertical subspace of the tangent space, 
which is invariant under the structure group action. At a 
point yEP, Wy is a linear map @y: Ty -- Ty, satisfying two 
conditions: (1) the range of Wy is Vy' and (2) the restriction 
of@y to Vy istheidentitymapofVy,wylv = Idv . Thestruc
ture group acts by R h : P--P, where hEll. Suppose 
Rh (y) = x. Then by invariance under the action of the 
structure group, we mean wxR;' = R ;'@Y' Here R ;, denotes 
the derivative of the map R h' One may construct a connec
tion by choosing smoothly for each yEP an Wy satisfying ( I ) 
and (2) above. This is a priori not invariant under H. One 
obtains an H invariant W by averaging over the action of H, 
using the Haar measure on H. 

If @ is further invariant under the G action on P, we say 
that @ is a G-invariant connection. G-invariant connections 
exist. We use a similar argument. Construct at each yEP an 
@y satisfying (1) and (2). We now average over the Haar 
measure on G XH. Thus at least one G-invariant connection 
exists. There may be more, however. Consider a point yEP, 
and denote by Iy the isotropy group for the left G XH action. 
Herely is the subgroup ofG X Hwhich leaves y fixed. If W is 
a G-invariant connection, then clearly I must leave @ in-y y 

variant. Recall that the G XH action is transitive. Suppose 
we have at one point yEP an @Y' satisfying (I) and (2), 
which is invariant under I y • Then @ is defined at all points of 
P by the action of G XH. We then have the following propo
sition. 

Proposition: Fix a point yEP. The G-invariant connec
tions on P are in one-to-one correspondence with linear 
maps Wy: Ty -- Vy which satisfy (1) and (2), and which are 
invariant under the action of I y • 

By invariance under the Iy action we mean the follow
ing. Let iEly, then i: y--y, the derivative map i': Ty--Ty. 
Recall that Wy: Ty -- Ty. We say that @y is invariant under 
the action of Iy if i'Wy = @yi' for all iEly. This proposition 
contains Wang's theorem as a special case. 

We shall be interested in principal H-bundles construct
ed as follows. Let A be a compact Lie group. Consider a 
manifold S with a transitive left G XA XH action. Let seS, 
and denote by Is the isotropy group of s under the G XA X H 
action. Is is a subgroup ofG XA XH. LetPbe the quotient of 
S under the A action, P = S / A, and yEP the point corre
sponding to seS. Here P admits a left G XH action, and can 
thus be considered as a fiber bundle with structure group H, 
and a group G of bundle automorphism. The structure group 
acts on the right, so we must reverse the H action appropri
ately. A point yEP corresponds to an A orbit in S. Let 
(a,g,h)EisCA XG XH. Then (g,h)ElyCG XH. Converse
ly, supp~se (g,h)Ely' Then there exists an aEA such that 
(a,g,h)Els' 

The tangent space Ty corresponds to the quotient 
Ts / N s' where Ns C Ts is tangent to the A orbit of s. Consider 
the action of the derivative map ofT': Ts -- Ts' where lEis.It is 
easy to see that the subspace Ns is preserved by this map, I: 
Ns --Ns. Thus l' passes to a map of the quotient space 
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TJ Ns' denoted by i': Ty -- Ty. This corresponds to the deriv
ative of a map iEly. 

We now consider an example. Let S = G X H. G acts on 
Sby left translation on the G factor, g': (g,h) -- (g'g,h). Here 
H acts on S by right translation by the inverse on the H 
factor, h ': (g,h) -- (g,hh '-I). Let FAG: A --G and FAH : A 
--H be homomorphisms. A acts on S by a: (g,h) 
--(g(FAGa-I),(FAHa)h ). 

Consider the point s = (e,e)EG XH = S. We wish to 
find the isotropy groupIs. AnelementofG XA XHactsons 
by 

(g,a,h): (e,e)~(g(FAGa-I), (FAHa)h -I). (AI) 

This element (g,a,h)Eis if and only if g = FAGa and 
h = FAHa. The isotropy group Iy of the corresponding point 
yEP is the set of (g,h) such that there exists an aEA satisfying 
the above two conditions. 

Consider the tangent space Ts = TsS, This is equal to 
the direct sum of the tangent spaces Te G Ell TeH. We will 
from now on denote the tangent space at the identity of a Lie 
group Gby 2: G = Te G. Thus every ZETsS can be written as 
Z = (X,!), for some XEY G and YE2: H' Consider 
(g,a,h)Els' We wish to find the derivative of the map ats. We 
consider exp~Z) = (exp(tX), exp(ty»)EG XH, and 
(FAGa,a,FAHa )Els. Recall that all elements off can be writ
ten in this way. The element offs gives a map G 'x H -- G X H 
as follows: 

(FAGa,a,FAHa): (exp(tX), exp(tY») 

~(FAGa)exp(tX)(FAGa-I), (FAHa) 

X exp(tY) (FAHa- I») . (A2) 

The derivative of this maps is clearly (X,Y)~(Ad(FAGa)X, 
Ad(FAHa) Y). Here Ad denotes the adjoint representation 
of a Lie group on its Lie algebra. 

The null space Ns is the tangent along the A orbit of seS. 
Let WE2: A' Then exp(tW)EA. Under the A action on 
S = G XH, this gives 

exp(tA): (e,e)~(FAG exp( - tA), FAH exp(tA»). 
(A3) 

~OWFAG': Y A --2: G,FAH': 2:A --2: H' ThenullspaceNs 

IS spanned by vectors of the form (- FAG' W,FAH ' W), 
where WEY A' In other words, Ns is the range of the map 
( - FAG' Ell FAH '): 2: A - 2: G Ell 2: H' 

We now consider the nondegenerate eigenstate bundle 
over S 2. This is a complex line bundle, so the structure group 
is U(1). The SU(2) action is transitive on the principal bun
dleP. In fact, it is easy to check thatP = SU(2) X U(I) U( I). 
The action of U ( I) on the U ( I) factor depends on the m 
quantum number. We now elaborate. Let G = SU(2), 
H = U( 1), A = U( 1). A basis for Y G = Y SU(2) is given 
by Lx: Ly' L z ' where Lx = (i/2)ux' Ly = (i/2)uy, 
L z = (1/2)uz ' These are all anti-Hermitian, and have the 
commutation relations [Lx,Ly] = L z • LetR = - ibe a ba
sis for 2: A = 2: U(ll' exp(aR) = exp( - ia). Similarly, let 
Q be a basis for Y H = 2: U(I)' We define the homomor
phisms FAG and FAH by their derivatives at the identity, 

FAG ':2:U (I) -2:SU(2), R~2Lz' (A4) 

FAH':2: U(I) -2: U(I) , R~2mQ. (A5) 
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Let sES be the point (e,e )ESU (2) xU (1 ). The tangent 
space Ts = .!£'SU(2) EEl.!£'U(I) is spanned by Lx, L y' L z' Q. 
The null subpsace Ns is the range of 

(-FAG/)EElFAH': .!£'u(l)-Ts 

RI---+ - 2Lz + 2mQ . (A6) 

Let TEis' Then i = (FAG a, a, FAHa). Suppose that 
a = exp( - ~tR). Recall that the derivative of this map is 

T I: .!£' SU(2) EEl.!£' U(l) -.!£' SU(2) EEl.!£' U(l) , 

LxI---+Ad(exp(tLz ))Lx , 

LyI---+Ad(exp(tLz ) )Ly , 

L z I---+Lz , Q---+Q . (A7) 

We consider an infinitesimal action. Let t = E ~ 1. Denote by 
TE the corresponding element of Is. The action of T; is to first 
order in E 

Lxl---+Lx + ELy, Lyl---+Ly - ELx , 
(A8) 

Let L 'be the subspace of Ts spanned by Lx and Ly. Let Fbe 
the subspace of Ts spanned by Lz and R. Here Ts decom
poses as Ts = L ' EEl F. The null subspace is a subspace of F, 
Ns C F. The vertical subspace, tangent to the structure group 
action, is also a subspace of F, Vs C F. Also, 
TJNs = L' EElF INs, and VJNs = FINs' Note that an ele
ment of Is acts trivially on F, and acts by rotation on L '. In 
particular, the action on VsINs is trivial. 

We need to consider maps Ws: TJNs - VJNs. Here w 
must act as the identity on VsINs' We need maps of 
L '-F INs which commute with the mapT;. First note that 
the composition woT; maps 

Lxl---+liJ (Lx) + EW (Ly) , Lyl---+liJ (Ly) - EW (Lx) . 
(A9) 

The composition T ; Ow maps 

Lxl---+liJ(Lx) , Lyl---+liJ(Ly)' 

For these two maps to be equal, we must have 

w(Lx) =O=w(Ly )' 

(AlO) 

(All) 

There is then a unique map w satisfying the necessary condi
tions. We conclude that there is a unique SU(2) invariant 
connection for any value of m. This result also follows from 
an easy application of Wang's theorem. 

We now construct a more complicated example. Let 
S = G XB XH. The action ofG XA XHis as follows. Gacts 
on S by left translation on the G factor, g': 
(g,b,h) - (g'g,b,h). Here H acts on Sby right translation by 
the inverse on the H factor, h ': (g,b,h) _ (g,b,hh ,-I). Con
sider the group homomorphisms 

FAG: A -G, F~B: A -B, 

F~B: A-B, FAH : A-H, 

where A acts on S by 

(A12) 

a: (g,b,h)l---+(g(FAGa- I), (F~Ba)b(F~Ba-I), (FAHa)h). 

(A13) 

Note that the actions of A, G, and H mutually commute, so 
we indeed have an action of A X G XH on S. 
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Consider the points = (e,e,e)EG XB XH = S. We wish 
to find the isotropy group Is. Let (a,g,h) EA X G X H, 

(a,g,h): (e,e,e)~(g(FAGa-I), 

(A14) 

The isotropy group Is is specified by the following condi
tions: F~Ba = F~a, g = FAG a, h = FAHa. Thus (g,h)Ely if 
and only if there exists an aEA satisfying the three conditions 
above. 

An element T = (a,g,h )Eis maps s to itself. The deriva
tive thus gives a linear map Ts - Ts. The derivative T' is given 
by the action of (a,g,h)Eis on (exp(tX) , 
exp(tY),exp(tZ»)EG XB XH, in the limit t-O. Since 
(a,g,h)Eis' F~Ba = F~Ba. We denote the common value as 
FABa, 

T: (exp(tX) , exp(tY), exp(tZ»)~(g,b,ii) , 

where 

g= (FAGa)exp(tX)(FAGa - I
) , 

b = (FABa)exp(tY) (FABa- l ) , 

Ii = (FAHa)exp(tZ)(FAHa-l) . 

In the limit t - 0, we obtain the derivative map 

(AI5) 

(AI6) 

T': (X,Y,Z)~(Ad(FAGa)X, Ad(FABa)Y, Ad(FAHa)Z). 

(AI7) 

The null space N is tangent to the orbit of s under A, 

a: (e,e,e)I---+(FAGa- I) , (F~Ba)(F~Ba-I), (FAHa»). 

(AI8) 

Consider WE.!£' A' a = exp(tW)EA. In the limitt-O, we ob
tain the derivative of the above map 

(-FAG')EEl(F~B'-F~B')EEl(FAH'): .!£'A-Ts· 
(AI9) 

The range of this map is the null subspace Ns C Ts. In other 
words, Ns is generated by vectors of the form 

(-FAG'W, F~B'W -F~B'W, FAH'W) , 

where WE.!£' A • 

(A20) 

We now wish to consider the bundle corresponding to 
two degenerate eigenstates. Suppose we have two states with 
quantum numbers m l and m2 • We have seen above that the 
principal U ( 1) bundle associated to a line bundle over S 2 is 
p = SU(2) XU(I) U( 1). Here the U( 1) action depends on 
m. The U ( 1 ) xU ( I) principal bundle corresponding to the 
direct sum of the two line bundles can be written as 
p= SU(2) X U(I) U(1) XU(1), where U(l) acts on 
U(1) XU(1) in the obvious way. The structure group is 
U( 1) XU( I). We wish to imbed our U( 1) X U( 1) principal 
bundle into a U(2) principal bundle. This amounts to con
structing the principal bundle 

p= (SU(2) XU(I) U(1) xU(1»)X U (l)XU(l) U(2) . 
(A2l) 

We now elaborate. We shall write P as the quotient of a space 
S by the action of a group A. We take 
G = SU(2), B = U( 1) xU(1), H = U(2). Let 
A = (U(1) XU(1) XU(1»). As before, we take Lx , Ly,Lz as 
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a basis for 2' SU(2)' We denote by Ko = (i12)1. 
Kx = (i12)ux' Ky = (i12)uy• Kz = (i12)uz a basis for 
!t' U(2) • Let R I' R 2• R3 be the basis for 
!t'A =!t'U(I)XU(I)XU(I)' Let QI' Q2 be the basis for 
2' B = !t' U(I)xU(I)' We specify the homomorphisms by 
giving their derivatives at the identity 

FAG': !t' U(I)XU(I)XU(I) -+!t'SU(2) • 

R 11---+2Lz • R 2>-----+O. R 3>-----+O, 

FAH ': !t' U(I)XU(I)XU(I) -+!t' U(2) , 

R 1>-----+0. R21---+K O + Kz • R31---+KO - Kz • 

F~B': !t' U(I) xU(I) xU(I) -+!t' U(I) xU(I) • 

F~B': !t' U(I)XU(I)XU(I) -+!t' U(I)XU(I) • 

(A22) 

(A23) 

(A25) 

We now define a decomposition of the tangent space T = Ts· 
LetXI.X2, ... ,XnET be a set of vectors. Denote by CIf (XI,X2 • 
.... Xn ). the linear span of the vectors. This is a subspace of T. 
Define the following subspaces of T: 

E = CIf (L
z
,QpQ2) • L 1 = '{; (Lx.Ly) • K' = '{; (Kx.Ky ) • 

KC='{;(Ko,Kz )' F=E(JJK c . (A26) 

Note that T = L 1 (JJF(JJK '. Let s = (e,e.e). We need to de
termine Is. We must first find the subgroup of A ' CA satisfy
ing F ~B a = F ~B a for all aEA '. The vector space !t' A . C !t' A 
satisfies F ~B' W = F ~B' W. for all WE!t' A .. Here !t' A' is the 
kernel of the map 

(F~B' - F~B'): !t' U(I)XU(I)XU(I) -+!t' U(l)xU(I) , 

RI1---+2mlQI + 2m2Q2' 

(A27) 

Consequently !t' A' is one dimensional, spanned by the vec
tor R ' = !R I + m IR2 + m2R 3. The isotropy group is genera
ted by !t'I, which is the image of !t' A' under the map 

( - FAG') (JJ (F~B' - F~B') (JJ (FAH '): 

!t'A,-+!t'G(JJ!t'A (JJ!t'H' 

R 'I---+L z + m l (Ko + Kz ) + m2(Ko - Kz ) , 

I---+L z + (m l + m2)Ko + (m l - m 2)Kz • 

I---+U. (A28) 

Recall T = !t' G (JJ !t' B (JJ !t' H' The isotropy group Is acts on 
Tby Ad(tU). Suppose t = €~ 1. Denote the corresponding 
map T

E
: T -+ T. To first order, 

(A29) 

Then T; acts trivially on E and K c. The action on L 1 and K 1 

is given by 

Lxl---+Lx + €Ly • Lyl---+Ly - €Lx • 

Kxl---+Kx + €(m l - m2)Ky ' Kyl---+Ky - €(ml - m2)Kx . 

(A30) 

The null space N = Ns is tangent to the orbit of A. Here 
N is generated by the range of the map 

( - F~G') (JJ (F~B' - F~B') (JJ (FAH'): !t' U(I)XU(I)XU(I) -+!t'SU(2) (JJ!t' U(I)XU(I) (JJ!t' U(2) • 

RII---+ - 2Lz + 2mlQI + 2m2Q2' 

R21---+ - QI + Ko + Kz , 

R31---+ - Q2 + Ko - Kz • (A31) 

Note that UEN. Also NCF, so N is invariant under Is· 
We now determine the relation between TIN and VI N. 

Recall N C E, consider 0 = E IN. Recall E is five dimension
al. N is three dimensional. so the dimension of 0 is two and 

TIN=L'(JJO(JJK ' . (A32) 

Now consider V=Kc(JJK'CT. We need to find 
VI N C TIN. One checks that K C (JJ N = F. We thus find 

VIN=O(JJK ' • TIN=L'(JJVIN. (A33) 

Recall that the action of Is is trivial on F, and since 
OCF. the action is trivial on O. We need to classify maps liJ: 

TIN -+ V IN,suchthatliJrestrictedto V INC T INistheiden
tity. liJ must commute with the action orIs. This amounts to 
classifying maps liJ: L 1 -+ 0 (JJ K 1 which commute with the 
action of Is , 

liJ: L 1 -+ 0 (JJ K 1 , 

Lyl---+Oy + Jy • (A34) 

where Ox, OyEO, and Jx• JyEK I. Suppose Jx = aKx + /3Ky, 
Jy = yKx + 8Ky. 

We now find the action ofT; 0liJ and liJoT; : 

Lxl---+Ox + a{Kx + €(m l - m2)Ky) + /3{Ky - €(m l - m2))Kx • 

I---+Ox + {a -/3€(m l - m2))Kx + (f3 + a€(m l - m 2))Ky , 
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Ly~Oy + y(Kx + E(m l - m2)Ky) + t5(Ky - E(m l - m2)Kx) ' 

~Oy + (y - t5€(m l - m2»)Kx + (15 + YE(m l - m2»)Ky , 

wo"[ ;: L' -+ 0 (f) K' , 

(A35) 

Lx~Ox + EOy + aKx + /3Ky + EyKx + Et5Ky , 

~Ox + EOy + (a + q)Kx + (/3 + Et5)Ky , 

Ly~Oy - EOx + yKx + t5Ky - EaKx - E/3Ky , 

~Oy - EOx + (y - w)Kx + (15 - E/3)Ky . 

We demand wOI; = I; ow. This requires 

Ox=Oy=O, -/3(m l -m2)=y, a(m l -m2)=t5, 

-t5(m l -m2) = -a, y(m l -m2)= -/3. (A37) 

We first notice that w: L t -+K t, since Ox and Oy vanish. We 
see that 15 and yare determined by a and /3. Combining 
equations, we find 

/3(m l -m2)2=/3, a(m l -m2)2=a. (A38) 

We now see that if (m l - m 2 ) =1= ± 1, then all the param
eters are zero, and the only solution is w: L '-+ 0 (f) K t by the 
zero map. If (m l - m 2 ) = ± 1, then a and/3 are arbitrary 
real numbers. We then get solutions 

w: L'-+K', 

Lx~Kx + /3Ky , 

Ly~± (-/3Kx +aKy )' (A39) 

The space of invariant connections is parametrized by 
(a,/3)ER2. The Berry connection for (j,m) corresponds to 
a = ~ [(j + m + P (j - m + !) ] 1/2, /3 = O. The connec
tion corresponding to a = /3 = 0 splits, and no other invar
iant connection splits. 

We should consider two connections as equivalent if 
they can be brought into one another by gauge transforma
tion. A gauge transformation is a principal bundle automor
phism which induces the identity map on the base space. A 
gauge transformation maps a G-invariant connnection into 
another G-invariant connection if and only if the gauge 
transformation commutes with the G action. Since the G 
action on the base space is transitive, it suffices to determine 
the action of the gauge transformation on the fiber over one 
point. Take the point zES 2

• The gauge transformation at z 
must commute with the action of the isotropy subgroup, the 
subgroup of G which leaves z fixed. The only such automor
phisms are generated by 
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Ad(exp(tKz »): :f V(2) -+:f V(2) , 

Kx~cos(t)Kx + sin(t)Ky , 

Ky~ - sin(t)Kx + cos(t)Ky , 

(A36) 

(A40) 

where t is a real number. So we see that two invariant connec
tions (a,/3) and (a l ,/3 /) are gauge equivalent if and only if 
a 2 + /3 2 = a'2 + /3 '2. An invariant connection (a,/3) is then 
gauge equivalent to the connection (a 2 + /3 2) 112,0). We see 
that the gauge equivalence classes of invariant connections 
are parametrized by R +, the non-negative real numbers. 
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Let a given particle symmetry be described by a reductive Lie group G. It is proved that the 
corresponding Weyl group W(R) acts canonically in all zero-weight spaces of G and hence, in 
particular, on observables. Moreover, it is shown how this W(R) action provides many 
physical relations, including those believed to be implied by G-transformation properties of 
observables. The results simplify a testing of symmetries based on various Lie groups 
(algebras). Their use extends beyond particle physics, e.g., to nuclear physics. 

I. INTRODUCTION 

Let G be a reductive Lie group describing a symmetry in 
particle physics, e.g., a grand-unification or n-ftavor symme
try. It is usually assumed that physical states correspond to 
some vectors of complex G representations and observables 
to some operators acting in these representations' spaces. 
Considering observables of particular G-transformation 
properties, i.e., tensor operators of a particular type, lone 
obtains certain relations for expectation values. These rela
tions can then be compared with experimental data. 

Our aim is the following. Let W(R) be the Weyl group 
corresponding to G (R denotes the root system ofG, see, e.g., 
Ref. 2). We prove that in the case of finite-dimensional rep
resentations there exists a canonical action of W(R) on ob
servables and that many physical relations are a conse
quence of this W(R) action rather then of the natural action 
of G on observables. 

All our constructions depend only on the Lie algebra 
L( G) of G. Therefore we formulate the results in terms of 
Lie algebras. Let @ be a reductive (real or complex) Lie 
algebra, let S) be its Cartan subalgebra, and let ~ denote the 
set of weights of a complex finite-dimensional representation 
p of@, acting in the vector space V. The analysis of physical 
and mathematical structures used in descriptions of particle 
symmetries leads us to a conclusion that the observables act
ing in V satisfy 

peS)~ COb( V) Cp(S)', 

where p (S)' is the commutant of p (S) in End V. It is clear 
that p (S)' coincides with the zero-weight space of the repre
sentation ad p of @, acting in the space End V. 

Our main idea consists in proving that in any zero
weight space of the pair (@,S) there exists the canonical 
representation II of the Weyl group W(R). The representa
tion II generalizes the natural action of W(R) in the Cartan 
algebra S) since S) is the zero-weight space of the adjoint 
representation of ®. Next, we show that any W(R) -symme
try property of an observable AEp(S)', e.g., an equation 
~WEW(R) C w . IIw (A) = 0, provides similar equations for the 
diagonal expectation values of A in any basis consisting of 
weight vectors, i.e., it provides some physical relations. 

For example, if A does not contain the trivial W(R) 

component then ~WEW(R) IIw (A) = 0 and, hence, we get that 
the sum of the diagonal expectation values of A, correspond
ing to any W(R) orbit in the set of weights ~, is equal to 
zero. Obviously, the presence or absence of other irreducible 
W(R) components inA provides more complicated physical 
relations. This procedure generalizes the results obtained by 
one of the authors in Ref. 3. 

Our results not only facilitate the obtaining of some 
equations connected with a given observable A, but also en
able us to predict many physical relations that can appear in 
the framework ofa considered symmetry. Namely, letXbe a 
W(R) orbit in A. We show that decomposing the function 
space Cx : = {IX -+ C} into the irreducible W(R) compo
nents one gets possible equations for diagonal expectation 
values of the observables. Thus, we reduce the deduction of 
many physical relations to the analysis of actions of finite 
groups. 

We illustrate both these aspects of our approach by dif
ferent examples from theories based on the groups SU(n), 
U(n), orGL(n,C). Let us remark that a given W(R) repre
sentation can be, in general, realized in the observables of 
different ®-transformation properties. Thereby, a given 
physical relation can be, in general, obtained by means of 
tensor operators of different types. To make it clear, let us 
consider the simplest example of mass formulas. 

We shall prove that the Coleman-Glashow mass for
mula4 appears in SU (3) theory iff the mass operator does 
not contain the component transformed by the one-dimen
sional (alternative) representation of W(R) =S3 of signa
ture ( 13

) = (1,1,1). But the results of our subsequent paper 
(Ref. 5) show that the representation ( 13

) is contained only 
in tensor operators of the decimet type. So, this mass formula 
appears also if the mass operator contains certain terms of 
the 27-plet type instead of (orin addition to) the adjoint type 
Gell-Mann mapping D. These two possibilities exist inde
pendently of the number offtavors n, e.g., in the meson case 
with n;;;.4, the same formulas can be obtained either by 
means of the singlet type tensor operators and the mapping 
D or by the u(n) representation of signature (4,2, ... ,2,0) 
itself. It concerns, in particular, the mass formula obtained 
in Ref. 6 for charmed mesons. Similar possibilities exist in 
the case of the Gell-Mann-Okubo mass formula4 or its gen-
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eralizations. 3 For details see Sec. IV E of this paper and Ref. 
5, where the relationship between ® and W(R) actions is 
analyzed for three-quark and quark-antiquark u (n) repre
sentations. 

Let us also notice that in some experiments we observe 
first a finite symmetry, and next we extend it to a continuous 
one. For example, proton-neutron symmetry was replaced 
by the SU (2) -symmetry group. Our results show that one of 
the natural ways to extend a finite symmetry group W to a 
continuous one is the following. We take a semisimple (or 
reductive) Lie group G such that its Weyl group W(R) is 
equal to Wor at least W(R) contains W. 

II. MATHEMATICAL FRAMEWORK OF PARTICLE 
SYMMETRIES 

Let us analyze first some mathematical and physical 
structures used in descriptions of particle symmetries. We 
shall deal only with symmetries corresponding to a reductive 
(real or complex) Lie algebra ® = 9 + c, where 9 is semisim
pIe and c is Abelian. 

A. Cartan algebras 

Some elements of ® are usually identified with physical 
quantities. Among these quantities a subset of simultaneous
ly measurable ones is chosen. This subset is supposed to re
flect the basic conservation laws of the considered theory. 
For example, in su (3) -flavor (resp. color) theory for basic 
observables can be taken: electric (resp. color) charge Q and 
(resp. color) hypercharge Y; in n-flavor theory with n > 3 
the algebra ® coincides with u (n) = su (n) + u (1) and for 
basic observables can be taken: electric charge Q, strange
ness S, charm C, etc. If the basic observables are interpreted 
as linear combinations of number operators of particles 
(e.g., quarks), then the basic conservation laws are equiva
lent to the conservation of corresponding combinations of par
ticles. 

In what follows, by a ®-symmetry theory we mean a 
theory based on the Lie algebra ®, independently of a parti
cle interpretation, e.g., sue 3) -flavor theory denotes the clas
sical unitary symmetry theory as well as three-quark flavor 
theory. 

In most theories, one obtains an agreement with experi
mental data assuming that the basic observables span a Car
tan algebra ~ in ®. However, it is sometimes necessary to 
assume that they span only a Cartan algebra ~ in a subalge
bra ® of ® (the case of a broken symmetry). For example, 
such a situation arises in the sue 6 )-spin-flavor theory, where 
® = su(2) +su(3). To simplify the notation, we shall omit 
the second possibility in general considerations. The case of a 
broken symmetry and the spin-flavor theory (with arbitrary 
number of flavors) shall be discussed in Sec. IV C. 

A Cartan algebra ~ is, by definition, an Abelian subalge
bra in ® that coincides with its normalizer NCII (~), i.e., 
adX(~) C~, XE®, implies that XE~. In particular, ~ is a 
maximal Abelian subalgebra of ® and, moreover, ~ = 1) + c, 
where 1) is a Cartan algebra in g. 

The condition N ® (~) = ~ does not follow if one only 
assumes that ~ is a maximal Abelian subalgebra and, more
over, it provides important additional consequences. Name-
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ly, for an arbitrary finite-dimensional representation (p, V) 

of ®, all operators p(H)EEnd V, HE1), are semisimple, i.e., 
they are diagonalizable or at least their complexifications are 
diagonalizable. In particular, all operators ad H, HE~, are 
semisimple. The last condition can, in fact, replace the equa
lity N® (~) =~. 

Since, in analogy to quantum mechanics, physical states 
are described by vectors (rays) from complex V, we see that 
for theories based on semisimple ® = g, the notion of Cartan 
algebra is adequate for the description of simultaneously 
measurable quantities. However, if c is not trivial then the 
assumption that its elements represent also some basic phys
ical quantities imposes the following equivalent conditions: 
(a l ) the operators p(H)EEnd V are semisimple for HEC 
(and in consequence for HE~), and (a2 ) the restriction 
(Res, p, V) of p to C is completely reducible [and in conse
quence so is (p, V)]. 

Note that if ® is real then (p, V) can be extended to the 
representation (pc, V) of the complexification ®c of ®. 
Therefore, in what follows, we shall only deal with complete
ly reducible complex representations of complex reductive Lie 
algebras. 

B. Weight spaces 

For a given Cartan algebra~, the representation space V 
decomposes into a direct sum of common eigenspaces 
(weight spaces) of the operators p (H), HE~, i.e., 

V= L V(A), (2.1 ) 
,tEA 

where~: = {AE~*[V(A) #o} denotes the set of weights and 

V(A) = {VEV Ip(H)v = (A,H )v, HE~}. (2.2) 

The function ~*3A-+A(A): = dim V(A)El. is called the 
weight diagram of (p, V), and ~ = supp A. Two representa
tions are equivalent iff their weight diagrams coincide and, 
moreover, the correspondence (p, V) -+ A has the following 
basic properties. If (p, V) is equal to a direct sum 
(PO+PI'VO+ VI)' then 

(VO+VI)(A) = Vo(A)+VI(A), 

A=Ao+AI' ~=~OU~I' 

(2.3 ) 

(2.4 ) 

For the tensor product of representations Po andpI' i.e., for 
(p,V) = (Po® PI> Vo® VI)' wherepo® PI(X): =Po(X) 
® 1+ 1 ®PI(X), XE®, we have 

(VO®V1)(A)= L Vo(Ao)®V1(A 1), (2.5) 
...1.0 + AI = A 

(2.6) 

where * denotes the convolution of functions, and + de
notes the algebraic sum of subsets. Finally, for the represen
tation (pA,V*) contragredient to (p,V) where pA(X) 
= - p(X)* (A * denotes the operator adjoint to AEEnd V 

with respect to the natural duality between Vand V *), we 
obtain 

V*(A) = V( - A)*, 

AA(A) = A( -A), AA = - A. 
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C. Compact forms 

In the case of a semisimple complex @ = g, the choice of 
a compact form gc C 9 determines, in every representation 
space V, the (Hermitian) scalar product in which the repre
sentation (Resgc p, V) is unitary, i.e., given by anti-Hermi
tian operators. If the center e is not trivial, the situation is 
slightly more complicated. Namely, for@c = gc + er , where 
er is a real form of e, the following conditions are equivalent: 
(b l ) there exists a scalar product in V such that (Res@c p, V) 

is unitary, and (b2 ) the elements ,1E~ assume imaginary val

ues on e ,i.e., e*nACr=Te~. Thus we see that the choice 
of a co~pact form-@c leads to quantum mechanics iff the 
conditions (ai ) and (bi ), i = 1 or 2, are fulfilled. Let us 
notice that if a given reductive @ is a subalgebra of a semisim
pIe go then all representations of go provide, by restriction to 
@, representations of the desired properties (ai ) and (b i ).It 
suggests that a theory based on a reductive Lie algebra @ 
should be considered as a preliminary step (before a proper 
semisimple go is found). 

Moreover, in our opinion, as long as complex represen
tations are used, the whole complex Lie algebra @ may have 
a primary physical meaning, whereas a possibility to choose 
different compact forms @c reflects an additional symmetry 
of the theory. For example, it may appear that the choice of 
@c has a definite physical meaning, similarly as in general 
relativity the choice of a Euclidean subgroup in the Lorentz 
group is equivalent to the choice of a reference system. In what 
follows, this additional symmetry will not be discussed. 

Besides a free choice of a real form, there exists a free
dom in choosing a Cartan algebra. Weare not able to decide 
if this freedom reflects any additional physical symmetry or 
if it is only a mathematical redundancy. Leaving this ques
tion open, we shall deal with a complex pair (@,S), where S) 
is afixed Cartan algebra. 

D. Observables 

Experimental data imply that only eigenstates of basic 
observables from p (S) can be observed, i.e., only weight 
vectors describe physical states. In other words, as observa
bles should be considered operators A EEnd V which possess 
an eigenbasis consisting of weight vectors. In consequence, A 
must belong to the commutantp(S)'EEnd V. It means we 
assume that the set Ob ( V) of observables acting in V satisfies 

p(S) COb( V) Cp(S)'. (2.9) 

(Here we admit also observables with a complex spectrum. ) 
The relation (2.9) can be interpreted in terms of super

selection rules corresponding to the decomposition (2.1) of 
V. Namely, the space End V = V ® V* carries the represen
tation ad p = p ® ph of @ given by the formula 

adp(X)'A:=[p(X),A], XE@, AEEndV. (2.10) 

Hence, the zero-weight space (End V) (0) of ad p coincides 
with the commutantp(S) )'. Moreover, according to the for-
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mulas (2.5) and (2.7) we have 

p(S)' = (End V)(O) = (V® V*)(O) 

= L V(,1) ® V*( -A) 
AEA 

= L V(,1) ® V(,1)* = LEnd V(,1) 
AE~ AE~ 

= {AEEnd VIA V(,1) C V(,1), ,1E~}. (2.11 ) 

Thus P (S) )' consists of operators reduced by the decomposi
tion (2.1), i.e., elements of p (S)' commute with all projec
tions PA EEnd V, ,1EA, onto weight spaces V(,1) C V. 

We have defined the set of observables Ob ( V) separate
ly for each representation (p, V). It might seem to be reason
able to look for a mathematical object that would describe 
physical quantities only in terms of the pair (@,S)-inde
pendently of its representations. In fact, many physical 
quantities can be described by elements of the enveloping 
algebra & (@). However, the mass operator M describing the 
mixing of scalar mesons fulfills p(& (@ ») ;i9 Mep (S)'. For de
tails see Appendix A, where an additional characterization 
of the associative algebra p (S)" is also given. 

In what follows, by an isotypic component we shall 
mean a maximal subrepresentation being a multiple of an 
irreducible one. 

Lemma 1: Let (p, V) be a completely reducible represen
tation of (@ = g+c, S) = f)+e), and let V =~; V; be the 
decomposition of Vinto isotypic components with respect to 
(Res, p, V). Then (Resg p, V) decomposes into the direct 
sum of representations (Pi> V;) and, moreover, 

p(S)' = LPi(f)'. 
i 

Proof The spaces Vi are the weight spaces of the repre
sentationRes, p. Therefore,p(e)' = ~;End Vi [cf. (2.11)]. 
It implies that each space V; is g-invariant since p (X)ep (e)' 
for any XEg. Moreover, applying (2.3), we get 

p(f)' = (V® V*)(O) 

= L (Vi ® V;")(O) + L (V; ® Vj)(O) 
i i#j 

= LPi(f)'+ L (Vi ® Vj)(O). (2.12) 
i i#j 

The assertion is true since 

p(S)' = (P(f) +p( c»), = p(f)' np( c)'. • 
Corollary 1: The investigation of a commutant p (S) )' 

reduces to the case of a complex semisimple Lie algebra. • 
From the mathematical point of view, a physical rela

tion, connected with a given observable A EOb( V), is nothing 
else than an equation for matrix elements of A in a certain 
physical basis consisting of weight vectors. This basis need 
not be an eigenbasis of A; e.g., for the magnetic momentum 
operator 113 in su(6) theory, some experimental data are in 
agreement with diagonal expectation values of 113 in a basis 
that is not an eigenbasis of 1l3' see Sec. IV C. 

In the sequel, we shall construct a canonical action of 
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the Weyl group on the commutants Pi (f)' and show how 
this action provides various physical relations. 

III. THE ACTION OF THE WEYL GROUP ON 
OBSERVABLES 

In this section we shall show that the Weyl group W(R) 
corresponding to a complex semisimple Lie algebra 9 acts 
canonically in the zero-weight space U(O) of an arbitrary 9 
representation (1T, U). These W(R) representations genera
lize a natural action of W(R) in the Cartan algebra 
f) = g(O). Moreover, in the case where U is equal to End V, 
they provide the W(R) action onp(f)' = (End V) (0) and 
hence, also on observables. 

Let us recall first some basic notions and results con
cerning 9 and W(R). Our exposition and notation is based 
mainly on Refs. 2 and 7. See also Refs. 8 and 9. 

A. The groups W{R) and A{R) 

Let R C f)* be the root system of a pair (g,f), i.e., a set of 
nonzero weights of its adjoint representation, let 
A (R) C GL(f)*) denote the group of automorphisms of R. 
The Weyl group W(R) CA (R) is a (normal) subgroup gen
erated by all reflections corresponding to the roots aER. 
Both these groups are strictly connected with the Lie group 
Aut 9 consisting of all automorphisms of g. We shall need 
the following facts describing this connection. 

( 1) The connected component of the unity in Aut 9 co
incides with the group of inner automorphisms, i.e., 
(Aut g)o = Int 9 = {the group generated by operators eadX, 
XEg}. 

(2) The Lie algebra L (Aut g) consists of all derivations 
of g. A semisimple Lie algebra has only inner derivations 
adX, XEg, and its center is trivial. In consequence, 
L(Aut g) = L(lnt g) =g and the exponential map exp: 

g ..... Int 9 is given by exp X = ead x. Hence, for any sEAut 9 we 
have 

Ads X: = ~I s(exp tX)S-1 = ~I seadlXs-1 
dt 1=0 dt 1=0 

= ~I exp ts(X) = seX). (3.1) 
dt 1=0 

(3) Let Aut(g,f): = {sEAut gls(f) = f)} be a subgroup 
in Aut 9 preserving f). Its Lie algebra satisfies 
L (Aut(g,f)) = {XEgladX(f) = f)} = Ng (f) = f). 

(4) For any aER and sEAut(g,f) we have aos-II~ER. 
Thus the formula 

E(S)A: =AOS-II~, AEf)*, (3.2) 

defines a homomorphism E: Aut(g,f) ..... A (R). 
(5) The homomorphism E is surjective and, moreover, it 

satisfies 

E-I{W(R)} = Aut(g,f) nlnt 9 =: Auto(g,f). (3.3) 

In other words, there exist the following short exact se
quences: 

0 ..... ker E~ Auto ( g,f) ..... W(R) ..... 0, 

iJ r f (3.4) 

O ..... ker E~Aut(g,f) ..... A(R) ..... 0. 

(6) The connected component of the unity (Aut (g,f) )0 
of Aut (g,f) fulfills 

(Aut(g,f))o = ker E = exp f) = ead~CAuto(g,f). (3.5) 

( 7) There exist the canonical isomorphisms 

Aut glInt g=A(R)IW(R) =AutD, 

where D is the Dynkin diagram of the root system R, and for 
simple Lie algebras, 

{

I, 

AutD= Z2' 

S3' 

for AI' Br (1;;.2), C1 (1;;.3), E7,Es,F4,G2 (types); 

for Ar (1;;.2), Dr (1;;'5), E6; 

for D4 • 

B. The representation of W(R) In zero-weight spaces 

Letu: G ..... lnt 9 be a covering of the group Int g, i.e., Gis 
a connected Lie group such that L (G) = 9 and u = Ad. 
Clearly, 

O ..... Z(G)~G ..... lnt g""'O, (3.6) 

where Z(G) denotes the center of G, is a short exact se
quence. Let us put G~: = u- 1{Auto(g,f)} 
= {geG IAdgf)Cf)} and let eXPG denote the exponential 

mapforG. 
Lemma 2: Let the notation be as above. Then the follow

ing short exact sequence holds (cf. Ref. 8, Theorem 6.9.6. ): 

(3.7) 

Proof According to the formula (3.5), ker(EOu) 
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= u-1{ker d coincides with u-l{ead~}. To show that 

u-l{ead~} = eXPG f), (3.8) 

let us recall the (nontrivial) known inclusion, 

Z(G)CexPG f). 

[Its proof can be reduced to the case of the simply connected 
universal covering, where even a stronger result holds-see 
formula (3.13) below.] Now note that for any subgroup 
G'CG such that Z(G) CG', the exact sequence (3.6) im
plies G' = u-1{u( G ')}. Hence, we obtain that 

eXPG f) = u- 1{u(exPGf)} = u-l{ead~} 

since uOexPG X = eadX for any XEg. • 
It is worth mentioning (although it is not essential for 

the sequel) that eXPG f) coincides with the connected compo
nent ofthe unity (G~)o ofG~. Indeed, from (3.5) and (3.8) 
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it follows that 

(G~ )oCu-I{(Auto(g,Ii»)o} = u-I{ead~} = eXPG Ii. 

This inclusion implies the equality of both groups since 
eXPG Ii is connected. 

The generalization of the natural action of W(R) in the 
Cartan algebra Ii = g(O), for the case of the zero-weight 
space of an arbitrary 9 representation (11', U) can be done 
now as follows. We choose a covering group G such that the 9 
representation (11', U) is integrable to the representation 
(9,U) of G, e.g., simply connected G. The formula 
11'0u(g) ( .) = 9 g 11'( . ) 9 g- I and the definition (3.2) imply 
that 

9 g U(.,t) = U(EOU(g)A), gEG~, AE~, (3.9) 

where ~ is the set of weights of (11', U). Thus, in particular, 
the zero-weight space U(O) is G~ invariant. Moreover, 
ker(Eou) = eXPG Ii acts trivially on U(O) because 9 expaX 

= e1r
(X). Now, since according to Lemma 2 the group W(R) 

is isomorphic to G1/ker(EOu), the facts given above imply 
that W(R) acts on U(O). More precisely, the formula 

W(R) 3w .... llw : = 9 g lu(o)EGL(U(O»), gE(EOU)-I{W}, 

(3.10) 

defines correctly the representation (ll,U(O») of the Weyl 
group W(R). 

Let us notice that operators 9 g' g = eXPG HEexPG Ii, 
are scalars on any weight space U(A), AE~, (9 g I UtA) 

= e1r
(H) I UtA) = e(A.H >idU(A) ). Thus, in a way similar to that 

above, we obtain for any weight AEA, a projective represen
tation (llA,U(A») of the isotropy s;bgroup WA C W(R) of 
the weight A. In other words, for any weight AE~, the opera
tors 

ll~=9w:=9gIU(A» gE(EOU)-I{W}, WEWA, 

(3.11 ) 
satisfy the relation 

9 w, 9 w, 9 ~~, = const idu(A» WI,W2EWA. (3.12) 

The construction of W(R) action in U(O) given above 
can be summarized as follows. First, the representation 
(11', U) of 9 is integrable to a representation of the simply 
connected Lie group G. The subgroup Gf) C G permutes [cf. 
(3.9)] weight spaces U(A), AEA, according to a natural 
mapping E, which is described by the following diagram 
(rows form exact short sequences): 

<-+Auto(g,Ii) .... W(R) .... 0. 

In particular, U(O) is G~ invariant. Moreover, the group 
exp G Ii (connected component of G~ ) acts as a scalar in ev
ery space U(A), and trivially in U(O). Thus a natural repre
sentation ofG~/exPG Ii""" W(R) in U(O) is defined. 

The construction of the W(R) representation (ll,U(O») 
can be realized without any changes for a complex reductive 
pair (®,~). In fact, for ® = 9 + c the group Int ® """ Int 9 acts 
trivially on the center c, the group Auto(®,~) is isomorphic 
to Auto(g,Ii) and, moreover, for a representation (11',U) of 
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(®,~), the zero-weight space U(O) is contained in the trivial 
isotypic component U<O) of the representation Res, 11'. In con
sequence, the representation (11', U) of ® provides the same 
representation (ll,U(O») of the Weyl group W(R) as the 
representation (Resg 11',U<O» of the semisimple part gC®. 
Thus the generalization for the reductive case is useless, ex
cept for computational reasons (cf. example 1 below and 
Appendix E). 

In the case of classical Lie algebras, the practical com
putation of the operator ITw can be achieved by taking an 
inner automorphism given by a matrix of a simple type, e.g., 
by a permutation matrix. 

Example 1: Let 9 be of the type An _ I' n > 2, i.e., 
9 = sl(E), where E is the n-dimensional complex vector 
space. As Cartan algebra Ii, we can choose all traceless opera
tors from End E that are diagonal in a fixed basis {eJ7= I of 
E. Let {ei}7 = I denote the dual basis, and let Y be a Young 
symmetrizer or, more generally, an element of the algebra 
generated by permutations of factors in the tensor product 
T~ (E): = E "P fjldE *) .. q, see, e.g., Ref. 10. It is easy to 
check that if 

u=Y·e. ®···®e. ®eJ'®"'®e Jq 
" Ip 

belongs to a representation space UC T~ (E), then UEU(O) 

iff there exists an integer k such that a l - /31 = ... = an 
- /3n = k, where ai (resp. /3i) denotes the number of in

dices ii' IE T,p (resp.jm' mE 1,q) equal to i. Moreover, for 
WEW(R) """Sn and UEU(O), we have 

ITwu = Y(sgn W)keW(i
l

) ® ... ®eW(ip) 

®ew(j,) ® ... ®ew(jq). 

Indeed, W is equal to E(S), where s(X)=gXg-1, and 
gEG = SL(E) is given by gei = Ziew(i) ' ZiEC, ZI'Z2' ... 'Zn 
= sgn w. Hence, the scalar factor in 9 9 U is equal to . 

z· ·z· .... ·z· ·Z.-I .... ·Z.-I 
','2 Ip 1. Jq 

=z'[I-f3, • ... ·Z~·-f3n = (sgn W)k. • 
Analogous computations can be done for other classical Lie 
algebras and their tensor representations. 

Besides the discussed W(R) covering groups G~, where 
G is a semisimple or reductive Lie group that covers Int g, 
there exist also finite W(R) coverings that satisfy the for
mula analogous to (3.9). Clearly, if such a finite group is 
contained in a certain G~, it provides a W(R) representation 
equivalent to (IT,U(O»). See Appendix E and references 
therein. 

For a certain class of representations, the constructed 
action (IT,U(O») of the Weyl group W(R) can be extended 
(although non uniquely ) onto the whole group of automor
phismsA (R). We shall describe this extension and its phys
ical applications in the subsequent paper. II Let us also notice 
that there exists the canonical action r of A (R) on the com
mutant m: (Ii)' of m: (Ii) in the enveloping algebra m: (g). More
over, for any representation (11',U) of 9 and wEW(R), the 
operator r W induces the operator r: acting in 1T{m:(Ii)'). It 
can be shown that llw coincides with r: on the space 
1T{m: (Ii) '), see Appendix B for details. 

Now, we shall prove a proposition characterizing those 
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irreducible 9 representations that have a nontrivial zero
weight space. In particular, it suggests that the group Int 9 
can be treated as a physical symmetry group corresponding 
to the Lie algebra g. 

Let P = P(R) Ch * [resp. Q = Q(R) CP] denote the 
group of weights (resp. radical weights) of the root system 
R, i.e., elements of P(R) [resp. Q(R)] are linear combina
tions, with integer coefficients, of the fundamental weights 
UJ1, ••• ,UJr (resp. roots aER), cf. Ref. 2. 

Proposition 1: For a given irreducible representation 
(p, V) of a semisimple Lie algebra g, the following conditions 
are equivalent: (i) (p, V) is integrable to a representation of 
Int g, (ii) 0 is a weight of (p, V) and (iii) one (or equivalent
ly every) weight of (p,V) belongs to Q(R). 

Proof: The equivalence of (ii) and (iii) is the content of 
an exercise in Ref. 2 (Chap. VIII, Sec. 7, Ex. 3). Our solution 
of this exercise is given in Appendix C. Let us prove now that 
(i)¢:}(iii). It is known (see, e.g., Ref. 8, Sec. 7.4.3.) that if G 
is the simply connected Lie group corresponding to g, then 
its center Z( G) is given by 

(3.13 ) 

whereQ.l = Q(R).l: = {HEf)la(H)EZ for any aER} denotes 
the group associated with Q. The representation (p, V) is 
integrable to a representation (!?ll, V) of G and, since 
Int 9 = G /Z( G), condition (i) is equivalent to 

Z(G) Cker!?ll. (3.14) 

On the other hand, the operator !?ll(exPG (H») = e"'(H), HEf), 
acts on each weight space V(A), AEA, as the scalar operator 
e(A.H). This fact, together with Eq. (3.13), implies that 
(3.14) is equivalent to the inclusion ~C (Q.l).l = Q. • 

For a given representation (1T, U) of g, we have the 
unique decomposition 1T = 1To+1T1, U = Uo+ U1, where Uo 
is the direct sum of all irreducible components which have 0 
as a weight, and U1 is the direct sum of all remaining compo
nents. Proposition 1 implies two important facts. First, the 
set of weights ~ of the representation (1T, U) is the disjoint 
union of the corresponding weight sets, i.e., ~ = ~OU~I' 
and a weight space 

1 {Uo(A), if AEQ, 
U(/L) = 

U1 (A), otherwise. 

Second, the representation ( 1T 0' Uo) is integrable to the repre
sentation (9', Uo) ofthe group Int g. It shows, a posteriori, 
that in our construction of (Il,Uo(O»), it is sufficient to con
sider the group G = Int g. 

IV. PHYSICAL RELATIONS 

Let (p, V) be a representation of (g,f) and let ~ denote 
its set of weights. We shall study now the W(R) representa
tion (Il,U(O») in the case where (1T,U) = (adp, End V), i.e., 
the zero-weight space U(O) = p(f)' has the structure of an 
associative algebra with the decomposition [cf. (2.11)] 

U(O) = (End V) (0) = I End V(A). (4.1 ) 
AEA 

Let us notice that for irreducible p, Proposition 1 implies 
that every irreducible component of ad p has the nontrivial 
zero-weight space. In fact, formulas (2.6) and (2.8) show 
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that the set of weights of ad p is equal to ~ + ( - ~). But for 
irreducible p, the last set is contained in Q(R) since Ah 
- ACQ, whereAh is the highest weight ofp. 

-In the previous papers,3 one ofthe authors proved that 
the natural action of W(R) in f)" n provides many physical 
relations for a certain class of observables fromp(f)'. Using 
the W(R) action II inp(f)', we are able to obtain in this 
section an essential refinement and generalization of these 
results. 

A. Properties of W{R) representations in p(fJ)' 

Let, as before, PA EEnd V, AE~, denote the projection 
onto V(A). 

Lemma 3: For any WEW(R), there exists an operator 
!?ll wEGL( V) such that 

!?ll w V(A) = V(WA), AE~, (4.2) 

(4.3) 

In consequence, Ilw is an automorphism of the algebra 
U(O) = p(f)' and, moreover, IIw (PA ) = P wA' 

Proof: Let u: G-+Int 9 be a covering ofInt 9 such that 
the representation (p, V) is integrable to the representation 
(!?ll,V) of G. The mapping G3g-+9'g: =!?llg(')!?llg-I 
EGL(U) defines the G representation (9',U) correspond
ing to the representation (1T, U) of g, i.e., 

(4.4) 

Now, for a given WEW(R) let us takegE(Eou) -I{W} and let 
us set !?ll w: = !?ll g' The assertion (4.2) is implied by the for
mula analogous to (3.9), whereas (4.3) follows from (4.4) 
and (3.10). • 

Lemma 3 implies the following. 
(I) For any AEA, the subspace End V(A) C U(O) [cf. 

( 4.1 )] is WA invariant, i.e., we have a representation 
(IIA ,End V(A») of the isotropy group WA· 

(II) For any W(R) orbit [A ]: = W(R) 'AEW(R}'\~ 
= {set of W(R) orbits in ~}, the subspace 

U[A I: = I End V(A') C U(O) 
A'E[A 1 

is W(R) invariant and the corresponding representation 
(Il[A I' U[A I) is induced by (IlAoEnd V(A»), i.e., 

(II[A I,U[A I) = Ind::::;R)(IlA,End V(A»). (4.5) 

(III) Since, according to formula (4.1), we have 

(Il,U(O») = I (Il[A I,U[A I)' (4.6) 
[AIEW(Rh~ 

therefore, (4.5) implies that 

(Il,U(O») = I Ind::::;R)(IlA,End V(A»). (4.6') 
[AIEW(Rh~ 

(IV) For any AEA, the representation (IIA ,End V(A») 
of WA is implemented-by the projective WA representation 
(IlA, V(A») given by (3.11). 

On the other hand, it is a well-known fact that any 
weight diagram is W(R)-invariant, i.e., A(WA) = A(A), 
AEf)*, WEW(R), and hence, in particular, w(A) = A. It en
ables us to define, in the space C~ (functions f ~..: C), the 
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representation (T,CI}) of W(R) by setting 

(Twf)(A): =f(W-1A). (4.7) 

Note that besides the decomposition (4.6) of the representa
tion (II,p(f)'), we also have 

(T,CI}) = L (Tx,Cx ). 
XeW(Rhl} 

Our aim is to show that for a given W(R) orbitXCA, 
algebraic invariants provide mappings intertwining the rep
resentations (IIx,Ux ) and (Tx'Cx ) ofW(R). To this end, 
we must introduce some additional notations. Let it: 
V(A) ..... V, AE~ [resp. p,,: v ..... V(A)] denote the natural in
jection (resp. projection) corresponding to the decomposi
tion (2.1), i.e.,j" 0PA = P"EEnd V. Let us set 

A,,: =PAoAoj"EEnd V(A), AEp(f)', AE~. (4.8) 

The formula 

(4.9) 

where 7 n , n = 1,2, ... , are algebraic invariants, defines the 
mappings 

F n: p(f)'3A ..... F~ECI}. (4.10) 

Proposition 2: Let (p, V) be a representation of a semi
simple complex pair (g,f). Then the mappings F n given by 
the formulas (4.8)-(4.10) intertwine (nonlinearly for 
n> 1) the representations (IT, p(f)') and (T,CI}) of the Weyl 
group W(R). 

Proof" For any WE W(R) and AEA, let us define an iso-
morphism -

fJ? w (A): =Pw" ofJ? woj"E2'(V(A),V(WA»), (4.11) 

where fJ? w is given by Lemma 3. Using the definitions (4.11) 
and (4.8), together with formulas (4.3), (4.2), and (4.1), 
we see that for each wEW(R), AE~, andAEg(f)', the follow
ing equality holds: 

(IIw(A»)w" =fJ?w(A)OA"ofJ?w(A)-I. (4.12) 

Hence, the definition of the mappings Fn implies that 

F';,.w(A) (WA) =F~ (A). (4.13) 

• 
Remark 1: According to (4.1), any operator AEp(f)' 

= (End V) (0) is described by independent components 
A" EEnd V(A). In consequence, F n maps surjectively p (f)' 
onto the set {fECI} I f(A) = ° if A (A) < n}. In particular, F I 
is a surjection and every restriction of F n, 

ResxF n: = Fnlux:Ux ..... Cx, (4.14) 

corresponding to a W(R) orbit XCA, is a surjection for 
n<A(A) = dim V(A), AEX. - • 

For any AEp(f)' and AE~, let us denote by SPA (A): 
= SPAA spectrum of the operator A" given by (4.8). The 

intertwining property (4.13) implies the following. 
Corollary 2: For eachAEp(f)', AEA, and wEW(R), it is 

true that -

• 
The practical content of Proposition 1 is mainly con

nected with the mappings F: = F I or Resx F. Namely, any 
W(R)-symmetry property ofa givenAEp(f)', i.e., a relation 
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of the type 

L cw·IIw(A) =0, CwEC, 
weW(R) 

(4.15 ) 

gives rise to an analogous property for the function FA 

L Cw ·FA (W-1A) = 0, AE~. 
weW(R) 

The last equation is equivalent to the relations 

L Cw . Resx FAx (W-1A) = 0, AEX, 
weW(R) 

where operators 

Ax: = L A"EUxCp(f)', XC~, 
"eX 

( 4.16) 

(4.17 ) 

are constituents of A corresponding to the decomposition of 
A into W(R) orbits. It is clear that the Eqs. (4.16) and 
(4.17) provide relations among diagonal matrix elements of 
AEp (f)', in any basis consisting of weight vectors. More pre
cisely, for a fixed orbit XC~, we obtain a physical relation 
among diagonal expectation values corresponding to this 
W(R) orbit. 

For n> 1, the mappings F n: p(f)' ..... CI} are not linear 
and hence the formula (4.13) reflects only very particular 
properties of a given operator AEp(f)', e.g., such as IIw (A) 
= ± A ± I. Thereby, the application of the mappings F n

, 

with n > 1, seems to be very restricted. 
In many cases a symmetry property of type (4.15) can 

be easily seen. For example, if AEp(f)' belongs to a nontri
vial irreducible subspace, with respect to the action of a sub
group WC W(R), then ~wewIIw(A) =0. More generally, 
let ® be a given irreducible representation of Wand let 
P ~ EEnd(p (f)') denote the projection [acting in p (f)'] onto 
the isotypic component of type ®. It is known that 

11 1 ",- II 
P e =-- £... Xe(w) w' 

IWlwew 

where X e is the character of ®. According to Proposition 2, 
wehaveFnop~ = P~ oFn, whereP ~ is the projection anal
ogous to P ~ but acting in CI}. Thus if a given operator A does 
not contain the component transformed by ®, then 

(4.18 ) 

It is obvious that (4.18) implies nontrivial relations iff 
P ~ =1O, i.e., iff the representation ® is contained in 
(Resw T,C~). 

Example 2: Let us consider the Lie algebra s1(3,C) and 
let X: = S3· A denote the S3 orbit of a weight A = (A I,A2,A3) 
such that AI> A2 > A3• Clearly, the representation (T,Cx ) is 
equivalent to the left regular representation of W(R) = S3. 
So, it contains the one-dimensional (alternative) representa
tion of the signature (1 3

). In consequence, formula (4.18) 
provides, for any operator AEp(f)' which does not have a 
component transformed by (13), the following nontrivial 
relation: 

L FA (WA) = L FA (WA), 
weS,- weS,+ 

where S 3- CS3 (resp. S 3+ ) consists of all odd (resp. even) 
permutations. In the case of a mass operator in su (3) theory 
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this equation is known as the Coleman-Glashow mass for
mula. • 

Now, we shall derive some generalizations of the Cole
man-Glashow and Gell-Mann-Okubo mass formulas. 

Example 3: Let (p, V) be a representation ofsl(n,C) and 
let us consider an operator AEp(Ij)' such that A = B + C, 
where BEp(Ij)' is W(R) = Sn invariant, and CEp(Ij)' is 
transformed by the natural representation of Sn in the space 

C~: = {xEcnlx t + ... + Xn = O}=IjCsI(n,C), 

i.e., sgn C~ = (n - 1,1). The operator B can be decomposed 
into operators Bx: = b(Sn .,,1,) 'idv(x» where b: Sn \~ ..... C is 
a function on the set Sn \~ consisting of Sn orbits in ~. Let 
WCSn be a subgroup satisfying one of the following equiva
lent conditions: (1) Wacts transitively on the set {l, ... ,n}, 
and (2) a W representation in C~ does not contain the trivial 
component, i.e., ~WEWwX = ° for any XEC~. For example, W 
can be taken as any cyclic subgroup in Sn generated by a 
cycle of the length n. Proposition 2 implies that 

1 
I WI Jw FA (wA) = b(X)A(A), 

where 

X: = Sn·A and b(X) = tr Bx/dim V(A). ( 4.19) 

If A describes a (general) charge (e.g., electric charge, iso
spin, mass, magnetic momentum, etc.), formula (4.19) is 
equivalent to the following generalized Coleman-Glashow 
rule: For all Worbits contained in a given Sn orbit, the corre
sponding average charge is the same. 

Obviously, if we know the quotients b(X)/b( Y) for dif
ferent Sn orbits X and Y, we obtain also the relations contain
ing diagonal expectation values corresponding to different 
Sn orbits. For example, an operator A with B = b'id v , 

b = const, satisfies the generalized Gell-Mann-Okubo
Coleman-Glashow rule: The average charge corresponding 
to a Worbit does not depend on the orbit. 

In particular, for any (resp. any irreducible) representa
tion (p, V) of the Lie algebra ® = g1(n,C), the basic observa
bles from p (S) ) Cp (Ij)' fulfill the first (resp. second) rule. 
Analogous formulas can be easily derived for other classical 
Lie algebras. • 

B. Reductive case 

Let V decompose into a direct sum V = ~; V; of subre
presentations Pi of semis imp Ie Lie algebra g. Let A = ~iAi 
be the corresponding decomposition of the weight diagram. 
For a given operator AEp(Ij)', letA jE( Vi ® Vj) (0) denote a 
component of A from the decomposition (2.12). Any sym
metry property of A gives rise to the same property of each 
operator A 5 since the subs paces appearing in (2.12) are 
W(R) invariant. In consequence, the functions FA;EC~;, 
where Ai: = A :, reflecting symmetries of A, carry more in
formation then the function FA EC~ itself. 

If, moreover, A is contained in ~;Pi(Ij)' then FA;(A), 

AE~i' is the sum of certain eigenvalues of the operator A 
itself (and not only of the operatorsAi ). The components A j 
with i =1= j disappear, for instance, if 9 is the semisimple part of 
a reductive ® = 9 + c, the spaces Vi are isotypic components 
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of Res,p, and the operator A belongs to p(S), S) = Ij+c 
(compare Lemma 1). 

An analogous decomposition of a given AEp(Ij)' can be 
also used in the case of an arbitrary representation (p, V) 
provided A has a symmetry property with respect to the 
Weylgroup W(R) ofa reductive pair (@,~) such that@Cg, 
~CIj. In fact, treating A as an element of p(~)', where 
p: = Res~ p is, in general, reducible, we can consider the 
operators Ai corresponding to the decomposition (2.12) of 
p(~)' into W(R)-invariant subspaces. Such a situation ap
pears, e.g., in the case of a broken symmetry. 

C. The broken symmetry case 

A broken symmetry is usually described by two reduc
tive pairs, (®,S) and (@,~) such that @C ®, @=I= ®, ~ C S). 
Moreover, one assumes that physical states correspond to 
vectors from a restriction (p, V) of a ® representation (p, V) 

to @, i.e., (p, V): = (Resill p, V) = ~; (Pi> V;). Thereby, the 
W( R )-transformation properties of observables from p ( ~ ) , 
should be analyzed as described above. 

Let us recall that there exist two different kinds of em
beddings of (@,~) into (®,S). See Ref. 12. Namely, in the 
case of a regular embedding, the corresponding root systems 
satisfy R CR. In consequence, W(R) is a proper subgroup of 
W(R) and, moreover, the W(R) representation IT inp(~)' 
restricted to p (S) )' coincides with the restriction Res w(i~) II 
of the W(R) representation II in p (S)'. For irregular em
beddings, the Weyl groups cannot be compared. Indeed, if 
W(R) were a subgroup of W(R), then it would be generated 
by a subset of R. 

Note also that for both kinds of embeddings, the cases 
~ = S) and ~=I=s) differ essentially. In the first case, any 
Pi -weight space Vi (A), AE~i C ~ = ~, is contained in the p
weight space V(A), whereas in the second case some weight 
spaces V; (,x), 'xE~i' are not contained in any p-weight space 
V(A),AE~. 

Example 4: The classical theory of spin-flavor symme
try uses the algebra ® = 9 = sl(6,C) [more precisely its 
compact formgc = su(6)] and the irreducible sl(6,C) rep
resentation of the signature (3,0,0,0,0,0). The (third com
ponent of) magnetic momentum operator f-l3 is built by 
means of the electric charge operator Q and the spin operator 
U 3 in such a way that u3EIjc CIj, where Ijc is the Cartan alge
bra of gc. 

An agreement with experimental data, for the ratio 
f-l3(p)/f-l3(n), can be obtained if one takes, instead of the 
eigenvalues of p( f-l3)' the diagonal matrix elements of 
p( f-l3) in a basis consisting of weight vectors of the restric
tion (p,V): = (Res@ p,V) to@ = g=s1(2,C) +s1(3,C). The 
regular embedding of @ into ® is made by means of the 
natural representations of these Lie algebras in the space 
C2 ® 1(;3 =C6

• Abusing the notation, one usually writes 
f-l3 = u 3 ® QEE& C g. 

The corresponding Weyl group W(R) is isomorphic to 
S2 XS3, and we see that forp( f-l3)Ep(Ij)' Cp(&)', the follow
ing symmetry property is satisfied: 

L fiw p( ,u3) = o. 
WES,X{J} 

(4.20) 
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It means that the states of the opposite spin projections u 3 

provide the opposite projections Jl3' independently of the 
definition of a physical basis (as p or pj-weight vectors). 

Moreover, the equation l:weS ,+ wQ = 0 implies the addi-

tional relations for the operator p ( Jl3)' In consequence, us
ing the decomposition of 56-plet of baryons into sl(2,C) 
+ sl ( 3, C) -irreducible subs paces, we obtain the generalized 
Coleman-Glashow relations for magnetic momenta (com
pare example 3) 

Jl3(P) +Jl3(l:-) +Jl3(::0) =0, 

Jl3(tl+) +Jl3(l:*-) +Jl3(::*0) =0, 

Jl3(n) +Jl3(l:+) +Jl3(::-) =0, 

Jl3(tl°) +Jl3(l:*+) +Jl3(2*-) = 0, 

f.l3(tl++) +f.l3(tl-) +f.l3(n-) =0, 

where in every equation all the particles have the same pro
jection u 3• According to Ref. 13, the recent experimental 
data are the following (in units eh /2mp c); 

f.l3(P) = 2.7928, f.l3(l:-) = - 1.10 ± 0.05, 

f.l3(2°) = - 1.250 ± 0.014, 

f.l3(n) = - 1.913, f.l3(l:+) = 2.379 ± 0.02, 

f.l3(2-) = 1.85±0.75. 

Thus, besides the proton-neutron ratio, an agreement of the 
su ( 6) theory is rather problematic. 

Let us notice, however, that the generalization of this 
theory for a larger number of flavors does not provide the 
relations given above. Namely, for n > 3, the definition of the 
operator Q implies that ® must be taken as the reductive Lie 
algebra s1(2,C) +s1(n,C) +u( 1) and that l:WEWWQ #0 for 
any subgroup WCSn. Thereby, additional equations, apart 
from the ones given by the formula analogous to (4.20), can 
be obtained only for more complicated operators from 
~C®. For example, the operator U 3 ® (Q - mB), where B 
is the baryon number operator and m =! (resp. ! - 3/2n) 
for even (resp. odd) n, satisfies the generalized Coleman
Glashow relations. • 

The examples given above illustrate how one can obtain 
some physical relations for a given observable. On the other 
hand, Proposition 2 shows that by studying the representa
tions (T,Cx ), where XCA is an orbit of a subgroup 
WC W(R), we get many physical relations that can appear 
in the framework of a considered symmetry. Before we give 
some examples of such an application of Proposition 2, let us 
derive some useful properties of transitive actions of finite 
groups and corresponding representations in the functions' 
spaces. 

v. DETAILED RESULTS AND EXAMPLES 

A. Actions of finite groups 

Let Wbe an arbitrary finite group acting on a finite set 
X. Let WXo denote the isotropy group of xoEX. If W acts 
transitively on X, then the mapping w WXo -+ wXo, WE W, pro
vides the isomorphism W / Wxo "",X of Wactions and, more
over, each isotropy group Wx of xEX is conjugated with Wx" 
(since Wwxo = w WXo w -\ ). On the other hand, W / Wo is iso-
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morphic to W /wWow-\ for every subgroup WoC W. Thus 
we obtain the following lemma. 

Lemma 4: There exists one-to-one correspondence 
among transitive actions of a finite group Wand conjugancy 
classes of subgroups in W. • 

Let (T,Cx ) be the representation of W given by the for
mula (4.7). It is clear that isomorphic Wactions generate 
equivalent representations. Moreover, the representation 
(T,Cx ) is equivalent to its contragredient since the formula 

B(f,g); = If(x)g(x) 
xEX 

defines a nondegenerate W-invariant bilinear form on CX. 
Our next lemma is a generalization of the classical Frobenius 
theorem about the regular representation and provides an 
efficient irreducibility criterion. 

Lemma 5: Let Wbe a finite group acting transitively on 
X and let (e,E) be a representation of W. Then (i) the inter
twining number c(E,Cx ); = dim ::t' w (E,Cx ) is equal to the 
dimension of the subspace Eo C E consisting of the WXo -in
variant vectors, xoEX, and (ii) if dim Eo = 1 and (e,E) can 
be embedded in (T,Cx ), then (e,E) is irreducible. 

Proof: (i) Since c(E,Cx ) = c(CX,E) , we may consider 
the intertwining operators ,7; CX 

-+ E. Each ,7 is uniquely 
determined by the vector e; = ,7·1 X

o
' where 1 Xo eCx is the 

characteristic function of the subset {xo} C X. The vector e is 
WXo invariant since 

ewe = ,7°Tw 'l xo = ,7'lw-'xo = e, weWxo ' 

(ii) It follows immediately from part (i). • 
Remark 2: Part (i) can be also obtained from the Fro-

benius reciprocity formula, see, e.g., Ref. 14, by noticing that 
the representation (T,Cx ) is induced by the trivial represen
tation 1 of the subgroup WXo ' 

c(e,T) = c(e,Ind::; 1) = c(Res::; e,I). • 
Xo Xu 

In the case of a classical Lie algebra, the Weyl group 
W(R) is an extention of a permutation group Sn and, more
over, the action of Sn on the group of weights 
P(R)C(lIq)zn (Z integers, O<qEZ) can be described by 
the natural formula. 

u(x\,oo·,xn) = (xu-'(l) ,oo.,xu-'(n»' ueSn , XjE( l/q)Z. 

See Appendix D for details. Therefore. we shall study more 
closely the natural action of Sn in the Cartesian product Z n 

of an arbitrary set Z. 
Every Sn orbit XCZ n contains an element ofthe form 

Xo = (z\,oo.,z\,oo·,zk .... ,zk)' where all the elementszWoo,zk are 

n 1 nk 

different and n\">'" ">n k > O. We shall call the partition 
[nl>oo.,nk ] of the integer n the type of orbit X = Sn ·xoCZ". 

Lemma 6: For natural action of Sn on the set Z n, two S" 
orbits are isomorphic iff their types coincide. In conse
quence, each representation (T.Cx ). where X is an Sn orbit 
in Z n, can be labeled by the corresponding type of orbit X. • 

A simple application of Lemma 5 is the following useful 
example. 

Example 5: Let us treat the set c;; ; 
= {yecn Iy \ + ... + y n = O} as the space of the irreducible 

Sn representation of the signature (n - 1,1). Then for any 
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Sn orbitXCZnofthetype [nl, ... ,nk ] we have 

c(G;,Cx ) = k - 1. 

In fact, the isotropy group WXo of the element X o given above 
consists of permutations preserving each of the following 

subsets of the set T,n: {1,2,00.,n l }, {n l + 1,00.,n l + n2},.00 . 

Thus an element YEG; is WXo invariant iff YI = ... = Yn" 

Yn,+1 = ... =Ynl+n,'oo.. • 
Finally, let us prove the following lemma. 
Lemma 7: Each representation (e,E) ofthegroupSn is 

equivalent to its contragredient one. 
Proof: Every element O'ESn is conjugate with (1-1 since 

they both have the same decomposition into the disjoint cy
cles. Thus Xu = XU-I = Xu, i.e., the characters ofe and e A 

coincide. • 

B. Relations for three-particle and particle-antiparticle 
states 

Let n;;.3 and let us consider the Sn orbits in 1..n [resp. 
(lIn)1..n] of the following four types: [n], [n - 1,1], 
[n - 2,tZ] = [n - 2,1,1], and [n - 3,3]. These orbits are 
sufficient to describe one-particle, three-particle, and parti
cle-antiparticle states in theories based on @ = gl(n,C) 
[resp. sl(n,C)]. In fact, gl(n,C) representations of signa
tures (0'00.,0), (1,0,00.,0), (3,0'00.,0), (2,1,0,00.,0), 
(1,1,1,0'00.,0), or (1,0'00.,0, - 1) provide Sn orbits only of 
the types mentioned above. 

In what follows, for the simplicity of the notation, we 
shall denote Sn representations by the corresponding signa
ture or type (see Lemma 6). For the trivial orbit X = {"i}, 
the representation in CX is trivial, i.e., we have [n] = (n). 

The representation generated by the orbit of the type 
[n - 1,1] is equivalent to the Sn representation in the space 

Cn = {(al,oo.,an ) la; = b + Yi: ~Yi = oJ, 
i.e., [n -1,1] = (n)+(n - 1,1). (5.1) 

The representation [n - 2,12] coincides with the Sn 
representation in the space of diagonalless matrices 
{[ aij ] Ii =/=j, aijEC} and can be decomposed into the irreduci
ble Sn components as follows: 

(5.2) 

where b = const; cij = X; - xj , l:;Xi = 0; dij = Yi + Yj' l:iY; 
= 0; eij = - ej ;, l:;.;7'j eij = O;fij = fj;. l:;,;7'/ij = 0, hence/ij 
= ° for n = 3. The irreducibility of the subspaces {[ eij]} 

and {[/ij]} follows from Lemma 5. Indeed, [n - 2,12] cor-
responds to WXo = {O'ESn 1(1(1) = 1, (1(2) = 2} and hence 
[aij] is WXo invariant iff there existao,00.,a4EC such that for i, 

jE"3,n, i=/=j, we have aij =aO,ail =al,a12 =a2,a li =a3,a2; 
= a4 • So, [eij] (resp. [/;j]) is WXo invariant if e21 = - e21 

and eil = - e 12 = - elj = e2j = [1/(n - 2) ]e I2, eij = ° 
(resp.f12 =/21I/;1 =/;2 =fjl =fj2 = - [lI(n - 2]/12' lij 
= [2!(n - 2)(n - 3) ]/d, i,jE"3,n, i=/=j.1t can be proved 

that the space {[ eij ]} (resp. {[ /;j ]}) carries the Sn repre-
sentation of signature (n - 2,12) [resp. (n - 2,2) ]. This 
identification is of no significance for our computations, but 
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we shall use it to simplify the notation. Thus we have 

[n - 2,t2] = (n) +2' (n - 1,1) + (n - 2,1 2) + (n - 2,2), 

for n;;.4, (5.3) 

whereas 

[ 13] = (3) + 2· (2,1) + (13). 

Finally, the representation [n - 3,3] is equivalent to 
the S n representation in the space of the symmetric matrices 
{[ aijk ] li,j,k different, aijk = a(ijk) EC}, and has the follow
ing decomposition into irreducible components: 

(5.4 ) 

where b = const; Cijk = Xi + Xj + Xk, l:iXi = 0; dijk = /;j 
+ fjk + Iki' /;j =fj;. l:i.i7'j/;j = 0; eijk = e(ijkl' l:i,Ni#eijk 
= 0; and, moreover, Cijk = ° for n = 3, dijk = ° for n = 3,4, 

and eijk = ° for n = 3,4,5. The irreducibility of the space 
{[ eijk ]} can be again seen from Lemma 5. Moreover, it can 
be shown that this space corresponds to the Sn signature 
(n - 3,3). So, we get 

[n - 3,3] = (n) + (n - 1,1) + (n - 2,2) + (n - 3,3), 

for n;;.6, (5.5) 

whereas 

[3] = (3), [3,1] = (4)+(3,1), 

[3,2] = (5)+(4,1)+(3,2). 

The obtained formulas for the functions FA' AEp(~)', 
4)CgI(n,C) enable us to derive immediately some possible 
physical relations (the more detailed analysis of the consid
ered gl(n,C) states is given in Ref. 5). 

Example 6: Let, for n = 4, u,d,s,c denote the basic vec
tors ofthe representation (1,0,0,0) (one-particle states). In 
particular, in u (4) -flavor theory u,d,s,c are one-quark states. 
If we consider the three-particle representation (p, V) of sig
nature (3,0,0,0) or (2,1,0,0), the weight spaces correspond
ing to the orbit S4·A., where A. = (2,1,0,0), are one dimen
sional. Moreover, the eigenvalues of an operator AEp(~)' 
without the component transformed by the S4 representa
tion (2,12) satisfy three linearly independent equations [see 
(4.18) and the table of characters of S4], 

2auud - 2addu + a ssu - a uus + a eeu - a uue 

+ adds - a ssd + a dde - aced = 0, 

a uud - addu + la ssu - 2auus - a eeu + a uue 

+ adds - a ssd + dees - a sse = 0, 

a uud - addu + a ssu - a uus + 2adds - 2assd 

- a dde + aced - aces + a sse = 0, 

where all three-particle eigenstates uud, ddu, etc., have 
the same symmetry, i.e., uud = u ® u ® d + u ® d ® u 
+ d ® u ® U is symmetrical if A. is the weight of the represen

tation (3,0,0,0) or, e.g., uud = u ® u ® d - U ® d ® u has the 
mixed symmetry if we consider the representation (2,1,0,0). 

The analogous equations for an operator AEp(~)' with
out the component transformed by the S4 representation 
(22) are the following [see the relations for matrix elements 
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in (5.2)]: 

a uud + addu + a ssc + aces 

= a uus + a ssu + addc + aced 

= a uuc + a ccu + adds + assd = O. 

The case where AE(4) + (3,1) Cp(~)' is described by 
the generalized Coleman-Glashow rule, which implies five 
linearly independent equations: 

a uud + adds + a ssc + a ccu 

= a uus + adds + a ssd + a ccu 

= a uus + addu + a ssc + aced 

= a uuc + adds + a ssu + aced 

= auud + a ddc + a ssu + aces 

= a uuc + addu + assd + aces' • 
Let us consider now the representation (1,0, ... ,0, - 1) 

of gl( n,C) which is usually used to describe particle-antipar
ticle states. Ifwe deal with a charge that is independent from 
the particle-antiparticle reflection (e.g., mass of mesons), 
we must use operatorsAEp(~)' providing symmetrical ma
trices [aij]' Therefore, according to (5.2) and (5.3), the 
representation (n - 2,12) and one of the representations 
(n - 1,1) are excluded. If, moreover, the charge cannot be 
negative then, for n > 3, there are possible two fundamental 
kinds of physical relations for eigenvalues corresponding to 
the one-dimensional weight spaces V(A ), 
AESn ' (1,0, ... ,0, - 1) [compare (5.2)], 

if AE(n) + (n - 2,2)Ep(~)', (5.6) 

and 

if AE(n) + (n - 1,1) Cp(~)' (5.7) 

(to simplify the notation we do not choose linearly indepen
dent equations). Thus we see that if n increases new terms 
appear in each sum of Eqs. (5.6), whereas in the second case, 
it increases only the number of the relations in (5.7). 

Example 7: Let us consider the flavor theories with 4, 5, 
or 6 flavors. If we assume that the meson mass operator M 
(or its square) is of the form ME(n) + (n - 1,1) Cp(~)', 
then Eqs. (5.7) imply, e.g., the following linearly indepen
dent mass formulas: 

where band t are the fifth and the six quark states, an overbar 
denotes the antiquark state, and total momenta of all quark
antiquark states from each equation are the same. In other 
words, for pseudoscalar mesons of the known masses we 
obtain 
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Compare Ref. 6, where the second formula is derived by 
additional assumptions. The analogous relations hold for 
vector mesons. According to Refs. 13 and 15, the mass dif
ferences (in MeV) are the following (in parentheses for the 
corresponding vector mesons) : 

mK " - mK + = 4.01 ± 0.13 (6.7 ± 1.2), 

m D + - mDO = 4.7 ± 0.3 (2.9 ± 2.8), 

mB " - m B + = 3.4 ± 5.8, 

mD + - m
TT

+ = 1729.8 ± 0.6 (1241 ± 3.7), 

mF + -mK + = 1477.3±6 (12l7.1±16.4). 

As it was mentioned above, for ME (n) + (n - 2,2), it makes 
no sense to compare Eqs. (5.6) with experimental data until 
the final number of flavors is fixed. For example, for 
n = 4,5,6, we get, respectively, the following mass formulas: 

m KO -mK+ +mD + -mDO =mB+ -mB"; 

m K o - m K + + m D+ - m Do + m Bo - m B + = m tu - mtti· 

Thus, for n = 6 and the top mesons til and td, Eqs. (5.6) and 
(5.7) predict the mass differences of the opposite signs. 
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APPENDIX A: OBSERVABLES FROM THE ENVELOPING 
ALGEBRA 

Let m: ( ®) be the enveloping algebra of ® and let P de
note also the extension of a representation P of ® onto m: ( ® ) . 
As canonical observables, one can consider elements from 
the set {SEm:(®) I V (p, V) :p(S)Ep(~ )'}, which coincides 
with the commutant m:(~)' ofm:(~) in m:(®). However, in 
general, the imagep(m:(~)') is smaller thanp(~)'. To make 
it clear, let us analyze relations among the sets p(~)', 
p(m:(®») andp(m:(~)'). 

Let V = ~; Vi ® Mi be the decomposition of Vinto isoty
pic components, i.e., Vi carries an irreducible representation 
Pi of ®, Mi is a vector space such that dim Mi = C ( V;, V), 
and p = ~; Pi ® idM ;. It is clear that 

End V= L (Vi ® Vj) ® (Mi ®Mj) 
i,j 

and hence, 

p(~)' = (End V)(O) = LPiW)' ®EndMi 
i 

+ L (Vi ® Vj)(O) ® (Mi ®Mj). 
i#j 

The irreducibility of Pi implies that Pi (m:(® ») = End V; and 
Pi(m:(~)') =Pi(f»'. Thus 

p(m:(®») = L End V; ®idM , 
i ' 
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whereas 

p(m:(S)') = LPi(S)' ®idM ,· 
i 

In consequence, we see that the commutant P (S)' coincides 
with p(m:(S)') iff dimMI = 1 for any i, and the sets of 
weights satisfy ~i n ~j = 0 for i =1= j. Now, the octet and sin
glet representations of su (3) have the common weight 
A = O. Thereby, the mass operator providing a mixing of 
meson states cannot be described by an element from 
p(m:(S)') or evenp(m:(@»). 

The additional characterization of the bicommutant 
p (S)" is given by the following lemma. 

Lemma 8: Let (p, V) be a completely reducible represen
tation of an Abelian Lie algebra S). Then, the following asso
ciative commutative subalgebras (with unity) in End V are 
equal: (1) the algebra p (S)" generated by p (S); (2) the 
imagep(m:(S)) of the enveloping algebra m:(S); (3) the alge
bra generated by the projections PA. eEnd V, PA. V = V(A), 
Ae~; and (4) {AeEnd V I V Ae~, A V(A) C V(A) and A I V(A.) 
= const·idv(A.)}· 

Proof: Two first algebras are equal by definition of the 
extension ponto m: (S). Two last ones are obviously equal. 
Eventually, Eq. (2.11) implies that p (S)" 
= {AeEnd V IV AeA, A V(A) C V(A)}'. But this means that 

the first algebra coincides with the last one. • 

APPENDIX B: ACTION OF A(R) ON m:@' 

For a semisimple g, the action of Aut 9 on 9 can be ex
tended to the representation of Aut 9 in the enveloping alge
bra m:(g). The derivative of this representation is given by 
the formula adX(s) = X's - s'X, Xeg, sem:(g). Thus, in 
the case of semisimple g, Eq. (3.5) implies that ker E acts 
trivially on m:(f)' = (m:(g»)(O) Cm:(g) and that m:(f)' is 
Aut(g,f)-invariant. It provides the action of the group 
A (R) = Aut(g,f)lkefE [see (3.4)] on m:(f)'. So we have a 
representation A(R) 3w-rw eGL(m:(f)'). We shall show 
that for any representation (tr,U) of 9 and weW(R), the 
operator r w induces an operator r~ acting in tr(m:(f)'). 
First, for any seInt g, the representation tr0S is equivalent to 
tr. Indeed, the group Int 9 is generated by operators ead x, 
Xeg, and for such elements, the intertwining operator is giv
en by e -7T(X). Thereby, ker(tr: m:(g) -End U) is Int g-invar
iant and hence, ker(tr: m:(f)' -End U) is Auto(g,f)1 
kefE = W(R) -invariant. Thus the definition r~ tr(s): 

= tr(r ws), sem:(f)', weW(R), is correct. 

APPENDIX C: PROOF OF PROPOSITION 1, (ii)~iii) 

First, we shall consider the case of simple Lie algebra g. 
It follows from Ref. 2 (Chap. VIII, Sec. 7.3) that there exists 
the subset n = {Wi, , ... ,WiN _

1
} in the set of fundamental 

weights such that (a) elements of the set {o}un form the 
system of representatives for the factor group P IQ; and (b) 
for every representation (p, V) of g, the set of weights A con-
tains an element from {o}un. -

Condition (a) implies, in particular, that 
Wi, , ... ,WiN _ I EtQ. Therefore, if we assume that ~ C Q, then it 
follows from condition (b) that Oe~. Thus, (iii) ~ (ii). To 
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prove the converse implication, let us recall (see, e.g., Ref. 8. 
Chap. 7.2.1) thatAh - ACQ foranyirreduciblerepresenta
tion of the highest weightAheA. In consequence, ifOeA then 
we obtain that A = (A h - 0) =- (A h - A) C Q - Q ~ Q. It 
completes the Proof for simple Lie algebras. 

Now, let 9 = gl +g2+'" be a semisimple Lie algebra 
composed of simple Lie algebras 9 I' g2' etc. The root system 
ofg is ofthe form R =jl(R I ) Uj2(R2) U"', where for any 
a = 1,2, ... , Ra Cf): denotes the root system of ga' andja: f): 
- f)* is the natural injection, i.e., f)* = ~;Ja (f):). Moreover, 
the group Q(R) splits into the direct sum of the groups 
Q(Ra). It is also known that any irreducible representation 
(p, V) of 9 is of form 

(p,V) = (PI <DP2 <D" ',VI ® V2 ® ".), 

where (p a' Va) is an irreducible representation of ga' The 
formula (2.6) implies that ~=jl(~I)+j2(~2)+"" 
where ~a is the set of weights of the representation (p a , Va ). 
Thus, we obtain that 

(OeA)¢:?(OeAa,a = 1,2, ... )¢:?{Aa CQ(Ra ),a = 1,2, ... ) 
- I - 2 -

¢:?(ACQ = Q(R»). 
3 -

In fact, the equivalences 1, 2, and 3 are true since ( 1) j a (~a ) 

Cja (f):) and f)* is the direct sum oftheja (f):)'s; (2) each ga 
is simple; and (3) Q(R) is the direct sum of the Q(Ra ) 'so 

APPENDIX D: GROUPS W(R), Q(R), AND P(R) FOR 
CLASSICAL LIE ALGEBRAS 

The Weyl groups of the classical Lie algebras are exten
sions of permutation groups Sn' 

{

Sn, for An -I' n;p2, 

W(R)= SnQ«Z2)n, for Bn and en, n;p2, 

Sn Q«Z2)~' for D n, n;p3, 

where Z2: = {I, - t}, (Z2)~ consists of 
E= (EI, ... ,En)e(Z2)nsuchthatEl"·En = l,andCx denotesa 
semisimple product, i.e., (U,E)' (U',E') = (UOU,E'U(E'»), 
U(E): = (E,,-'(l)" 'E"-'(n»' ueSn. The corresponding 
groups Q(R) and P(R) can be realized as follows: 

Q(R) = l~: = {xEZnlx l '" + Xn = o}, 

{ } for An I' 
peR) = (lin) X~IXI="'=Xn (modn) , -

Q(R) =zn, l' B 
{ I } lor n' 

P(R)=! xEZnx1="'=Xn (mod 2) , 

Q(R) = {xEZnlx l + ". +xn=O (mod2)}, 
for en, 

peR) = In, 

Q(R) = {xEZnlXI + ... + Xn =0 (mod 2)}, 

} 
for Dn. 

P(R)=~{xEZnlxl="'=Xn (mod 2) , 

The group W(R) acts on Q(R) and P(R) according to the 
formulas (UX)i:=X,,-'(i) for An_I' and (E,U)X)i 
: = EiX,,-'(i) for B n, en' Dn. 

Note that in the case oftheAn -I type, the W(R) = Sn 
actions on Q(R) and P(R) coincide with the natural action 
of S n in In only if we describe f)* = C~ by means of the gauge 
condition XI + ... + Xn = O. The usually used condition Xn 
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= D provides more complicated formulas. It is only when we 
consider the reductive Lie algebra gl(n,C) that the Weyl 
group Sn acts automatically on P(R) = zn in the natural 
way. 

APPENDIX E: FINITE COVERINGS OF W(R) 

Let (X,,) "ER be a Chevalley system of a complex pair 
(g,g), see, e.g., Ref. 2, Chap. VIII, Sec. 2.4. The elements 
eadXaeadX-aeadeadXa generate a finite subgroup 
weAuto(g,g) that covers W(R), see Ref. 2, Chap. VIII, 
exercise 10, in Sec. 5 and the reference therein. Moreover, 
elements exp Xa exp X _ a exp Xa generate16

•
17 a finite sub

group NeG~, where G is a simply connected group such 
that L (G) = g. (Note a sign difference in notations used by 
various authors.) In other words, we have a diagram (rows 
are not exact) 

Ad 

G~--+ 

t 
Ad 

N--+ 

--+ W(R) 

tid. 
--+ W(R) 

The ratio of orders IN III W(R) I is equal to 2dim
\ whereas 

I Will W(R) I = I Q IQn 2P I is, in general, smaller. For in
stance, for g of type An we have IN III WI = 2 if 
n == 1 (mod 2), and N = W if n == D( mod 2). In example 1 of 
Sect. III B, a group NeSL(E) is generated, e.g., byele
ments gijeSL(E), i=j:.j, such that gije; = - ej , gijej = e;o 
gijek = ek, i=j:.k =j:.j. Using in this example for thez; 's square 
roots of - 1 of higher orders, one can also generate finite 
W(R) coverings bigger than N. 

On the other hand, considering, instead of G, a reductive 
Int g covering group 0 [L(O) = gxc], we can obtain 
smaller finite W(R) coverings contained in O~, or even be 
able to imbed W(R) into Of)' In fact, ifin example 1 we allow 
that det g = ± 1, thenelementsgweGL(E), weW(R) =Sn' 
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such that gwe; = eW(i) , ie T,n, generate a subgroup isomor
phic with W(R). Clearly, in this case for any weight AeA, 
the operators r!Jl w' we W(R), given by (3.11 ) provide a usu
al representation (II'\U(A») of the isotropy subgroup 
W,-t e W(R). Compare Ref. 17, where the representation of 
a subgroup N,-t eN which stabilizes U(A) is used. 
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Let a particle symmetry be described by a simple Lie algrebra 9 of the type An _ 1 , i.e., 
9 = sl(n,C) or 9 is a real form of s1(n,C). For 9 representations describing three-particle or 
particle-antiparticle states, relationships between two actions, the action of 9 and the action of 
the corresponding Weyl group Sn' on observables are analyzed. It is shown, in particular, how 
possible physical relations depend on these two actions. The results enable one to verify quickly 
if given experimental data can be fitted by means of a g-symmetry theory. 

I. PRELIMINARIES 

We continue the analysis of physical relations that can 
appear in particle symmetries based on reductive Lie alge
bras. In our previous paper, I we showed that from the point 
of view of physical relations, it is sufficient to consider com
plex semisimple Lie algebras. Let 9 be such an algebra and let 
f) be its Cartan subalgebra. 

A. Tensor operators 

Let (p, V) be a finite-dimensional complex representa
tion of 9 describing physical states and let ad p be the corre
sponding 9 action in the space End V. Finally, let Y 
E!f g (U,End V) denote a linear embedding intertwining a 
given representation (1T', U) of 9 with (ad p,End V). Opera
tors from Y ( U) C End V are called tensor operator!? of the 
type (1T', U). It is usually assumed that each observable has 
particular 9 transformation properties, i.e., it can be de
scribed by a tensor operator of a particular type. See Refs. 2-
4. 

In Ref. 1 we proved that observables are contained in the 
zero-weight space (End V) (0) of the representation 
(ad p,End V) and that the Weyl group W( R) (correspond
ing to g), acts canonically in any zero-weight space of (g,f). 
This W(R) action n depends functorially on 9 representa
tions. In particular, every mapping Y restricted to the space 
U(O) intertwines also the corresponding W(R) actions. For 
example, the mapping p itself defines tensor operators of the 
adjoint type5 andplf) intertwines the natural W(R) actions 
in f) andp(f). For an irreducible 9 representation (1T',U) , the 
W(R) representation (n,U(O») is, in general, reducible. 
Thus the decomposition of a given observable 
AE(End V) (0) into the components transformed by irredu
cible W(R) representations refines the decomposition of A 
into irreducible tensor operators (traditionally used by phy
sicists) . 

As we showed (Proposition 2 in Ref. 1), many physical 
relations follow from the W(R) symmetry properties of a 
given observableA. Since, in general, the same W(R) repre
sentation can appear in various subspaces YU(O) 
C (End V) (0), the same physical relations can be obtained 
by means of tensor operators of various types. 

For example, the results of Ref. 1 (Sec. IV A, Example 

2) show that the Coleman-Glashow mass formula in su (3 ) 
theory is equivalent to the fact that the mass operator does 
not contain a component transformed by the alternative S3 
representation of the signature (13) = (1,1, l). But for the 
hadronsl(3,C) repesentation (p,V) of the signature (2,1,0), 
we have the following decomposition: 
End V = 1+8+8+ 10+ 10*+27, where the irreducible 
s1(3,C) components are denoted by their dimensions. The 
zero-weight space of the adjoint representation 8 carries the 
two-dimensionalS3 representation (2,1), i.e., 8(0) = (2,1). 
It is also clear that l( 0) = (3). We shall see that 
10(0) = 10*(0) = (13), whereas 27(0) = (2,1)+(3). 
Thereby, this mass formula appears iff tensor operators of 
the decimet type are excluded (and not only if we use tensor 
operators of the type 1 + 8) . 

Thus, in a general situation, the first problem is to find 
the decomposition of the zero-weight spaces U(O) into irreduci
ble W(R) components. 

On the other hand, there also exist relations that can be 
obtained only if one uses tensor operators of a definite type. 
For example, to have the equidistance rule for masses in the 
n-ftavor theory, one must assume that the mass operator is of 
the form c'id v + p(H), c = const, HE£), or, just the oppo
site, to get the mass of a meson equal to the mass of the 
corresponding antimeson, one has to exclude from the me
son mass operator the componentsp(H), HE£). 

Thus the second problem is to derive, for irreducible ten
sor operators from YU(O), additional relations depending on 
their tensor type. 

B. Hadron-type representations of sl(n,C), n;>3 

In the present paper we solve the first problem for the 
irreducible s1(n,C) representations (1T',U) of the following 
signatures: 

(p + q,q, ... ,q,O) p,q;>O, 

(q,b.v.J,.0, ... ,Q) O<p<n - 1, q;> 1 , 
p 

(~1, ... ,1,~), O<p+q<n. 
p q 

We denote these representations respectively by ..#~,&?1~, 
and ~~. Moreover, let us put "#q: = ..#:' ~ q: = '6':. The 
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capital letters are chosen according to the (general) shape of 
the corresponding Young schemes: axe shape, boomerang 
shape,6 and club shape. In what follows we shall call these 
respresentations of sl (n,C) arms representations. Obviously, 
some arms representations coincide: 

do = .uJ)7- 1 = '(50= '(5~ = '(5~, 

d l = .uJ)~-2 = '(51' d~ = .uJ)~, 

where iil' of sign iil' = (4,3,2, ... ,2,1,0) denotes the only non
arms-irreducible component. For n = 3, in the decomposi
tions (1.2 )-( 1.4) the components iil', '(53' '(52' and '(51 do 
not appear, whereas for n = 4 (resp. 5), the decomposition 
( 1.3) does not contain '(53+ CtJ 2 (resp. '(53)' Compare Prop
ositions 1 and 5 proved in the sequel. Thus our results con
cerning arms representations characterize, in particular, the 
W(R) =Sn action on observables for hadron-type represen
tations of sl( n, C). 

Let us notice that there is no need to analyze separately 
the Sn-representations (.uJ)~)*(0). Indeed, the functorial 
properties of the W(R) action II imply that for any pair of 
contragredient g representations (1T, U) and (1T/\ , U *), the 
zero-weight spaces U(O) and U*(O) carry the contragre
dient W(R) represenations. But for the group S n such repre
sentations are equivalent (see Ref. 1, Lemma 7). Moreover, 
since (d~)* = d; and (CtJ~)* = '(5;, it is sufficient to con
sider the spaces d~ (0) and CtJ~ (0) with q>p. 

The main results we obtain about the zero-weight spaces 
of arms representations are the following. Let C carry the 
alternative Sn representation of the signature (1 n ) and let 
S P (f) [resp. A P (f) ] be the symmetrical (resp. skew-sym
metrical) p-fold tensor power of the natural Sn representa
tion in a Cartan algebra 1) of sl(n,C), i.e., sgn 1) = (n - 1,1). 
Then 
d~(O)=C®k®smin(p,q)(1), if Iq-pl =n-k, O<;kEZ, 

.uJ)~(O)=C®k®AP(1), if p+q=n,k, O<;kEZ, 

if 0<;q<;n/2, 

where for 0<;q<;n/2, the space C3,q carries irreducible Sn 
representation of the signature (n - q,q). In all the remain
ing cases the zero-weight spaces of arms representations van
ish. We analyze also properties of (in general reducible) rep
resentations S P (f) and we show that A P (f) is the 
irreducible Sn representation of the signature (n - p, I P ), 

Moreover, for any hadron-type sl(n,C) representation 
(p, V), we describe explicitly the sl(n,C)-irreducible spaces 
:7 ( U) C End V, compare Ref. 8, Our results show which 
additional physical relations can be obtained if we fix theSn -

transformation properties of a given observable 
AE(End V) (0) and vary its tensor type (1T,U). 

It turns out that the Sn spectrum in the space 
(End V) (0) is, in general, bigger than the spectrum of the 
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d~ = .uJ)Z~i. CtJl = .uJ)~-k-l. 

Arms representations or representations contragredient to 
them appear, in particular, in the decomposition of the space 
End V into irreducible sl(n,C) components if (p, V) is a ha
dron-type representation ofsl(n,C) describing three-particle 
or particle-antiparticle states, i.e., if sgn V = (3,0, ... ,0) or 
(2,1,0, ... ,0) or (1,1,1,0, ... ,0) or (2,1, ... ,1,0). In fact, using, 
e.g, the Young scheme technique7 we obtain for n>6 

ifsgn V= (3,0, ... ,0), V= d6, 

ifsgn V= (2,1,0, ... ,0), V=.uJ)~, 

ifsgn V= (1,1,1,0, ... ,Q), V=.uJ)i, 

ifsgn V= (2,1, ... ,1,0), V= d l , 

(1.1 ) 

( 1.2) 

(1.3 ) 

(1.4) 

~n action in the space C~, where A denote the set of weights 
of (p, V). For example, if V = .uJ) ~ -and n >4, then in the space 
U(O) with sgn U = (4,3,2, ... ,2,1,0), i.e.,:7( U) = iil', there 
are contained the Sn representations of the signatures 
(n - 3,1 3

) and (n - 3,2,1) which do not appear in C~. 
But according to Proposition 2 in Ref. 1, the basic phys

ical relations, which are implied by Sn transformation prop
erties of a given observable A, do not change if we add to A 
some operators from a Sn -invariant subspace in (End V) (0) 

which does not appear in C~. Thus, we show which addi
tional (fitting) parameters can be introduced to a considered 
symmetry theory without any change of the basic physical 
relations. 

Let us notice that as long as complex representations are 
used, our results can be applied for any simple Lie algebra of 
the type An _ I, e.g., for the compact form su(n) or for 
su(p,q),p + q = n, sl(n,R), etc. 

C. Notation 

In what follows g denotes the complex Lie algebra of the 
type An _ 1 , n>3. We shall use the following realization of 
the pair (g,1). Let Ebe a fixed n-dimensional complex vector 
space with a given basis {ei }, iE T,n, and let {ei

} denote the 
dual basis in E *. The coordinates of a vector xEE (resp. 
SEE *) with respect to the chosen basis shall be denoted by 
xl, ... ,xn (resp. SI"",Sn)' As f) we choose all operators in 
sl(E) =sl(n,C) that are diagonal with respect to {e), i.e., 

where 

e/: = e i ®ejEE®E* = End V. 

Here and in the sequel ~i denotes ~I<i<n' Clearly, f) is iso
morphic to the space q: = {A = (AI, ... ,A,n )Ecnl~iAi = O}. 
Thus the spaces C, q, C, and C3: = C ® C3 carry, respective
ly, the irreducible Sn representations ofthe signatures (n), 
(n - 1,1), (1 n ), and (2,1 n - 2 ). 

The standard basis in Cn shall be denoted by 
Ei: = (0, ... ,1, ... ,0), iE T,n, and its dual basis by {Ei}. For any 
AEcn, let us define XEf)* by the formula 

( 1.5) 
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So, A = ii iff ,,1,- J.-l = c'l, where CEC, I: = (1, ... ,1 )Ee. 
The mapping At--+A, as well as its restriction to C~, inter
twines the representations of Sn. In what follows we shall 
distinguish A and A only if it is necessary to avoid misunder
standings. 

Moreover, let us introduce the sets 

5t'p: = {A = (AI,. .. ,A,n )El~ I 1,,1, I: = Al + ... + An = p}, 

where l+: = {integers;>O} , 

and 

£p: = {Ie T,1!III I: = (number of elements inI) = p}. 

For any AE5t'p,A!: =A I !" 'An!, and for any IE£p' let us set 
AI: = 2iE/€iE5t'P ce. Finally, for any finite set X, letCX be 
the set of functions X3Xf--Hlx EC [denoted usually by 
a = (ax)] with the natural structure of IX I-dimensional 
vector space. 

II. ARMS REPRESENTATIONS OF sl(n,q 
A. Axe representations d: 

Let us set ~ = ~(E): = 5t'(sq,SP) =SP® (sq)*, 
where SP: = SP(E). Let us introduce operators 
J ± : ~ -+ ~ ~: (for simplicity of notation we set ~ = 0 if 
p or q is negative) by the formulas 

(J+A)w = L ei8A(ei J w) , 
i 

(2.1 ) 
(J _A)w = Lei JA(ei8w) , 

i 

where ei J w denotes the contraction of the tensor / ® w. 
Clearly, the operators J ± do not depend on the choice ofa 
basis in E and commute with the 9 action in 2~,q ~. Using 
the Leibnizrule lei J w = awlati if elements wESP (E) are 
treated as the polynomials on E * 1 and the Euler formula 
2 iei8(ei J w) = pw, one can check that 

(2.2) 

whereJ ± andHaretreatedasoperatorson2p •q ~ andHis 
given by HA: = !(n + p + q)A, AE~. 

It is also worth mentioning that if ~ is considered as 
the space of polynomials on E * + E (homogeneous of the 
degree p in t and q in x), then J + is the multiplication by 
(t,x) whereas 

J =,,~ - "'7 ati axi . 

Let us denote 

d~=d~(E):=ker(J_: ~-+~=:). (2.3) 
Proposition 1: (a) The space ~ decomposes into the 

following direct sum of 9 representations: 

~="Jr .s;:/p-r 
q L + q-r 

""'L d~=~, .where O«r«min(p,q). (2.4) 
r 

(b) For p,q;>O, the space d~ carries the irreducible 9 
representation of the signature (p + q,q, ... ,q,O); 
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dim .s;1'~ = (n + ; - 1) (n + : - 1) 
_(n+p-2)(n+q-2). 

p-l q-l 

Proof (a) The commutation rules (2.2) imply that for 
k;>l, 

r 

[J_,F+] =2 L Jk+-IHF+- k . 
k= I 

Hence, using the definition of H, we obtain that 

[J_, :! F+]A 

2 1 
= - L F+- I -(n + p + q + 2r - 2k)A 

r! k= I 2 

1 
= (n + p + q + r - 1) F+- I A, AE~. 

(r - I)! 
(2.5 ) 

The formula (2.4) we want to prove means that every AE~ 
decomposes uniquely as follows: 

(2.6) 

For p = 0 or q = 0, it is trivially true, thereby we can assume 
thatp,q;> 1. Using (2.3) and (2.5), we see that 

J_(A - L ..!.F+Ar) 
r>1 r! 

whenever the operators ArE.s;1'~ =~. 
Now, if we assume that the decomposition (2.4) takes 

place for the space ~ = : , then all the operators A rE.s;1'~ = ~ in 
(2.7) can be chosen in such a way that the right-hand side of 
(2.7) is equal to zero. It means that the operator 
Ao: = A - 2r>1 (l/r!)J r+ Ar belongs to .s;1'~, i.e., we obtain 
the decomposition (2.6); so the formula (2.4) is proved by 
induction with respect to p,q;>O. 

(b) Obviously, the weight vector A h : = eI8" '8e l 

®en8" '8enESP® (sq)*, corresponding to the highest 
weight Ah = P€I - q€n belongs to the space .s;1'~. It can be 
checked (Ref. 9, Sec. 45) thatA h is the only primitive vector 
in .s;1'~. It proves the first part of (b), see, e.g., Ref. 10, Chap. 
VIII, Sec. 6. The formula for dimension holds since 
~ "",.s;1'~ +.s;1'~ = : . • 

The canonical isomorphism describing the natural Sn 
action in the zero-weight spaces of axe representations is 
given by the following. 

Proposition 2: The zero-weight space .s;1'~ (0) is nontriv
ial iff k: = Iq - pl/nEl+ and then 

d~ (0) =C .. k ® smin(p,q) (C~) . 

Proof For A,J.-lEl~ , let us set 

G. Cieciura and I. Szczyrba 
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If AE2' P (resp. ftE2' q ), then e ... (resp. e'" ) spans the one
dimensional weight space SP (A) = (SP (E»)(A) [resp. 
(S q ) * ( -,iL)]. Thereby, If P: = {AIAE2' p} is the set of 
weights of the 9 representation S P • Hence, the zero-weight 
space of~ = SP ® (sq)* is given by 

~(O) = LSP(A) ® (sq)*( -A), 
~ 

where nontrivial terms appears only for AElf P n If q' (See 
Ref. 1, Sec. II.) But for elements from zn+ ,A = fJ, holds iff 
ft = A + k'l, where k = (Iftl - IA I )lnEl. Thus the inter
section If P n If q is either empty [if p¢q (mod n)] or it 
coincides with If min (P.q) (otherwise). 

As was mentioned in Sec. I B, it is sufficient to consider 
the case wherep";q = p + nk, kEl+. Then, the space ~ (0) 
has the basis consisting of the elements 
qJ).: = e). ®~+k't, AE2'p. We shall show that Sn acts in 
~ (0) according to the formula (7"qJ). = (sgn U)k qJu().)I 

uESn , i.e., 

(2.9) 

Indeed, let gEG = SL(E) correspond to a given uESn , i.e., 
gei = rieuU) ' riEC, and, in consequence, g"ei = ri- leuU). 
Since det g = 1, the coefficients ri must satisfy 
rl' .. , 'rn = sgn u. Thus we obtain 

u·qJ). = gee). ®~ + k'l) = yA.·e
U

().) ® r- (). + k'l) eU
(). + k'l) 

-k·l ()k = r ·qJu().) = sgn u qJu().) , 

where yA.: = 71 1 
•• ·r~n. (Compare Example 1 in Ref. 1.) 

On the other hand, the decomposition (2.4) implies that 
~ =J<i'~ +~=: and hence ~ (0) =J<i'~ (0) +~=: (0). 
Therefore, the assertion (2.8) follows immediately from 
(2.9) and the formula SP(C)=SP(G;)+sp-l(cn). See 
the formula (A2) in Appendix A 1, where more detailed 
information is given about the Sn representations SP(C) 

=c.Yp = {2' P 3Af--+O). EC} and SP(C~). 
For p = q, it is possible to give more precise description 

of the space ~ = End SP. Namely, in this case let us denote 
the Sn isomorphism (2.9) by 

(2.10) 

The g-intertwining operators J ± : End S P _ End S P ± 1 , 

given by (2.1), induce, by the restriction to the zero-weight 
spaces, the Sn -intertwining operators J ± : SP(C) 
--SP± I(C) such that J ± 0L = LoJ ± . It can be verified by 
the straightforward calculation that these operators are giv
en by the formulas 

(J+a»).: = LAia).-Ei' 
i 

(J_a»).:=L(Ai +l)a).+Ei' aESP(C), AE2'p±I' 

(2.11 ) 

and that ker(J _:S P (Cn ) _ S P - I (C ») coincides with 
SP(C~), see Appendix A 1 for details. Thus Proposition 1 
implies the following. 
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Corollary 1: Any AEEnd S P has the following unique 
decomposition: 

A = L 1 Jp+-qAq, AqEJ<i'q, (2.12) 
O<q<p (p - q)! 

and any aESP(C) has the analogous unique decomposition 

a = L 1 Jp+-q, aqESP(G;). 
O<q<p (p - q)! 

(2.13 ) 

Moreover, aE(EndSP)(O) iff A =L(a), aESP(Cn ), and 
thenAq =L(aq). • 

Remark 1: The commutation relations (2.2) take place 
on the space l:~>o SP(cn) if we define H on SP(C) as the 
multiplication by (n12 + p). So, the decomposition (2.13) 
can be also obtained directly [in the same way as the asser
tion (2.4)]. • 

The definition (2.11) implies the following (useful in 
applications) formulas for powers of the operators J ± : 

(~J'+ a) = L (A)al' , 
r. ). I'E.Yq ~ 

(2.14) 

~} = eJ ... -(~:) and (~:) 
denotes the binomial coefficient. In fact, to get the inductive 
implication (r - 1) => (r), it is sufficient to check that for 

IA I - 1ft I = r, the equality Ai' (\~ 1) = (Ai - fti )(~:> im
plies that 

Similarly, 

+ ~ (Ai + 1) (A : EJ =~) if 1ft I - IA I = r. 
B. Boomerang representations 86'~ 

Let us treat the elements of the space X~ = X~ (E) 
: = /\P®sq, where /\P: = /\P(E), sq: =Sq(E), as differ
ential p-forms on E * with coefficients being homogeneous 
polynomials of the degree q. Let us introduce the following g-
. . . J XP XP± I mtertwmmg operators: ±: q - q =+ I , 

(2.15 ) 

whered denotes exterior derivative and R = l:isi(JIJsi ) is 
the radial vector field on E *. The intertwiners J ± ,treated as 
operators on l:~.q X~, satisfy 

(2.16 ) 

The last formula follows from the basic properties of the Lie 
derivative. Moreover, let us set 

!!lJP = !!lJP (E)' = ker(J . XP -XP - I ) qq' -' q q+ 1 , 

~~ = ~~ (E): = ker(J+: X~ -X~~:> . 
Proposition 3: (a) The space X~ decomposes into the 

following direct sum of g representations: 
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X~ = &8~+~~. 
Moreover, the operators (l/~p + q)J _ and (l/~p + q)J + 
provide mutually inverse isomorphisms between ~~ and 

&8~:;:: . 
(b) The space &8~ carries the irreducible 9 representa-

tion of the signature (q,I, ... ,I,O, ... ,O) if O<p<,n - 1, q> 1, 
'"--p' 

and &8 ~ = ° otherwise; 

dim &8P = _n_ (n - 1) (n + q + 1) . 
q n+p P q-l 

Proof" Part (a) follows immediately from the relation 
(2.16). 

(b) The equality ker J _ = im J _ implies that 
&8~ = J _ (X~ ~ : ). But on the space X~ ~ : , the operator J_ 
coincides with the operator Symq being the symmetrizer in 
the q last indices. Since, by the definition 
XP + I = Sym ( /\ p + I ® E ® (q - I» we obtain that q-I q-1 , 

&8P = Sym (/\p+ I ®E ®(q-I» 
q q 

=SymqOAltp+I(E®(p+q» , 

where Altp + I is the skew symmetrizer in the first p + 1 in
dices. Thus the space &8~ is the image of an appropriate 
Young symmetrizer (see Ref. 9 or 11) Finally, 
dim &8~ = ~o<r<p ( - )' dim X~:;:~. • 

Remark 2: It can be checked that the p-forms 

W h : = Si-I(L Si~) J dSI /\'" /\dSp + I ; as; 
and 

Wh: = 51 dS I /\ '" /\dSp 

are primitive vectors in &8~ and ~~, respectively. • 
The canonical isomorphism describing the natural Sn 

action in the zero-weight spaces of boomerang representa
tions is given by the following. 

Proposition 4: The zero-weight space &8~ (0) is nontriv
ial iff k = (p + q)/nEZ+ and then 

(2.17 ) 

Proof" For /-lE2" q and I = {il,. .. ,ip }E£p, the element 

!-ft·d!-· /\ ... /\d!-. EXP 
~ ~ll ~lp q 

belongs to the weight space X~ (.~I + fi). Now, since 
AI + ji = ° iff AI + /-l = k'l, where k = (p + q)/nEZ+, we 
see that X~ (0) #0 iff k = (p + q)/nEZ+. In the last case, 
the space X:(O) has the basis consisting of the vectors 

where i I < ... < i p' It can be seen (cf. the proof of Proposi
tion 2) that, for aES n , 

(2.18 ) 

Now, let 1jEC®k be a fixed nonzero element. The natural 
mapping 
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X~ (0) 3w = L ai!"'i/I\"'ip 
i l < -, <l~ 

E C"k ® /\P(C"» 

is a Sn intertwiner and transforms the condition J _W = ° 
into (EI + ... + En ) J fi = 0. But the last condition means 
that fiE /\ p (C~ ). (See Appendix A 2, where a detailed de
scription of /\ p (C~ ) is given.) • 

C. Club representations 'ttf~ 

Let us set IJI~ = IJI~ (E): = 2"( /\ q, /\P) = /\P ® (/\ q)*, 

/\ P: = /\ P(E). Similarly as in Sec. II A, we introduce on the 
space ~ ~,q IJI~ the g-intertwining operators J ± : IJI~ ..... IJI~ ~ : , 

(J+A)w: = L ei /\A(ei J w), 
i 

(2.19) 
(J _A )w: = Lei J A (ei /\ w) . 

i 

U sing the Leibniz rule, for the interior product S J (.) in the 
Grassmann algebra /\ (E), and the formula 
~;ei/\(eiJw) =pw, wE/\P(E), we obtain the commuta
tion relations of the Lie algebra a: = sl(2,C): 

(2.20) 

where H is the operator on ~~,q IJI~ given by 
HA = !(p + q - n)A,AEIJI~. Let us set 

'G'~ = 'G'~ (E): = ker(J _: IJI~ ..... IJI~=:). (2.21) 

Proposition 5: (a) The space IJI~ decomposes into the 
following direct sum of g-representations: 

IJIP = "" J r 'G' p - r ~ "" 'G' p - r 
q L + q-r-L q-r' 

where max(O,p + q - n)<,r<,min(p,q). Moreover, the 
space 'G' ~ is equal to zero unless 

p>O, q>O, p + q<,n , (2.22) 
(b) If p,q satisfy (2.22) then 'G' ~ carries the irreducible 9 

representation of the signature (2, ... ,2,1, ... ,1,0, ... ,0); 
'-v-' --..-

p q 

dim C{j~ = C) C) -~ ~ J C ~ J . 
Proof" (a) We shall use some known properties of the 

algebra a = sl(2,C). Let DU), IE!Z+ denote the (21 + 1)
dimensional irreducible a representation given by the matri
ces 

[H] = 

° 21 

° 

-I 

2/- 1 

-1+1 

° ° 

(2.23 ) 
1- 1 

I 
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o 
o 
2 

o 
21 0 

Moreover, let operators J ± ,HEEnd V, satisfying (2.20), 
provide a finite-dimensional 9 representation in the complex 
vector space V. As we know, V is a direct sum of irreducible 
components isomorphic to some representations D(l). Let 
us denote the weight spaces of V by V j : = {VE V IHv = jv} 
and let us put Vo: = ker J _. The space Vb: = von Vj con
sists of the primitive vectors of the lowest weight j (with 
respect to the generated irreducible subspaces). Obviously, 
J ± V j is contained in V j ± 1 , and V j (resp. V 6) vanishes if 
jftf,l [resp.jft( - Pl+]. Moreover, for IE~l+ and r> 2t,' we 
get J r + V 0- I = 0 and hence the isotypic component in Vof 
the type D(l) is given by 

mvo-
I= I F+VO-I=D(/)®VoI , 

O<r<2I 
where m denotes the universal enveloping algebra of a. Thus 
we obtain 

V= I mvo-
I = IJr+ Vo-I, 

IE( l/2)Z. I,r 
and, in consequence, 

vj = I F+ Vb- r, jE!l. 
r;>max(O,2j) 

Thereby, for kEl + ,jE!l, the following decomposition holds: 

VjnkerJ k+ = IF+ Vb- r, 
r 

where max(0,2j) <;r<;k + 2j. The last formula implies, in 
particular, that for O<;k<; - 2j, the operators J k+ are injec
tive on the space vj. See Ref. 10, Chap. VIII, Sec. 1. Now, 
assertion (a) follows immediately from the facts given above 
if we set V: = ~~ 'I'~ = ~ and, in consequence, for 
j=!(p+q-n)-r, we get Vj='I'~=~, V6='G'~=~. 
Note that, ifp,q satisfy (2.22) thenF+ is injective on 'G'~ for 
O<;r<;n - p - q, whereasF+ 'G'~ = 0 for r> n - p - q. 

(b) This part can be proved in a way similar to that of 
Proposition 3 (b). Let us notice that for p,q satisfying (2.22), 
(e 1 A ... A e p ) ® (en - q + 1 A ... A en ) is the highest weight 

vector in 'G' ~, and that 'I'~ = 'G' ~ + 'I'~ = : . • 
Remark 3: The relations (2.2) in Sec. II A define also a 

representation of g. In that case, however, the operator H has 
a strictly positive spectrum. So, this 9 representation does 
not have any finite-dimensional subrepresentation. • 

£ Now, let C,p: = C p denote the space of complex func-
tions £p 3If-+f1I EC with the natural Sn action: 
(ua)I:=au-'(lp O'ESn. Let us define the operators 
J ± : cn,p-+cn,p± I, 

(J +a)I = I aJ, 
£p3JCI 

(J_a)I = I aJ , 
£p3 J::JI 

(2.24) 

and let C~'P: = ker(J _ :c,p -+ c,p - I), for details see Appen
dix A 3. The canonical isomorphism describing the natural 
Sn action in the zero-weight spaces of the club representa-
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tions is given by the following proposition. 
Proposition 6: The zero-weight space iG'~ (0) is nontriv

ial iffO<;p = q<;n/2 or p = 0, q = nor p = n, q = O. More
over, for 0<;p<;n/2, 

iG' p (0) = C~'p. (2.25) 
Proof For 1= {il, ... ,ip } where i l < ... < ip ' let us set 

eI : = ei , A'" Aejp ' Clearly, if IE£p' JE£q then eI ®eE'I'~ is 
the g-weight vector of the weight .x corresponding to 
A: = AI - AJ. As we know.x = 0 iff AI - AJ = k'l, where 
k = (p - q)/nEl. The last equation [together with (2.22)] 
is satisfied only in the cases mentioned above. To prove the 
isomorphism (2.25), let us consider the space 
'I'~ = End AP. Its zero-weight space 'I'~(O) is spanned by 
the elements eI ® eI, IE£p, which are permuted by the Weyl 
group Sn. It shows that mapping t: Cn,p -+ 'I'~ (0), 

t(a)eI : = aIel' aECn,P provides the Sn isomorphism 

'I'~ (0) = (End AP)(O) =C,p . (2.26) 

Now, note that the g-intertwmmg operators 
J ± :End AP -+ End AP ± 1 given by (2.19), induce, by re
stricting to zero-weight spaces, the operators 
J ± : C·P -+ Cn,p ± 1 satisfying J ± ot = toJ ± . It can be easily 
checked that these operators coincide with the operators de
fined by (2.24). So, the formula (2.26) implies (2.25), • 

Corollary 2: Any AEEnd A p has the following unique 
decomposition: 

A = I 1 JP+-qA q, AqE'G'q, (2.27) 
O<q<min(p,n - p) (p - q)! 

and any aE A p (C ) has the analogous unique decomposi
tion 

1 
a = I JP-q a aqEC~'P. 

O<q<min(p,n-p) (p-q)! + q' 
(2.28) 

Moreover, AE(End AP )(O)iff A = t(a), aEAP (Cn ) and 
thenAq =t(aq). • 

One can prove by induction the following formulas [cf. 
(2.14) ]: 

(~F+ a) 
r! I 

(~F_ a) 
r! I 

III. OBSERVABLES FOR HADRON-TYPE 
REPRESENTATIONS 

(2.29) 

Let ~ denote the set of weights of a g-representation 
(p, V). Let V(A), AE~, be a weight space. In Ref. 1 we proved 
that the mapping 

F:(End V)(O) = I End V(A) 3A = I AA~FAEC~, 
AE~ AE~ 

(3.1 ) 

intertwines the corresponding actions of the Weyl group. In 
consequence, we showed how to derive possible physical re
lations that depend on W(R) -symmetry properties of a giv
en observableAE(End V) (0). However, it is also important 
to know additional relations that are implied by the tensor 
operator type of A (pure g-transformation properties). 

G. Cieciura and I. Szczyrba 2133 



                                                                                                                                    

TABLE I. Representation End S 3. 

q U. U.(O) FA (3Ej) 

0 .No {A = L(a) = a'idv } a 

.N, {A = L(a) iaEG;} 3a,; 

2 .N2 {A = L(a)iaES 2 (G;)} 3a2" 

3 .N3 {A = L(a) iaES 3(G;)} a3E, 

In the sequel, for every hadron-type g representation, we 
describe the restrictions of F to any component 
Yq Uq (0) C (End V) (0), where End V = ~~Yq (Uq) is a 
decomposition into irreducible tensor operators. This result 
enables us to derive possible relations depending on the ten
sor type of a given observable. 

A. (Skew) symmetrical sl(n,q representations 

We begin with the case where V = S p or V = /\ p • Cor
ollary 1 (resp. 2) provides the decomposition of the space 
End S p (resp. End /\ P) into irreducible tensor operators. 
Namely, the space Uq coincides with the realization (2.3) of 
d q [resp. (2.21) of C(;f q], and the mapping Yq is equal to 
[lI(p - q)!]JP+- q, where J + is given by (2.1) [resp. 
(2.19) ]. In particular, 

Y
1
= 1 JP+-l: d1=C(;fl=g--.EndV 

(p - I)! 

coincides with the mapping p. Moreover, formulas (2.14) 
and (2.29) imply the following corollary. 

Corollary 3: An operator AE(End S P ) (0) [resp. 
(End /\P) (0)] is a tensor operator of the type d q , O<.q<p 
[resp. C(;f q' O<.q<.min(p,n - p) ] iff 

FA (A) = L fA) all' aESq(C~), AE2"p 
/lEY. '-It 

( resp. FA (AI) = L aJ , a = (aj )Eq·q
, 

£.3JCI 

[Notethattheset2"p (resp. £p) describes the set of weights 
of the representation S P (resp. /\ P ).] • 

In Tables I and II, we specify the consequences ofCorol
lary 3 in the case of hadron-type representations S 3 = d~ 
and /\ 3 = 8{f i . 

The detailed description of the Sn representations, ap
pearing in Tables I and II, is given in Appendix A. Using it, 
one can easily get possible relations for eigenvalues of obser
vables. 

TABLE II. Representation End 1\ 3. 

q 

o 
1 
2 

3 

2134 

U. U.(O) 

{A = L(a) = a'idv } 
{A = L(a) iaEG;} 
{A = L(a) iaEC~·2} 

{A = L(a) iaEC~·3} 

a 
a j +aj +ak 
aij + ajk + akj 

aijk 
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a 

2a,; + a,} 

Q2£1 + 2aE; + Ej 

B. Technical remarks 

a 

aEj + aEJ + aEI< 

°Ei + Ej + aE,+ Ek + aEJ + Ek 

aEi + Ej + Ek 

Before studying the cases V = 8{f i and V = d 1 = g, we 
would like to give some useful facts and a convenient nota
tion. 

Let W be a (p - 1) -dimensional vector space spanned 
by fixed vectors Wl""'Wp such that WI + ... + wp = O. 
Then, any (p - 1 )-element subset W1, ... ,lh , ... ,wp forms a 
basis in W. However, the distinction of any Wk can be unde
sirable. We shall call the p-plet (w1, ... ,wp ) a reper of the 
space W. Elements of W can be uniquely decomposed with 
respect to a given reper: W = ~iXiWi' provided ~iXi = O. (In 
this section ~i denotes ~1<i<P') The correspondence 

defines a linear isomorphism that maps the reper (w1, ... ,wp ) 

of W onto the reper (w\> ... ,wp ) of the space q;, where 
Wi: = €i - (1/P)~A' 

Any endomorphism QEEnd W can be uniquely de
scribed by the p Xp matrix [Q] = [Q;] such that 

~j Q; = 0, iE l,p, and ~i Q; = 0, jE l,p, where 
[Qw] = [Q] [w]. It is clear that [QoP] = [Q]. [P] and 
[Q + P] = [Q] + [Pl. Moreover, the condition 

[QI[;] ~O 
implies that det[ Q; + AD}] = A 'det(Q + A ·idw )' In other 
words, for l<.k <p, thek th algebraic invariants ofQand [Q] 
coincide, whereas det[Q] = O. It implies, in particular, 

tr Q = tr[Q] = Q: + ... + Q~ , (3.2) 

det Q = (the sum of the main (p - 1) minors of [Q ]) . 
(3.3 ) 

Let us introduce the action of the group Sp on W by the 
formula aWk = Wa(k)' OESp. It provides the irreducible Sp 
representation equivalent to q;. The corresponding Sp rep
resentation in End W fulfills 

End W = W ® W * = q; ® q; = S 2 (q; ) + /\ 2 (q; ) 

= C+q; +q;.2+ /\ 2(q;) , (3.4) 

see Lemma 4 in Appendix A 3. In particular, for p = 3, q;.2 
vanishes and we have 
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[QJ~~[ -~ -1 
- '] 2 -1 

3 _ 1 -1 2 

~' 
P3 P,] [0 

+ P: P2 PI + y - 1 
PI P3 1 

-I] 0 1 , 

-1 0 

spaces Yq Uq (0). The results are collected in Table III, 
where we used the following mappings Yq:Uq -End 9 [g 
and End 9 are given by (3.6) and (3.7)]: 

~.. 1 .. 
Uo = C 3c f---+Yo(c): = c'id v = c .Lt (eft - - e~) , 

ij n 

U I = g3Xf---+YI(X): = adX = LX;(e~k - ek~) , 
(3.5) ijk 

- ~ .( k' 'k 2'k 2 whereaEC, (PIJ32J33)E ~,YEC= !\ 2(C6)· Indeed, a trans- U2 = g3X f---+Y2: = .Lt Xj e/k + eL - - ~k --
position of two elements in the reper (W I,W2,W3) corre- ijk n n 

k') ej/; , 

sponds to a transposition of two rows and corresponding U3 = {AEEnd glA %1 =A :%~/) }3Af---+Y3(A): =A , (3.8) 

columns in [Q]. Such operations (1) do not change a, (2) U {A E d IA ij A [ijj } 3A GT (A) A 
4 = Eng kl = (kl) f---+J 4 : = , 

transpose two (corresponding) coordinates of (PI ,P2J33) ' 
and (3) multiply yby _ 1. Us = {AEEnd glA %1 =A lZl j}3Af---+Ys (A): =A, 

C. Adjoint sl(n,C) representation 

Let us denote the basic vectors in the tensor space 

T~ (E): = E .oq ® (E *) .op bye;::::;: . For the space 

{ 
~ i kl~ i } I V = 9 = sl(E) = X = ~ X k ei 7' Xi = 0 e T I (E) , 

(3.6) 

the space End V = End 9 can be realized as follows: 

End 9 = {A = ~ A %1 e~'I:~2 A t = 0, ~ A %j = 0 } 

en (E), (3.7) 

h AX· ~ (~ A ij Xl) k' A j ~ A ij k I were . = ~ik ~jl kl j ei , l.e., el = ~ik kl ei · n-
deed, T: (E) coincides with g+ (idE) and for 
AEn (E) = End T: (E), the condition ~iA t = 0 
(resp. ~j A %j = 0) means that AT: (E) eg (resp. 
A (idE) = 0). 

The set of weights ~ of the adjoint representation is 
the union of the zero-weight and the root system R 
= {aijli#j},aij: = Ei - Ej' The zero-weight space g(O) = lj 

is spanned by the reper (wI, .. ,wn ), where Wi: = e; 
- (1/n)~jej,whereasg(aij) = (d),i#j. Thereby, weob

tain (End g)(O) = ~AEAEnd g(.,1,) = End g(O) +End g(R) 

=End G; +CR
, g(R):";;' ~AERg(.,1,). In other words, anyop

erator AE(End g) (0) can be uniquely described by two n Xn 
matrices: (1) the matrix [aij] which satisfies ~iaij = 0, 

jE I,n, ~jaij = 0, iE I,n and is the matrix of the operator 
A 10(0) with respect to the reper (w, ... ,wn ), i.e., 
AWj = ~iwiaij; and (2) the diagonalless matrix [bij]' i#j, 
given by Ae; = bije;, i#j, which characterizes the operator 
A 10(R)' Using the vectors eg and eft, which span the zero
weight space in T~ (E), we can describe the decomposition 
given above in the following way: 

(T~ (E) )(0):::> (End g) (0) 

= {A = L. aij eg + .. }; bij eft I 
IJ I).I#J 

};aij =0, };aij =o}. 
I J 

The last formula enables us to describe the decomposition 
(End g)(O) = ~~Yq Uq (0) and the mapping F on the sub-
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U6 = {AEEnd glA %1 =A 1%) j}3Af---+Y6 (A): =A. 

The mapping ."72 coincides with the Gell-Mann mapping D 
since Y 2(X) Y = {traceless part of XY + YX}. Note that 
forq>3, the function FA , AEUq (0), given in the Table III, is 
expressed only by means of the matrix [bij]' 

In particular, Table III implies that 

(i) Yo(c) 10 (0) = - Y 30t3(a) 10(0)' 

YO(c)lo(R) = n-Y30t3 (a) 10(R) , 

if a = (a ij ) ES 2 (C~) corresponds to CEC by the natural em
bedding C'4S2(C~), i.e, aij = c((lln) - 8ij); 

(ii) Y 2ot2(X) 10 (0) = - (2In)Y30t3(a) 10 (0)' 

Y 2ot2(X) 19(R) = Y 30t3(a) Ig(R)' 

if a = (aij) corresponds to XEG; by the natural embedding 
C~'4S2(C~),i.e.,aij =(1- (nI2)8ij) (Xi +Xj ); 

(iii) Y 6ot6(a) 10(0) = Y 30t3(a) 10(0)' 

Y 6ot6(a) 10(R) = - Y 30t3(a) 19(R» 

if aEG;·2'4S2(C~); see Appendix A 3. Thus, using ten
sor operators of various types, we can keep the basic physical 
relations (Sn -transformation properties of a given observ
able), and simultaneously fit some additional relations. For 
instance, the mass differences between mesons 1T ± and 1T 0 

(or P ± and Po) can be fitted by using the additional term 
Y 30t3(a), where a = (aij) is the image of CEC or XEG;, see 
the embeddings in (i) and (ii) given above. 

D. sl(n,C) representation &IJ ~ 

We may assume that n>4 since for n = 3, the represen
tation &IJ ~ coincides with the adjoint representation. Let 
Y: = (1 + (2,3»)( 1 - (1,2») be the Young symmetrizer. The 
representation &IJ ~ can be realized in the space 
V: = YT6 (E) e T6 (E) which is spanned by vectors 

Wijk: = jY(eijk - ekij ) = i(eijk + eikj ) 

- !(ejki + ejik + ekij + ekji ) (3.9) 

satisfying the equations Wijk = Wikj and Wijk + Wjki 
+wkij =0. 

In other words 

V= {v= LSijkeijk = ~L5ijkWijk ISijk =Si(jk), 

G. Cieciura and I. Szczyrba 2135 



                                                                                                                                    

TABLE III. Representation End g. 

q U. U.(O) 

0 .s;/o {CICEC} 

1 .s;/1 {X=t 1(x) = Lx,e;lxee;;} 

2 .s;/1 as above 

3 .s;/2 {A = t3 (a) = LaijeZ + LaijeJ, laeS 2(e;;)} 
ij ;=1:) 

4 fJ1Jn- 3 
3 {A = t.(a) = taij(eZ - eJ, lae A 2(e;;)} 

5 (fJ1J~-3)* {A =t,(a) = taij(eg +eJ,»laeA 2(IC,;)} 

6 "6'2 {A = t6 (a) = taij(eZ - eJ,)laee;;.2} 

Sijk + cyc1(ijk) = o} 
(we shall omit the summation indices unless it causes any 
misunderstandings). The space V* can be identified with 
YT~ (E) which is spanned by vectors Wijk satisfying the 
same equations as the Wijk'S. Moreover, the relations shown 
in Tables IV and V are fulfilled. 

Setting u.lijf: = Wijk ® uf'qr, we obtain 

End V = (uIij'n = V ® V* 

- {A - '" A ijk -PQr - J.. "'A ijk . . .pqr I - - L pqr fOijk - 4 L pqr Wijk 

ijk _ iUk) 
A pqr - A p(qr) , 

A %~r + cyc1(ijk) = 0, A %~r + cyc1(pqr) = o} . 
(3.10) 

The set of weights A of !!1J 1 is a union of two Sn orbits: 
~': = {A'ij li=/=j} and ~": = {A'ijk lijk =/=}, where 
Aij = 2Ei + Ej and Aijk = Ei + Ej + Ek . The corresponding 
weight spaces are given by V(Aij) = (Wiji) and 
V(Aijk) = (Wijk' WjkOWkij), dim V(Aijk) = 2. Hence, we see 
that 

(End V) (0) 

= LEnd V(A) 
,lEA 

= {AEEnd V IA %~r =/=o~ (p,q,r)ES3 (i,j,k)}, 

whereS3 is the permutation group. Using the Tables IV and 
V, one can check that for any AE(End V) (0), 

{

2(A ijZWijk +A~Jfwjki +A ~%Wkij)' ifijk =/=, 
(3.11 ) 

AW"k = 
IJ 6Aiji 'f' k~' (312) ijiWijO 1 I = ri, . 

TABLE IV. (ijk -#). 

(pqr) (ijk), (ikj) (jki), (jik), (kij), (kji) 
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bij=F,,(aij)' iof-j aij' iof-j au F,,(O) = La" 

c -c/n [en -l)/n)c (n - l)c 

Xi -Xj 0 0 0 

2 2(n-2) 
x, +x} --(x, +x}) x, 0 

n n 

bij = bj , bij - L b,} -Lbij 
jj#i ;#) 

bij= - hj;; Lbij=O -bi} 0 0 
i,i'#i 

as above bij 0 0 

bij =bji; Lbij=O -bij 0 0 
it;#-) 

holds. The formula (3.11) means that for fixed ijk =/=, 

[A 

ijk A ijk A ijk] ijk jki kij 

[Q] = 2 A~Jf A~Z: A~J 
A kij Akij Akij 

ijk jki kij 

(3.13 ) 

is the matrix of an operator A I V(A )' AE(End V) (0), with 
I,k 

respect to the reper (W 1,W2,W3 ): = (Wijk,Wjki,Wkij) of the 
space V(Aijk) (cf. Ref. I.-the consequences I-IV of 
Lemma 3 concerning induced representations). 

Let us denote by a ijk' «(3 ijk ,/3jko(3 kij ), and Y ijk the param
eters corresponding to the matrix (3.13) at the decomposi
tion (3.5), i.e., 

A ijk - 1 + 1 (3 ijk - "ja ijk 2 ijk' 

AY{; = - iaijk + -! (3kij + -!Yijk . (3.14) 

Clearly, a change of the order of the UJ,k) is equivalent to 
the permutation of the elements in the reper (W 1,W2,W3 ). 

Taking into account the S3-symmetry properties of [Q] de
scribed below the decomposition (3.5) and in the formula 
(3.10), we see that the quantities a = (aijk ),(3 = «(3ijk) and 
Y = (Yijk)' ijk =/=, fulfill 

(3.15 ) 
(3ijk + cyc1(ijk) = 0, Yijk = Y[ijk J • 

In other words, we label any AE(End V) (0) by (a,(3,y) in 
such a way that (aa,a(3,uy) corresponds to the operator 
aA:=IIu(A), aESn , where (aa)ijk:=au-'(i)u-'(j)u-'(kl' 
etc. Let us notice that to get a complete charaterization of an 
operator AE(End V) (0), we also need the quantity 

K=(Kij)' i=/=j, Kij:=6Aij:, (3.16) 

describing A on the one-dimensional weight spaces V(Aij) 

[cf. (3.12)]. 
The correspondence (End V) (0) 3A~(a,/3,y,K) pro

vides an Sn isomorphism A = t(a,(3,y,K). The formulas 
(3.15) and (3.16) mean that the quantities a, y, andK trans-

TABLE V. (iof-j). 

(pqr) (iji), (iij) (jii) 
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form according to the representations e,3, /\ 3(e), and 
/\ 2 (Cn 

) + cn,2, respectively. In order to analyze the repre
sentation (J, it is convenient to consider the space Dn 
: = {f3 = «(Jijk ) I(J satisfies (3.15) and(J ijk = 0 unless ijk ¥} 
and its SIt -invariant subspace 

Any (JElJ" has the unique decomposition 

(Jijk = (2xi -Xj -Xk ) 

( 3.17) 

where 

+ (aij + aik) + (2bjk - bij - bik ) + dijk' 

ijk ¥, 

X= (x;)eG;, a= (aij)e/\2(G;), 

b = (bij )eG;·2, d = (dijk )eDn • 

Thus 

D" = G; + /\ 2(C~) +C~,2+Dn . (3.18 ) 

It can be shown that D4 = 0, whereas D", n;;;>5, realizes the 
irreducible SIt representation of the signature (n - 3,2,1). 
Thus we get [cf. (AS) and (A7)] 

o _ {2C+4C6 +3/\ 2(C6) + /\ 3(C6) + 2C6,2, 
(End V)( ) - 2C+4C3+3/\2(C3)+/\3(G;)+3C~,2+C3,3+D", 

n=4, 
n;;;>5. 

( 3.19) 

On the other hand, the S" representation C~ = C~' + C ~" 
can be parametrized by K and a, Therefore, contrary to 
(End V) (0), the space C~ does not contain the representa
tions /\ 3 (G; ) and D" -they are lost by the mapping F given 
by (3.1). More precisely, (3.11)-(3.16) and (3.2) imply 
that FA (Aij) = Kij' FA (Aijk) = 2aijk' Ae(End V) (0). Note 
that (3.3) expresses det(A I V(Il'ijk» by all the parameters 
a,(J,y. 

The detailed results are given in Tables VI and VII, For 
q = 0'00.,6, the used spaces Uq are the same as in Table III 
[see (3.6)-(3.8)], whereas the embeddings Yq are given in 
the Table VI (note that Y 1 =p)' The space g; of signature 
(4,3,2,00.,2,1,0), see decomposition (1.2), coincides with 
U7 : = {AeEnd VI1: k A g~k = OJ. One can check that an oper
ator A = l (a ,(J, y,K) belongs to U7 (0) iff 

ye/\3(C3), K=!(3(J+ +(J-), (JeD", (3.20) 

J _a + 3(J + = 0 , 

where 

(J _a)jk = L aijk ' 
i 

(3.21) 

For n;;;>5, Eq. (3.21) can be transformed, e.g., as follows: 

a = ii -li, iiEC~,3, 

- 3 
(J"k: = «(J.+ + (J 'k+ + (J k+ ) 

IJ (n _ 4) IJ J I 

TABLE VI. Representation 8lJL n;>S. 

3 
+ (n _ 3)(n _ 4) «(Ji +(Jj +(Jk) , 

where(Jj: = 1:i (J: = 1:ki(Jkij' Thus we get that 

g; (0) = U7 (0) = /\ \(3) +G;,3 +Dn . 

(3.22) 

(3.23 ) 

The expressions for a,(J,y, and K given in Tables VI and VII 
are derived by means of definition (3.9) and Tables IV and 
V. Note that for n = 4, C6·3 = D4 = 0, /\ 3(C6) = C, and 
/\ 2(q) = q. We parametrize the irreducible S4 represen
tations appearing in Table VII as follows: C = {c}, C = {d}, 
C6 = {xEC4 11:ix i = oJ, C6 = {yEC4 11:;Yi = oJ, C6,2 
= {aEC4 ,2laij = ak/ if{i,j,k,l} = T,4}. The skew-symmet
ric symbol Cijk is defined by ca (l)a(2)u(3) = sgn 0', 0'ES4 • 

Moreover we use the following convention: cYkl) runs all 
the permutations of (1,2,3,4 ),,1,/: = A.ijk' a/: = aijk; summa
tion indices m, p run 1,4, and Kii = O. 

The last column in Table VII contains the complete set 
of relations for the values FA (A. ijk ) and FA (A. ij) (due to our 
convention the quantificators can be omitted). 

APPENDIX A: ON SOME REPRESENTATIONS OF Sn 

We analyze here some properties of the SIt representa
tions which appear in the zero-weight spaces of the arms 
representations ofsl(n,C). For simplicity of the exposition, 
the proofs of the following lemmas are given in Appendix B. 

U, :7, U,(O) a" = !FA (A'j' ) fJi}k rijle KiJ = F..t (A'l) 

o do .:lo(c) = c·id y = (c/12)w~: C 0 0 

.of, S- (X) 1 LX'(ulk' + kj/ kli) 
I ="4 J il<f W kfl + wk/i C;; x,+Xj+Xk 0 0 2x, +Xj 

.of, Y2(X) =+ LX; < w,.:: - wzy.) C;; 0 j(2x, - x, -x,) 0 Xl-X, 

d, ::T (A) =~ LAi} W
mkl 

J 8 kI mil 
S'(q) at} + aJk +Ok. j(2oj /t - at} - au,) 0 all +0" 

4 dj,,-3 
) :7 (A) = ~ LA" w::" 4 4 k/ l}m 

1I'(q) 0 -j(a, + a,,) - j(oij + OJ!, + 0/(1) a, 

(8lJ~- 3). 'T (A) 1 LA' kim • 5 =4 klWmlJ II '(C;;) 0 as above !(olj + QjI< + Db) a" 

'6, :7 (A) =~ LA" wklm 
6 4 k/ Ijm q" !(0!i +O)k +Ok;) ~(a,j + ajl< - 2oJk ) 0 alj 

[fl natural embedding see the fonnulas (3.18)-(3.23) 
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TABLE VII. Representation 3iJ 1. n = 4. 

q U,(O) a, =jF.(",) P.}, r" 
o C 0 0 

~ -x, 0 0 

~ 0 j(3x, + x,) 0 

C+~+~·2 2x, + 3c a'j + 1(3x; + x,) 0 

4 ~ 0 j<., '(y; - y,) ~EyJo: 'YI 

~ 0 as above fEljk'Yr 

6 ~.2 0 l°lk 0 

~+~+c x, f'J"'(YI< -Y/) E,ik'd 

-,',(3x; +X,) 

1. Representations sP{C,,) 

The p-fold symmetric power SP(en) can be considered 
as the space of homogeneous polynomials of degree p en
dowed with the natural Sn action (O'a) (u1, ... ,un ) 
: = a(u,,(I) "",u,,(n», where the variables are denoted by 
U = (u1, ... ,un ). Polynomials from SP(Cn

) which are con
stant on the lines U + t'l, tEC, form the subspace S P (G; ). 
Thus SP(G;) is the kernel of the Sn -intertwining operator 
J _: = ~j (a /au j ) : SP(cn) .... SP-I(Cn

). Obviously, each 
aeSP(Cn

) has the unique decomposition: 

a(u) = L z!' qaq(u), aqeSP(G;), (AI) 
O<;q<;p 

where z: = U I + ... + Un' Therefore, we have the isomor
phism 

SP(en)= L sq(G;). (A2) 
O<;q<;p 

On the other hand, S P ( Cn) is isomorphic to C->" p since every 
polynomial can be labeled by its coefficients: 

a(u)=~"a"u'\ (a,,)EC
Yp

, u":=u~" ... ·u;n. So, we 
may write a = (a,,). In this realization, theSn action is giv
en by (O'a)" = a", '(.I .. ) , whereas the Sn intertwiners 
J_:=~ia/aUj and J+:=~iui(ui(a/auj)+l) are ex
pressed by the formulas (2.11). 

For small p ;;;,0, it sometimes can be more convenient to 
use the symmetric coefficients 

a(u) = (l!P!)~i ... j aj ... j U j ' ••• ·Uj • 
I pip 1 p 

They are connected with the a,,'s by the relations 

aj""jp=...t.!a" if...t.=Ej,+···+Ejp ' (A3) 

For the symmetric coefficients, we have (O'a)j""i
p 

= a,,-I{il)" .,," l(ip) and 

(A4) 

whereas the expression for b = J +a is slightly more compli
cated, e.g., 
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bij = a j + aj' bii = 4a j for p = 1, i-/=j; 

bijk = ajk + a jk + aij' b jij = 4aij + au, 

biii = 9au for p = 2, ijk -/= . 
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Kij=F.("ij) Relations 

a/=KIJ 

2x i +x, Lam =0; KIJ + 2ai + Q) = 0 

XJ -x, a, o· "IJ = -K},; K lj + KIA + KJu 0 

Q. 2a, = - LKm'; L Kmp L (Km, + K'm); 
m mp1"J 

KiJ + KiI< + "/<.. =KJi + KkJ + "II<. 

'£:fijm'Ym U J =0; KjJ= -Kji; LK,m =0 

as above as above 

a. u1=o; xl) =Kji; .£:K,m 0 

.£:',m·Ym K'1 +K;. + Kkl + Klk =0; Lam =0; 

+ I(x; + 3xj ) '£:K;m =0; 2a}= ~Kml 

Remark 4: The decomposition given by (AI) differs 
from the one given by the formula (2.13) since the operator 
(ilk !)Jk+ does not coincide with the multiplication 
byzk. • 

Lemma 1: Let c( " . ) denote the intertwining number of 
two representations. Then 

(a) c(SP(G; ),q = NS(212 + ... + nl'l = p) , 

(b) c(SP(C~),C)=NS(212+'" +nl'l =p- (V)' 

(c) c(SP(C~ ),G;) = NS(11 + 2/2 + ... + (n - 1 )/'l _ I 

= pilI -/=0 (mod n»), 

(d) c(SP(G;),C:) = NS(/I + 2/2 + ... + (n -1)1'1- 1 

=p+ ('121)1/1 + 1-/=0 (modn)) , 

where NS( 'iff) [resp. NS( 'iff 1&) ] denote the number ofsolu
tions in I;E'l+ of the equation 'iff (resp. with the additional 
condition & for the Ij 's). • 

For p 2 and 3, the decomposition of S P (G; ) into irre
ducible components is described in Lemma 4 given below. 

2. Representations 1\ P{C") 

The element ueS n acts on p-fold exterior power 1\ P ( en ) 
permuting the basic vectors: O'(E. 1\'" 1\ E ) 

II lp 

= Ea(i,) 1\" . 1\ EU(ip) • Obviously, the operator J _: AP(Cn
) 

-+ I\P- l(C'l
), where J _n: = (EI + ... + En) J n, n 

EA p(cn ) intertwines the S,. action and, moreover, we have 
ker J _ = A P (C~ ). Since every nE A P (en) has the unique 
decomposition n = no + (E I + ... + En) 1\ nl , nk 

E A P k (G; ), we obtain an isomorphism 

If we describe an element 

1 
n = - L a j ... j E j A·· 'Atj EAP(en) 

p! jl"';p I pIp 

(AS) 

by its skew-symmetric coefficients aj ••• j , then Sn action is 
I p 

given by (O'a)j, ... jp = a"_'(iI) ... ,,-I Up )' ueSn , whereas 

(A6) 
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Lemma 2: (a) For O<p<,n - 1, the representations 
A P( C~) are irreducible and mutually inequivalent. 

(b) C® ,V(q)=An-I-P(q). • 

3_ Representations Cn,p 

Let the group Sn act in the space cn·p : = C£p by the for-
£ mula (l1a)I: =au-'(lp a = (aI)EC p. Clearly, the one-to-

one correspondence, among p-element subsets in T,n and 
their complements, defines the Sn isomorphism between Cn,p 

and c n.n -Po For the Sn intertwinersJ ± given by (2.24), the 
sl(2,C)-commutation relations (2.20) are satisfied if the op
erator H in ~O<P<ncn'P is defined by Ha = (p - n/2)a, 
aEcn·P. Thereby, the kernel ker(J _ :cn'p -+ cn·P - I) = :q'P is 
zero for p > n/2, moreover, the intertwinersJ '+ are injective 
on C~·P for O<,r<,n - 2p, and F+ q'P = 0 for r> n - 2p 
[compare the proof of Proposition 5(a)]. Thus we have the 
decomposition [cf. (2.28)] 

cn,p= L Jp+-q c~,q= L q.q. 
O<q<min(p,n - p) O<q<min(p,n _ p) 

(A7) 

Lemma 3: (a) For 0<,p<,n/2, the representations C~'P 
are irreducible and mutually inequivalent, 

(b) dim q'P = G) -~ ~ J . • 
Remark 5: It can be proved that the considered irreduci

ble Sn representations have the following signatures: 

sgn AP(q) = (n - p,IP), sgn C~·P = (n - p,p). (A8) 

The reader can check that these formulas are in agreement 
with the Weyl formula describing the dimension of an irre
ducible Sn representation of the signature (al, ... ,an ), see, 
e.g., Ref. 12, 

II 
(Ii - Ij ) . .-

Na = n! , Ii: = a i + n -I, IE l,n . 
kj II!" 'In! • 

The natural embedding £p '-+ 5t' p' I~AI' induces the Sn in
tertwiners tp :Cn,p,-+SP(Cn) and 1Tp: SP(Cn) -+Cn,p, where 

. _ {aI' if A = Al for certain I, . _ 
{tpa)A.' - h' (1Tpb)I' - bA. . 0, ot erWlse, I 

Obviously, 1Tp OLp = id and it is easy to check that 
J _OLp = Lp _ I oJ _. Therefore we have also the natural em
bedding 

Lp: C~'P'-+SP(C~) . (A9) 

Note, however, that L p does not intertwine the action of the 
operator J +; only a weaker condition 1Tp + I oJ +oLp = J + is 
fulfilled. 

Lemma 4: 

(a) S2(q) =C+q +q,2 , 

(b) S3(q) 
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{
C+2q+~'2+q'3+ A2(q), 

= C+2~+~, 
C+2C~+C, 

APPENDIX B: PROOFS OF LEMMAS 

if n;;;.5, 

if n=4, 

if n=3 . 

• 

Lemma J: (a) Due to the decomposition (AI), we have 
the isomorphism 

(B1) 

Any Sn -invariant vector from the right side space of (Bl) 
can be uniquely represented by the polynomial in variables 
Z2, ... ,zn' which are basic Sn -invariant polynomials, i.e., 
Zk: = ~il<"'<ikUil ···Uik · 

(b) Any skew-symmetric polynomial from SP(cn) is a 
product of the Vandermond polynomial 
V(u): = IIkj (u i - uj ) and a symmetric polynomial of the 
degree p - (~). Thus the assertion is implied by part (a). 

(c) and (d) The proofs are entirely similar. Let us prove 
(d). Since Cn = G; +C, it is sufficient to compute 
c(SP(q ),Cn), and next subtract c(Sp (q ),C) given by (b). 
Any intertwining mapping T: cn-+sP(cn) has the form 
T'TJ = ~i'TJiflli' where'TJECn and fIIl, ... ,fllnESP (Cn ) are such 
polynomials that fIIuu) (u) = Sgnl1f11i(Uu(lP,,,,uu(n»' It 
means that the system of the polynomials fIIl, ... ,flln is unique
ly determined by the polynomial fill which is skew symmet
ric in the variables U2, ... ,Un • But any such fill is, modulo 
Z = U I + ... + Un' a linear combination of polynomials 
A I I I A 

V(U)U I' zi'''zn":'\' where V(u): = II2 <i<j(ui - uj ), 

Zk: = ~2<i1<"'<ikUil "'U ik and II + 2/2 + ... 
+ (n - l)1n _ I + (n Z I) = deg fill = p. In consequence 

c(SP(q ),Cn) = NS(/I + 2/2 + ... + (n - l)1n _ I 

=p_(nzl»). (B2) 

Substituting in the equation appearing in the formula (B2) 
the number II + 1 by n(ln + 1), we see that the solutions, 
for which II + 1 = 0 (mod n), are in one-to-one correspon
dence with the solutions of the equation 
2/2 + ... + nln = p - (~) which provides the intertwining 
number c(SP(q ),C). • 

Lemma 2: (b) The exterior product provides a two-lin
ear mapping 

N(C~)XAn-p-l(q)-+An-I(C~), dim An-I(C~) = 1, 

such that (l10P)X(l11r- p- l ) =sgnl1(OPAOn- p-I), 
uESn , OkEAk(C~) . It implies that An-p-I(C~) is contra
gredient to C® AP(C~). But, as we know, the contragre
dient Sn representations are equivalent. 

(a) We shall use the irreducibility criterion proved in 
Ref. 1 [Lemma 5 (ii) ]. The representation A p ( Cn) can be 
embedded in the space CX, where X: = {UI, ... ,ip )E( T,n)PI 
il, .. ·,ip =f} is the Sn orbit of the element (1,2, ... ,p). Clearly, 
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Wo: = {O"ESn 10"(;) = ifOriE l,pHs the isotropy subgroup of 
(1,2, ... ,p). One can easily see that ap-form nE /V(en) is Wo 
invariant iff it can be expressed bY€I""'€p'€p+ 1 + '" + En' 
i.e., iff 

n=co€IA"'A€p +( ~ Ci€iJ€IA"'A€p) 
1<I<p 

A(€P+I + ... +€n)' 

whereco,cl, ... ,CpEC. ThusnEAP(C~) is Wo invariant iff 

= I [co-(-)P(n-p)c;]€iJ€IA'''A€p, 
l<i<p 

i.e., iff 

C i = (- )PI(n -p)co. 

So, the only one Wo invariant ray in AP(C~) is spanned by 
the vector 

I ~J€IA"'A€pA(€P+I + ... +€n)' 
l<i<.n 

Now, comparing the dimensions of the representations 
AP(C~), Oq,<,n - 1, we see that only the representations 
A P (C~) and A n - 1 - P (C~ ) could be equivalent. If so, then 
according to part (b), AP(C~) isequivalenttoC® AP(C~), 
i.e., the character xi; of A P(C~) fulfills: xi; (0") = 0 for any 
odd uESn • But from the formula (AS), it follows that 

xi; = I (- y-qxq
, (B3) 

O<q<p 

where Xq is the character of A q(Cn). One can easily check 
that 

and hence, Xq(I,2») = (n;2) - (;=i). Thus the formula 
(B3) implies that Xi;((1,2») = (n;- l)(n - 1 - 2p)/n - 1 
=O~p=n-l-~ • 

Lemma 3: (a) The group Sn permutes the natural basic 

vectors in C\ which are labeled by subsets IE£p. Therefore, 
P 

the character X of the representation en·p is given by 

P 

X(O") = (number of O"-invariant subsets IE£p) 

= I 8~(ll' uES n' 
le£p 

where 8 is the Kronecker symbol. Hence, we obtain 

(
p P) 1 I J 
xix =, I I I 80'(1) 8O'(J) 

n. DES. IE£p Je£p 

= ~ III\JI!IJ\II!lInJIlI IUJ I!· 
n! IJ 
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For a pair I,J such that IInJ I = k, we have II \J I 
= IJ\I 1= (p - k) and IIUJI = (n - 2p + k). More

over, if 0q,<,nI2, then k can assume the values O,I, ... ,p. 
Taking into account, for a given k, the number of different 
pairs I, J, we get 

(

p P) 1 P 
xix =, I (p-k)!2k!(n-2p+k)! 

n. k=O 

1 P =, I n!=p+ 1. 
n. k=O 

On the other hand, the formula (A7) implies for 
P k P 

0q,<,nI2 that X = l:~=o Xo, where Xo is the character of 

C~·p. In consequence, we obtain 

(p + 1) = (;1;) = I (;01;0)' 
O<k/<p 

Since (;01;0»8k /, the last equation means that 

(;01;0) = 1, (;01;0) = 0, k #1. 

(b) It follows immediately from (A7) and the formula 
dimCn

•
p = (;). • 

Remark 6: The irreducibility ofC~'P, p<,nI2, also can be 
proved by checking that for the isotropy subgroup WoCSn 
of the element {1,2, ... ,p}E£p, the space consisting of Wo-
invariant elements in C~·P is one dimensional. On the other 
hand the irreducibility of A P( C~) can be deduced from the 
formula (AS) by showing that the character Xq

, cf. (B4), 
satisfies (xqlxq) = 2. • 

Lemma 4: For simplicity of notation, let us treat en·p as 

the subspace in S p (en) ::::: cst' p (cf. Appendix A 3 and AI). 
(a) For p = 2, the isomorphism between Cn

•
2 and 

S2(C~) is given by 

aij = bu, i#j; au = - (J _b);; 

bii = 0; aES2(C~), bEen·2 . 

Thus, formula (A7) implies the assertion. 
(b) It is sufficientto show that S 3 (C~ ) ::::: en·3 + A 2 (en) 

and next to apply (AS) and (A7). To this end, let us check 
that the formulas 

aijk=bijk; aiij = -!(J_b)ij+cij; 

aiii = !(J 2_ b)i + (J _c); ijk # , (BS) 

define a bijective correspondence between elements 
aES3(C~) and pairs (b,C)Een·3X A 2(en). Indeed, each 
aES3(C~) has at most one decomposition (BS) since the for
mulas describing it imply that 

b.. = {aijk' if ijk.# , 
11k 0 , otherwise; (B6) 

cij = !(a iij - aiji) . 
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Moreover, iffor a given a we define the band C by means of 
(B6) then, according to (A 4), we obtain 

(J_a)ij=2aiij -2cij+(J_b)ij, i=/=J; 

(J_a)u = a;u + L aju ' 
j/,i 

It shows that the formulas (BS) are fulfilled iff J _a = 0, i.e., 
iff aES 3 (C~ ) . • 
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Moller operators in classical relativistic two-particle scatteringa) 
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The scattering problem is formulated in a geometric language adapted to the description of 
classical relativistic two-body systems. Within the framework of manifestly covariant 
relativistic particle mechanics, precise, easily verifiable conditions with a clear physical 
interpretation are given on the interparticle interaction for the Moller operators to exist. The 
Moller operators are used to define the notion of an asymptotically free presymplectic 
structure on the evolution space and, using the results obtained, the existence and uniqueness 
of such a structure is discussed. 

I. INTRODUCTION 

Since the advent of the no-interaction theorem, I a var
iety of approaches to classical relativistic particle mechanics 
has been proposed. 2

•
3 They all use, either implicitly or expli

citly, the notions of evolution space and of space of motions, 
advocated in Ref. 4 for the description of dynamical systems. 
In Sec. II we shall show how this general geometric frame
work underlies the different approaches and explicitly iden
tify the ingredients of the general structure in the case of 
manifestly covariant particle mechanics. 3 It will become 
clear then that it is generally no longer possible to view the 
dynamics in those models as generated by the flow of one 
vector field on a fixed phase space, as in the case of nonrelati
vis tic mechanics, for example. This, in turn, implies that the 
description of scattering has to be reformulated in the new 
framework. 

We address that problem in Sec. III, where we argue 
that the asymptotic comparison of the free and the interact
ing dynamics is most naturally done in the evolution space. 
Using this point of view, we prove the central result of the 
paper (Theorem 3.1), which-when applied to manifestly 
covariant particle mechanics-gives precise and easily veri
fiable conditions on the dynamics for the Moller operators to 
exist. 

Conditions similar to ours have been used previously5 to 
establish, to lowest order in a perturbative expansion, the 
existence and uniqueness of a symplectic structure "in the 
past" and "in the future." In Sec. IV, we show how the geo
metric framework presented in Sec. II, together with the 
scattering theory of Sec. III lead immediately to a simple 
definition of these notions. We show moreover that the exis
tence ofthe Moller operators directly implies the existence of 
the asymptotic symplectic structures. Their uniqueness be
comes, in this framework, a trivial result. We conclude with 
some comments on asymptotic completeness and its link 
with the symplectic structure of the theory. 

0) Part of this work is based on the Ph. D. thesis of the author, submitted to 
the Department of Physics and Astronomy of the University of 
Rochester. 

II. A GENERAL FRAMEWORK FOR RELATIVISTIC 
PARTICLE MECHANICS 

Let M denote Minkowski space-time. Let &> be the 
Poincare group. A particle is a one-dimensional, timelike, 
and connected submanifold Y(k) of M. A &> -invariant two
particle system is a collection r of couples Y = (Y (I) ,Y (2) ) of 
particles which is stable under the action ct> of &> on M; i.e., if 
YEr, then g[Y]Er, \;/gE&>, where g[y] denotes the trans
form of Y under g, implemented by the natural action <I> of &> 
on M. The simplest example of a &> -invariant two-particle 
system is the free system r 0' which consists of all couples of 
timelike geodesics on M. Particle mechanics is concerned 
with the explicit construction of physically meaningful two 
or more particle systems in a mathematically consistent way. 

Following Souriau's description of dynamical systems,4 

we claim that a model for the description of two-particle 
systems should have the following general structure. We de
fine a &> -invariant Hamiltonian two-particle system as a tri
ple (E,E,¢) with the following properties. 

(i) (E,E) is a presymplectic manifold6
•
7 fibered over two 

copies of M; i.e., we have surjective submersions 1T(k): 

E ..... M. 
(ii) The characteristic foliation of E (i.e., the foliation 

generated by the kernel of E) is reducible. We denote the 
corresponding quotient manifold by ~ and its symplectic 
form by (J" and we write p: E ..... ~ for the natural projection of 
E to~. Here (E,E) is called the evolution space and (~,(J") the 
space a/motions. 

(iii) In order to give a particle interpretation to this 
structure, one requires the following: for any point SE~, 
1T(k) (p-I (s») is a particle for k = 1,2. In other words, to ev
ery point in the space of motions corresponds a couple of 
particles, or, differently yet, every leaf of the characteristic 
foliation of Eon E projects down to a couple of world lines on 
M. This identifies a collection r of couples of particles with 
~ and consequently gives r the structure of a differentiable 
manifold. The points of~, or, equivalently, the leaves of the 
foliation are called the (generalized) trajectories. 

(iv) ¢ is an action ¢: &> X E ..... E of 9 on E and satisfies 
the following. 

(a) ¢g *E = E, \;/gE&> (Ref. 6), so that the characteris-
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tic foliation of E is equivariant under the action of 9 . In 
other words, the leaves of the characteristic foliation of E 

are mapped into one another by this action. Conse
quently, 9 will also act symplectically on}; as is readily 
verified.4

•
6 

(b) The following diagram is commutative: 

tPg 

E--...... -E 

v"' I ~. I v",. 
M--..... -M 

This condition guarantees that the action of 9 on }; is in 
agreement with the particle interpretation of the points 
of}; given above: it is the global version of what is often 
referred to as the "worldline conditions,,2 and it assures 
that r is a 9 -invariant two-particle system. 
An analysis of the various approaches to relativistic par

ticle mechanics2 makes it clear that they can all be fit into the 
above general framework. s We work this out explicitly for 
manifestly covariant particle mechanics. For a more exten
sive discussion of this formalism, we refer to the literature. 3 

We denote by TM2 = T(M XM) the tangent bundle to the 
Cartesian product of Minkowski space-time M with itself. 
Points in TM2 are written as (x,v) == (.xI(I), X~2)' ~I) '~2) ), 
wherep = 0,1,2,3. In the following, we are only interested in 
the open subset of TM 2 where v I and V2 are timelike; we will 
not introduce a separate notation for it, though. The Poin
care group 9 acts naturally on TM 2 by the lift of its action 
on M xM; we write (s) TM' for the generator of this action 
corresponding to S in the Lie algebra of P. A manifestly co
variant predictive Poincare-invariant two-particle system is 
determined by giving two complete vector fields X( I) and 
X(2) on TM2, satisfying the following requirements: 

( .) X _ . .# a /1- a 
1 (I) - V(I) --+ a(l) --, 

aX~1) a~1) 

X . .# a /1- a 
(2) = V(2) --+ a(2) --, 

aX~2) a~2) 

(ii) [X(kl' (ShM' ] = 0, k = 1,2, VsEL( 9), 

(iii) [X( I) ,x(2) ] = 0, 

(iv) a~l)v(l)/1- = 0 = a~2)v(2)/1-' 

(2.1) 

(2.2) 

(2.3 ) 

(2.4) 

(2.5) 

Here, the a~k) are functions on T(M XM); they specify the 
dynamics as follows. The world lines are obtained by inte
grating the differential equations of motion 

d 2X~1) 
--- = a~1) (x,v), 
d1'(1) 

(2.6) 

d2X~2) 
--- = a~2) (x,v), (2.7) 
d1'(2) 

for some initial conditions (x,v)ET(M XM). The solution of 
(2.6) gives the world line of particle 1 and the solution of 
(2.7) gives the world line of particle 2. Now let (x' (I l'v' (I) ) 

be a point along the first world line and similarly for (x' (2) , 

v' (2) ). We can then use (x',v') = (x' (I)' v' (I),x' (2) ,V'(2) ) as 
a new initial condition in (2.6) and (2.7). This will again 
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give two world lines; condition (iii) guarantees that they are 
identical to the original ones. In view of (iii), the vector 
fields X(1) and X(2) determine a two-dimensional foliation 
of TM 2. We want to interpret the leaves of this foliation as 
the generalized trajectories of the system. However, the quo
tient of TM2 by this foliation is 14 dimensional. Since we 
want a two-particle system to have a 12-dimensional space of 
motions, we have to somehow eliminate two more degrees of 
freedom from TM 2 in order to obtain the evolution space of 
the system. This is made possible by condition (iv); indeed, 
in view of (iv), the 14-dimensional hypersurface E in TM 2 

given by 

V(l)2- _m(1)2, (2.8) 

v(2) 2 = - m(2) 2, (2.9) 

for some choice of m(1), m(2) > 0 and with v(1) and v(2) 
future pointing, is invariant under the flow of X(I) and X(2) . 
Consequently E can be used as evolution space of the system. 
The foliation of E, induced by X( \) andX(2) is reducible; this 
follows from the completeness of X(I) and X(2) and the ob
servation that the surface x(1) 0 = 0 = x(2) 0 in E intersects 
every leafin precisely one point. The invariance ofthe theory 
under the Poincare group is assured by (2.3). 

In order to make the above manifestly covariant predic
tive Poincare invariant two-particle system into a Poincare 
invariant Hamiltonian two-particle system as defined ear
lier, one proceeds as follows. One looks for a presymplectic 
form E on E with the following properties: 

(v) LWTM,E = 0, VsEL( 9), 

(vi) i(X(k) )E = 0 for k = 1,2. 

(2.10) 

(2.11 ) 

In order to construct a manifestly covariant two-parti
cle system, one has to explicitly construct the functions a~k) 
in (2.1) and (2.2). This has been doneperturbatively for the 
electromagnetic and scalar interactions.9 One is then still 
faced with the problem of finding a suitable E. The presym
plectic form E is in general not uniquely determined by con
ditions (v) and (vi) 5.10; so the Hamiltonization of the mani
festly covariant two-particle system given by (i)-(iv) is not 
unique. We will clarify this point in Sec. IV, using our results 
on the existence of the Moller operators from Sec. III. 

In the following section, we will need the description of 
the free two-particle system r 0 in the framework of mani
festly covariant particle mechanics, which we now give. The 
free system is given by (2.1)-(2.9) with a~k) = 0 for 
p = 0,1,2,3 and k = 1,2. Let Eo be the restriction to E of the 
symplectic form Wo on T(M XM), 

Wo = d.xl(l) Adv(I)/1- + dX~2) Adv(2)W 
Then 

X o a 
(k) =~k)--

aX~k) 

and we find, for k = 1,2, 

i(X~k) )wo = ! dH~k) 
with 

(k = 1,2) 

(2.12) 

(2.13 ) 

(2.14) 

H~k) = V~k) + m~k)' (2.15) 

As a result, E, the evolution space, defined by (2.8) and 
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(2.9), becomes a presymplectic manifold when equipped 
with the presymplectic form co' obtained as the restriction of 
CUo to E. Its kernel is spanned by X~k)' k = 1,2. The corre
sponding space of motions ~o is constructed in the usual way 
and we have Po: E --+ ~o. There is then a unique symplectic 
form U o on ~o satisfyingpo*uo = cO.

4
•
7 

We close this section by remarking that the traditional 
Hamiltonian version of nonrelativistic particle mechanics 
also fits into the geometric scheme proposed at the beginning 
ofthis section4

•
6

•
8 (with 9 replaced by the Galilei group and 

M by R X R3
). In that case, however, it is customary and 

convenient to identify (~,u) with (T*R6,cuO)' where CUo is 
now the canonical symplectic form on T *R6

, and to view the 
dynamics as obtained from the flow of the time translation 
subgroup of the Galilei group, acting on ~. One could para
phrase the content of the no-interaction theorem by saying 
that this identification can no longer be made in the relativis
tic case, except when describing free particles, forcing one to 
work directly with the more general geometric structure de
scribed in this section. As a result, we also need to take a new 
approach when dealing with the scattering problem, as will 
be explained in the next section. 

III. CONDITIONS FOR THE EXISTENCE OF THE 
MOLLER OPERATORS 

The scattering problem can be quite generally and con
cisely defined as the problem of comparing, in a suitably 
defined asymptotic regime, two dynamical systems. One of 
those is relatively simple and well understood, and referred 
to as the free dynamics. The other is the dynamics of the 
interacting system. The asymptotic comparison is achieved 
by introducing the so-called Moller operators fi ± . 

In the case of Poincare-invariant two-particle systems, 
the question can be formulated as follows: Let rand robe as 
in Sec. II. Then the Moller operators 

fi± : ro--+r (3.1) 

exist, provided for almost all ll
•
12 (yblJ,y{/» Ero, 

3!(y~),y<;»Er, such that 

(3.2) 
t_ ± 00 

(3.3 ) 

where we wrote ybk) = {(t,X(k) + v(k)t)EM ItER} and 
y<;) = {(t,x<;) (t))EM ItER} in some inertial frame of refer
ence on M. It is clear that, if (3.2), (3.3) is true in one such 
frame, it is true in all of them. One then defines 
fi± (yb lJ ,yb2» = (y~),y<;»Er. Moreover, if 1m fi+ 
= 1m fi_ (weak asymptotic completeness), one defines the 

scattering operator s: r 0 --+ r 0 by S = fi + - I fi _. Identifying 
r with ~ and r 0 with ~o, as in Sec. II, we have 

fi± : ~o--+~. (3.4) 

Specializing to manifestly covariant particle mechanics, we 
now wish to discuss under what conditions on "the accelera
tionfields"a1k) in (2.1) and (2.2), theexistenceoffi± is 
guaranteed. To investigate this problem, we need to first re
formulate (3.2) and (3.3) directly in terms of the dynamical 
system as defined in (2.1)-(2.5). The result is given in 
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(3.29). The conditions on the at are obtained in Theorem 
3.1 and commented on in remark (d) following it. 

In order to see more clearly what is involved and to get 
an intuitive feeling for the interpretation of Theorem 3.1, we 
first outline a much simplified and familiar problem. We 
consider the motion of one nonrelativistic particle in one 
dimension in an outside potential field Vand describe the 
system in terms of an evolution space as follows. Let 
E = RX T*R and denote the points of Eby (t,x,p). The dy
namic vector field for the free particle is 

Xo = at + pax (3.5) 

and for the particle in the outside potential V is 

X = at + pax - V'(x)ap' (3.6) 

In this case, we can identify ~:::::~o:::::{(t,x,p)EE It = O} 
:::::T*R, and recover the usual Hamiltonian formulation, 
with the corresponding approach to the scattering prob
lem. II Instead, let us make the following transformation: 

cp: (t,x,p)ER3 --+ (1",Xo,Po)ER3
, 

with 

1" = t, 

Xo =X - tp, 

po=p, 

so that 

XO=aT 

and 

X = aT - V' (xo + 1"po) (apo - 1" axo ) =aT + Y. 

(3.7) 

(3.8 ) 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

In other words, we "straightened out" the flow of XO' The 
flow lines of Xo on E are now 

1"ER--+ (1",xo,Po)EE 

and those of X can be written 

1"ER --+ (1",xo( 1") ,Po ( 1") lEE. 

(3.13 ) 

(3.14 ) 

Upon noticing that we can identify ~o with the surface 1" = 0, 
the question of the existence of fi + can be rephrased as 
follows: do there exist, for almost every (xo,Po)ER2

, flow 
lines of X (i.e., points in ~), 

(3.15) 

such that 

lim (xo± (1"),Po± (1"») = (xo,Po). (3.16) 
T- ± 00 

In other words, by trivializing the free evolution through 
(3.7), we reduced the problem to a study of the large 1" be
havior of the vector field Y. As is clear from (3.12), this is 
equivalent to a study of V for large values of x, as expected in 
this simple case. 

We now use the same evolution space approach when 
dealing with relativistic two-body scattering. Here E is a 14-
dimensional manifold on which the two-dimensional folia
tion generated by the free dynamics [see (2.13)] can be 
computed explicitly. To do so, we first introduce a new coor
dinate system on TM X M, defined as follows: 
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q:;: (X(k) ,V(k) )ETM XM = R16_ (r,U,Z(k) ,V(k) )ER2 xR I4
, 

(3.17 ) 

where 

r=x~1) +X~21' u=x~1) -X~21' (3.18) 

Z(k) = X(k) - (V(kJV~k) )X~k)ER3, (3.19) 

where we wrote X(k) = (X(k) ,X~k) ) in a fixed inertial frame 
of reference. One verifies that 

a 1 0 1 X O 
-=-o-X(l) +-0- (2)' 
ar V(l) V(2) 

(3.20) 

a 1 0 1 X O 
- = -o-X (I) - -0- (2)' 
au V(l) V(2) 

(3.21 ) 

withX~k) as in (2.13). Hence aT and au span the leavesLo of 
the free foliation and rand U can be used as coordinates on 
those leaves. Indeed, the latter are the two-dimensional im
bedded submanifolds in E determined by [compare (3.13) ] 

Lo: (r,u)ER2 
- (r,u,z(k) ,V(k) )EE. (3.22) 

In other words, the coordinate system (3.17) is particularly 
well adapted for the description of the free system. More
over, the parameter r in (3.18) has a simple interpretation; if 
U is kept fixed and we let r go to + 00, then both X~ 1) and 
X~2) go to + 00, and similarly with + 00 replaced by - 00. 

So r gives us the notion of asymptotic past and future on each 
leaf Lo. Roughly speaking, to investigate the existence of 
.n ± ' we have to compare the two-dimensional leaves L of 
the foliation of the interacting system with those of the free 
system, as r- ± 00, as we now explain. 

Define 

Zl == (1/v~l) X(l)' 

Z2== (l!V~2) ) X(2)' 

Za==ZI +Z2' 

Zb==ZI-Z2' 

(3.23 ) 

(3.24) 

(3.25 ) 

(3.26) 

withX(k) as in (2.1) and (2.2). HereZa andZb span the 
leaves of the foliation of the interacting system. It is then 
readily verified that Za and Zb are of the form aT + Ya and 
aT + Yb, where Ya and Yb are vector fields that do not con
tain any terms in aT or au' As a result, the leaves of the inter
acting foliation are of the form [compare with (3.14) ] 

L: (r,u) ER2-(r,u,z(k) (r,u),v(k) (r,u»)EE. (3.27) 

We can now phrase the existence question for the .n ± as 
follows: do there exist, for almost every (Z(k) ,V(k) )E~o, 
leaves L + and L _ of the interacting foliation [cf. (3.15)], 

L ±: (r,u)ER2-(r,u,zi~) (r,u),v('1) (r,u»)ETM XM, 
(3.28) 

such that [cf. (3.16)] 

lim (z('1) (r,u),v('1) (r,u») = (Z(kl'V(k»' (3.29) 
T_ ± 00 

Taking u = 0 in (3.29), and using (3.17)-(3.19), together 
with (3.22), we see that (3.29) is indeed the reformulation 
of (3.2) and (3.3) on E. Equation (3.29) will hold under 
appropriate conditions on Ya and Yb , i.e., on the four-acce
lerations afk) as'T- ± 00. Intuitively, one expects that the 
afk) need to decay sufficiently fast for large interparticle sep-
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aration, i.e., for (x(l) -X(2»2_ 00 , in analogy with the 
nonrelativistic case. However, in the latter case, the potential 
function V does not depend on any other variables, so that 
this limit is unambiguous; the afk) , on the other hand, will in 
general be complicated functions of the four-velocities /l(k) 
also. One therefore needs to specify carefully how, i.e., along 
which path in E, to take the limit (x(l) - X(2) )2_ 00. As 
further explained in remark (d) after Theorem 3.1, the ap
propriate procedure is to let r- ± 00 for fixed Lo. The fol
lowing theorem gives us the result we need in a slightly more 
general setting. 

Theorem 3.1: Let 

Ya ( r,u,y) = I a i ( r,u,y )ai (3.30) 
i= t •... ,n 

and 

Yb (r,u,y) = I Pi (r,u,y)ai (3.31 ) 
i= t •...• n 

be smooth and complete vector fields on R2 X Rn 
- 2 with 

(r,u,y)ER2XR n
-

2 andai==a j. Suppose Ya and Yb satisfy, 
y 

for some a> 1: for each (u,y)ER 1 XR n
-

2, there exist 
R,K,K> 0 such that V(u',y'),(UI,y")EB ((u,y),R), Vr>K, 

(i) IIYa,b (r,u',y')II<Kr- a , (3.32) 

(ii) II Ya,b(r,u',y") - Ya,b(r,u',y')II<Kr-ally" -y'll· 
(3.33 ) 

Here 11'11 refers to the usual Euclidean norm and B( X,·) is 
the closed ball with center" X " and radius'" ." Define now 

Za = aT + Ya , (3.34) 

Zb = au + Yb, (3.35) 

and suppose Za and Zb are in involution. Lety 00 in Rn 
- 2 be 

given, Then there exists precisely one leaf L of the foliation 
generated by Za and Zb such that, upon writing 

L: (r,u)ER2_(r,u,y(r,u»)ER2XR n
-

2 (3.36) 

one has 

limy(r,u) =Yoo' (3.37) 

Remarks: (a) A similar result holds, mutatis mutandis, 
forr- - 00. 

(b) Under the assumptions of the theorem, Eqs. (3.32) 
and (3,33) hold uniformly on compacta. 

(c) Condition (ii) is a Lipschit~ condition; since Ya and 
Yb are smooth, it is a statement about the decay rate as r- 00 

of their derivatives in the y directions. 
(d) In order to apply the theorem to the relativistic two

body problem, we set n = 14, y = (Z(k) ,V(k) ). As pointed 
out earlier, the limit r- ± 00 corresponds to the asymptotic 
past or future. Consequently (3.32) and (3.33) give precise 
conditions on the behavior of the functions afk) as r- ± 00 

for the Moller operators to exist. In particular, for (3.32) to 
hold, it is sufficient that, for Irllarge enough and some K 

(3.38 ) 

with a > 1 [and where (3.38) is assumed to hold uniformly 
on compacta], To further interpret (3.38), recall that the 
afk) represent the four-acceleration of particle (k). Despite 
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their complicated dependence on their arguments, condition 
(3.38) can be checked quite easily. It suffices to implement 
the coordinate transformation (3.17)-(3.19) and to study 
the large r behavior of the a~k) for fixed U and 
y = (Z(k) ,V(k) ), i.e., for a fixed free motion ofthe two parti
cles. One can think of Eq. (3.38) as asserting that the force 
they would experience if they were interacting decays faster 
than Irl- 2 in the distant past and future. To make contact 
with our comment just before the statement of the theorem, 
observe furthermore the following; if we take U = 0 in 
(3.38), it follows from (3.18) that x~l)=r/2=x~2)' 
Hence, from ( 3. 19) and ( 3.17) , it follows that 
IX(1) - x(2) I-Irl for large r. So the a(k) decay faster than 
IX(1) - X(2) 1-2 for large interparticle separation and for 
fixed y = (Z(k) ,V(k»)' Equation (3.33) translates in the 
present context into the requirement that the partial deriva
tives of the a~k) also decay faster than Irl-2. In the case both 
conditions are satisfied, we say the interaction is short range. 
We conclude that (3.32) and (3.33) do indeed give a precise 
answer to the question raised just before the statement of the 
theorem. 

As a first step towards proving the theorem, we establish 
the following lemma. 

Lemma 3.2: Under the assumptions of Theorem 3.1, for 
every Y 00 ERn - 2 , there exists precisely one map 

k': (r,u)ER2 _k'( r,u) = (r,u,k( r,u))ER2XRn - 2, 
(3.39) 

such that (i) 'if uER, the curve 

rER-k'( r,u)ER2XRn - 2 

is an integral curve of Za ; 

(ii) lim k( r,u) = Y 00' 'ifUER. 

(3.40) 

(3.41) 

Remarks: (a) k' is clearly injective. In the proof of the 
theorem, we will show it is an imbedding. 

(b) The method of proof is similar to the one used for 
proving existence and uniqueness of solutions to ordinary 
differential equations, except that in the present situation we 
use initial conditions "at infinity." This kind of argument 
was first used in Ref. 11. 

Proof: Choose Y 00 ERn - 2 fixed. We start by remarking 
that for fixed UER (3.40) is an integral curve of Za satisfying 
(3.41) if and only if, 'if rER, 

k(r,u) =Yoo - 100 

Ya(r',u,k(r',u))dr'. (3.42) 

To prove the lemma, it is therefore sufficient to show that, 
given UER, there exists a T> 0 and a unique map 

ha: (T,oo) _Rn -2, 

such that 

ha(r) =Yoo - 100 

Ya(r',u,ha(r'))dr'. 

(3.43 ) 

(3.44) 

Indeed, since Ya is complete, ha can then uniquely be ex
tended over all Rand k defined by k( r,u) = ha (r). 

Choose then UER fixed. Consider a continuous function 

v: 7E(K, 00 ) - v( r)E B(y 00 ,r), (3.45 ) 
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where r = min (R,~) < 1 and both R and K are as in Theorem 
3.1. It then follows from (3.32) that 

111
00 

Ya(r"u,v(r'))dr'II~Kr-a+t/(a-l). (3.46) 

Introduce 

T= max{K,(a - 1)-tr -tK)lIa-l} (3.47) 

and define, for vEC(T,oo ),B(yoo ,r)) 

(Fv)(r) =Yoo - 100 

Ya(r',u,v(r'))dr'. (3.48 ) 

It follows from (3.46) and (3.47) that F is a well-defined 
operator on C ( ( T, 00 ),B (y 00 ,r)). We now prove it is a strict 
contraction. Let V,WEC ( ( T, 00 ),B (y 00 ,r)). Then 

II (Fv)( r) - (Fw)( r) II 

~1°O IIYa(r',u,v(r')) - Ya(r',u,w(r'))lIdr'. (3.49) 

Using (3.33), (3.49) becomes 

II (Fv)(r) - (Fw)(r)lI~l°O Kr'-a dr'lIv-wll oo ' 

(3.50) 

Taking the supremum on both sides and using (3.47), one 
sees 

IIFv - Fwll 00 ~rllv - wll 00 • (3.51) 

Since r < 1, F is a strict contraction and consequently has a 
unique fixed point. This proves the lemma. 

Proof of Theorem 3.1: With k' as in Lemma 3.2 and 
comparing (3.41) to (3.37), we see that it is sufficient to 
prove that 1m k' is the leaf L generated by Za and Zb 
through the point (O,O,k(O,O)). The latter can be constructed 
as follows. First remark that Za and Zb commute; this fol
lows from (3.34), (3.35),andthefactthatZa andZb are in 
involution. Consequently, the flow Fb of Zb maps integral 
curves of Za into integral curves of Za' We now define 

A': (r,u)ER2 _F :(r,O,k( r,O)) 

(3.52) 

Then 1m A' is the leafL. Notice that A ' is an injective immer
sion. We now prove that A ' = k " thereby proving the 
theorem. We make use of the result of Lemma 3.2 which 
asserts that k' is unique. Since A' is of the form (3.39) and 
satisfies (3.40), it will be sufficient to prove that 

lim A(r,u) =Yoo' 'ifUER. (3.53 ) 
T-oo 

It follows from (3.52) that, 'ifUER, 

A(r,u) =k(r,O) + La Yb (r,u',A (r,u'))du'. (3.54) 

Hence 

IIA(r,u) -Yoo II 

~lIk(r,O) -Yoo II + liLa Yb(r,u',A(r,u'))dU'II· 

(3.55 ) 

Choose 1>£>0; then, by (3.41) there exists aKt>O such 
that 
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(3.56) 

To estimate the second term in (3.55), consider for some 
fixed value of rand u for some p > 1: 

u: U'E[O,U] --+ u (u')ED (k( r,O),p). (3.57) 

Since (3.32) and (3.33) hold uniformly on compacta, 3 K2, 

K> 0 such that 'r:/r > K2, 

Ilf Yb(r,U',U(U'»)dU'11 <,uKr-
a

. (3.58 ) 

Now let 

K = max{K t ,K2,(€l2uK)a}. (3.59 ) 

Then 

Iii" Yb (r,u',u (u'»)du' I I <,;, 'r:/r>K. (3.60) 

Comparing (3.60) with the second term in (3.55) we see 
that the proof will be complete if we can show that, for suffi
ciently large r,,,!,(r,u')ED(k(r,O),p), 'r:/U'E[O,U]. This is 
done again with a fixed point argument. Choose r> K [see 
(3.59)] and consider UEC( [O,u],B (k( r,O),p»). Define 

(Fu)(u') = k(r,O) + l'" Yb(r,u",u(u"»)du". (3.61) 

It follows from (3.57) and (3.60) that F is a well-defined 
map on C( [O,u],B (k( r,O),p) (remember that p> 1> E). 
We now show F is a contraction. For 
U,VEC ([O,u ],B(k( r,O),p»), one finds readily 

IIFu - Fvll 00 <'E1211u - vii 00' (3.62) 

where we used once more the fact that (3.33) holds uniform
lyon compacta. So, since E < 1, F is a strict contraction. Its 
unique fixed point gives the integral curve 
U'E[O,U] --+,,!, '(r,u') of Zb through (r,O,k(r,O»). From 
(3.55), (3.56), (3.59), and (3.60) we conclude that (3.53) 
is satisfied. Hence the theorem is proved. 

Remark: It is clear from the above proof that the condi
tions of the theorem could be relaxed as follows. For Yb , Eq. 
(3.32) can be replaced by 

lim Yb (r,u',y') = 0 (3.63) 

and (3.33) by 

IIYb(r,u',y") - Yb(r,u',y')II.if(r)IIY" -y'll, (3.64) 

withfsome positive function for which lim
T

_ 00 f( r) = O. 

IV. ASYMPTOTIC PRESYMPLECTIC STRUCTURES ON 
E 

In this section we continue to work within the frame
work of manifestly covariant particle mechanics, assuming 
short range forces, so that, as proved in Sec. III, the Moller 
operators exist. We turn our attention to the problem of de
termining the presymplectic form E on E, satisfying (2.10) 
and (2.11). We already pointed out that, even if Eexists, it is 
not necessarily uniquely determined by (2.10) and (2.11). 
To reduce the remaining freedom in the choice of E, the fol
lowing additional requirement has been proposed5

•
lo

: one 
demands that, as (x(\) -X(2)2--+ oo ,E "approaches" Eo, 
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i.e., E is "asymptotically free." In other words, when the 
particles are "far apart,"E reduces to the free presymplectic 
form Eo' 

As in Sec. III one has to carefully interpret the limit 
(x(\) - X(2) )2 --+ 00. We saw there that it corresponds to let
ting Irl--+ 00 on the leaves Lo of the free foliation. Using the 
Moller operators, we can now reformulate the additional 
criterium on E in the form of a simple geometric statement 
and show to what extent it assures uniqueness of E. 

We have the following diagram: 

Define, on ImO+,u+ = (0+ -I)*UO and, on 
p-I (1m 0 ± ), E ± = p*u ± :It follows that, on its domain of 
definition, E ± is a presymplectic form satisfying (2.10) and 
(2.11). Note that the existence of E + and E _ was proved to 
lowest order in perturbation theory in Ref. 5. Here we re
duced the proof oftheir existence to the existence of the 0 ± ' 

which was rigorously established in Sec. III. 
Definition 4.1: A presymplectic form E on E, satisfying 

(2.10) and (2.11), is said to be asymptotically free in the 
future (resp, in the past) if E = E + (resp. E = E _) on 
p-I (1m 0+) [resp. p-I (ImO_)]; Eis said to be asymptoti
cally free if it is asymptotically free both in the past and in the 
future. 

It is then clear that, if E and E' are asymptotically free 
presymplectic forms on E, then E and E' coincide on 
p-I(lm 0+) andp-I(lm 0_). The criterion of asymptotic 
freedom does not, however, give information about E on the 
complementEB ofEs =p-t(lm 0+) Up-t(lm 0_). Here 
EB contains the trajectories of the system that correspond to 
bound states; as a result, the lack of information on E when 
restricted to E B from an analysis of the scattering regime of 
the dynamics should not come as a surprise. Nevertheless, it 
is proved in Ref. 5 by a formal perturbative calculation that 
the criterium of asymptotic freedom leads to uniqueness of E 

on all of E. Our analysis shows that, to prove this result 
rigorously, one needs additional assumptions of X(I), X(2), 
and E (note, for example, that analytic dependence on a cou
pling constant of X( I) , X(2) , and E is implicit in Ref. 5). We 
conclude that, by first finding rigorous conditions for the 
existence of the Moller operators and by defining the asymp
totic symplectic structures in terms of them, we have both 
simplified and clarified the uniqueness question of E. 

We close with some remarks on the link between the 
existence question for E and asymptotic completeness. Let us 
start by assuming the existence of an asymptotically free E. 

Then 

(4.1 ) 

or 

(4.2) 

Systems satisfying (4.1) or (4.2) are called conservative. 5 If 
the system is moreover weakly asymptotically complete 
(1m 0 + = 1m 0 _ ), then (4.2) is equivalent to symplecti-
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city of the S operator as a map from (~o,a 0) to (~o,a 0)' We 
conclude that, in a weakly asymptotically complete theory 
with an asymptotically free E, S is a symplectic transforma
tion. In that case the results of Ref. 13 apply, where a com
plete classification of symplectic scattering operators in the 
relativistic two-body problem is given. We see from the 
above that a study of weak asymptotic completeness would 
shed light on the existence question for E as follows: if the 
system is weakly asymptotically complete, then either S is 
symplectic (S *ao = ao) and hence (4.1) and (4.2) hold, or 
it is not symplectic and then an asymptotically free E does 
not exist. It would therefore be interesting to find conditions 
on the a1k) for the system to be weakly asymptotically com
plete. This question can be expected to be very complicated; 
already in the nonrelativistic case, a proof of asymptotic 
completeness in classical two-body systems has only been 
given for velocity independent forces that are derived from a 
potential. 11 This means in particular that the symplectic 
structure of the interacting theory is known a priori; it is the 
symplectic structure inherent in the usual Hamiltonian for
mulation of nonrelativistic mechanics. In the relativistic 
case, as pointed out repeatedly, the a1k) are velocity depen
dent and rather than knowing the symplectic structure of the 
theory a priori, we wish to use knowledge of the scattering 
operator to study its existence. A further analysis of those 
problems is therefore needed. 
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A mechanism (mathematical transformation) is considered by which a (Schwarzschild) 
black-hole singularity can be converted into a (Taub-NUT) (Newman-Unti-Tamburino) 
wire singularity, or equivalently topological modifications can be induced (e.g., transformation 
of S 2 X R 2 topology into S 3 X R and conversely). A topological charge-an invariant of the 
transformation--emerges as a possible candidate for the description of gravitational entropy in 
the case of source-free solutions to Einstein's equation with one Killing vector field. For a 
Schwarzschild black hole this invariant reduces to the area of the event horizon (or 
equivalently the Bolt charge) and it reduces to the square of the NUT charge (or equivalently 
the length of the closed timelike orbits) in the case of a Taub-NUT magnetic monopole. These 
considerations lead to the proposition that, under extreme conditions, gravitational clumping 
or entropy increase could be described by a modification in the characteristic classes of the 
space-time manifold due to the onset of nontrivial topological features. Further remarks are 
presented in view of the role of gravitational magnetic monopoles in quantum gravity, and of a 
possible relation between the notions of gravitational entropy and arrow of time. 

I. INTRODUCTION 

The problem of the relation between the notion of en
tropy and the origin of the arrow of time is one of the most 
fascinating of contemporary physics. In the early 1970's, 
with the advent of black-hole physics, baryon and lepton 
numbers ceased to be conserved, throwing the second law of 
thermodynamics into jeopardy: if a black hole could conceal 
the swallowed particles and their physical attributes, it 
should also do the same for their infalling entropy. Since the 
only parameters characterizing a black hole are its mass, 
charge, and spin (m,e,J), an observer standing outside the 
hole would not have enough information to evaluate the 
thermodynamic state of the trapped matter. Bekenstein and 
Hawking l

,2 saved the second law of thermodynamics near a 
black hole by assigning an entropy Sh to the hole, propor
tional to the area A of its event horizon: Sh = TA. Support for 
such a definition came from the discovery that small pertur
bations of the hole satisfy an equation which is analogous to 
the first law of thermodynamics, 

dm = (K/81T)dA + n dJ + <p de, 

where K, n, <p, are, respectively, the "surface gravity," the 
angular velocity, and the electric potential of the hole, all 
evaluated at the event horizon. Next it was suggested that a 
temperature 

Th = K/81TT 

should be assigned to the hole, constancy of ( Th , n, <p) being 
appropriate to describe a state of thermal-mechanical-elec
trical equilibrium. Since classically a black hole does not 
radiate, support for the introduction of Th came from 
Hawking's discovery3 that holes, at the quantum level, emit 
all kinds of particles at a temperature K/21T. More recently, 

aJ Detachee du Ministere des Relations Exterieures, Paris, France. 

however, it has been objected4
,5 that the Hawking-Beken

stein definition might not be deprived of drawbacks. 
(a) The relation between Sh and the physical entropy 

has only been obtained indirectly via an analogy with ther
modynamics (quantum statistical foundations which would 
bring further support to the definition yet to be forged). 

(b) Sh is a single number lacking any space-time distri
bution outside the horizon, and is not a proper state function 
because it depends on the horizon, a global entity, which 
cannot be measured directly on a given space section. Fur
thermore, one can find null hypersurfaces closely analogous 
to future event horizons which are deprived of meaningful 
entropy. 

(c) It has also been underlined6 that the physical origin 
of this entropy is far from being clear: the formula 
S = K log N, on which our general understanding of the sec
ond law is based, entails the absurdity S = 00 since a bound 
on the total energy does not suffice to bound the number of 
possible internal states; for instance, the Oppenheimer-Sny
der solutions 7 provide an infinite number of possible internal 
configurations for a Schwarzschild exterior of fixed mass. 

(d) Finally, even if one accepts basing the definition of 
gravitational entropy on the area of the event horizon, the 
problem of its relation with the concept of a time arrow re
mains open, and the task seems to be formidable due to the 
existence of singularities and nontrivial topology "inside" 
the hole. Recently, an enlightening synthesis of these diffi
culties has been proposed by Penrose,s who suggests that a 
key to the problem might lie in a better understanding of the 
structure of singularities. He further argues that "there 
should exist a qualitative relation between gravitational 
clumping and an entropy increase, due to taking up of gravi
tational potential energy. Hence a high entropy singularity 
should involve a very large Weyl curvature although so far 
no mathematical expression of this suggested relation 
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between Weyl curvature and gravitational entropy has come 
to light." 

In this paper we would like to suggest an approach to the 
problem. We propose to investigate a relation between modi
fications of the structure of singularities and modifications 
in the space-time topology. Our line of arguments will be the 
following. We shall first (Sec. II) briefly introduce the avail
able definitions of the magnetic mass, a topological charge 
characteristic of the presence of a gravitational magnetic 
monopole, and show that these definitions agree. We shall 
next (Sec. III) restrict ourselves to vacuum solutions to Ein
stein's equations that admit one Killing vector field and con
sider a mechanism by which the region of trapped surfaces 
enclosed within a Schwarzschild horizon can be converted 
into a (Taub-NUT) wire singularity, or equivalently 
(Misner's smoothing out procedure) into a modification of 
the space-time topology (introduction of causality viola
tions). In this process [which intuitively could be viewed as 
a shrinking of the region enclosed within the event horizon 
followed by (i) a gluing of the "lines" r = 2m in the 
Schwarzschild diagram, and (ii) an erasing of the resulting 
"wire singularity at r = 2m" via a topological modification 
(fromS 2 xR 2toS 3 XR)] anew topological charge emerges: 
a gravitational magnetic monopole has been generated. We 
then propose a possible candidate for the mathematical de
scription of this process, the Buchdahl,9 Ehlers,1O Harri
son, II Geroch 12 (BEHG) transformation initially presented 
to generate source-free solutions to Einstein's equation with 
one Killing vector field, starting from one such solution. Un
der this transformation, the Schwarzschild solution is con
verted into a Taub-NUT solution, and the onset of a mag
netic mass can be viewed as being induced by that of a wire 
singularity or equivalently a modification of the space-time 
topology. 13.14 The entropy trapped inside the Schwarzschild 
event horizon has been converted into new topological fea
tures inducing a causality violation 13 or equivalently new 
topological charge. 

It is also noticed that the BEHG transformation can be 
reduced to a duality rotation (action of the circle group) on 
appropriate potentials on the manifold of orbits of the Kill
ing field, inducing twist on these orbits and helicity on the 
resulting solution to Einstein's equation. It is a charging 
mapping in the sense of Ref. 14, the total helicity (or flux of 
the torsion field) being equal to the induced magnetic mass. 
We shall then consider an invariant of the BEHG transfor
mation and propose a definition of gravitational entropy 
based on the existence of this invariant for each solution of 
the BEHG (circle) family. Entropy appears as a topological 
charge and reduces to its known values in the case of static 
black holes or Taub-NUT solutions. 

II. PRELIMINARIES 

Recently boundary conditions suitable for asymptoti
cally Taub-NUT solutions have been considered, 13 leading 
to an expression of the dual (or magnetic) mass which in
volves the asymptotic Weyl curvature. On another hand, in 
the presence of a stationary Killing vector field, another 
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expression of this quantity is available. 14 We shall briefly 
introduce these definitions and prove that they agree. 

A. Stationary space-times 

Let (M, gab' ta) be a vacuum stationary space-time, i.e., 
a four-manifold M with a metric gab of signature 
( - , + , + , + ), solution of Rab = 0, and ~ a Killing vec
tor field assumed to be (in this section) everywhere timelike 
and complete. Let 1T: M ..... T denote the projection map from 
Minto T, the manifold of orbits of ~ . We assume that T has 
topology S 2 X R (topology of a wormhole) and we set 
tata = -A (thenormoft a ), 

(jJa = A -1/2Eabcdt bvct d 

(the twist of t a). There exists on M a curl-free two-form 

F V 1 -It 1 -1/2 t d c (1) ab = faA b 1 =.11. Eabcd (jJ, 

which satisfies t a Fab = 0 and L,Fab = O. Hence Fab can be 
viewed as the pullback to M of a curl-free two-form 
Fab = D[aVb lon T, whereD denotes the derivative operator 
compatible with the induced metric hab = gab +A -Itatb' 

Let S2 denote a two-sphere surrounding, within T, the non
trivial topological features. Since the second homotopy 
group of T is nontrivial, 

r Fab dS ab 

Js, 
need not vanish. Furthermore, since the flux ofFab through 
a cap of S2 bordered by a loop C is given by 

L Vb ds b
, 

Vb must develop a singularity on S2' This is characteristic of 
the presence of a magnetic monopole. 14 The flux 

N = r Fab dS ab (2) Js, 
measures the magnetic charge of the handle. 

B. Asymptotically Taub-NUT space-times 

Let us now focus on the asymptotically Taub-NUT 
space-times which have been investigated in Ref. 13. The 
presence of a Killing vector field is not required here. Such 
space-times admit a conformal null boundary J which ex
hibits the topology of an S I fiber bundle over S 2, the Hopf 
fibers being integral curves of a null vector na. Let 
gab = n?gab denote the appropriately rescaled metric ~hich 
attaches J to the physical space-time (M,gab) and Va the 
derivative operator which is compatible. When the News 
function Nab vanishes at J, the magnetic mass N f can be 
defined 13 via its action on an asymptotic translation ana, 
(Lna = 0), 

Nf = L aEabc *Kcmlm dS ab (3) 

where C denotes a cross section of J, Eabc and 
(rna, rna, la, na ) are, respectively, the induced alternating 
tensor at J and the usual Newman-Penrose null tetrad; 
*Kcm is introduced l3 at J, via the pullback of n-Icabcd 
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(the rescaled Weyl tensor) and is submitted to conditions 
(4)-(8) listed in Ref. 13. We want to prove thatN and Ny 
agree when the space-time is stationary. Recall that in the 
presence of an everywhere timelike and complete Killing 
vector field fa on (M, gab) a simple geometrical interpreta
tion of N has been presented 14: N essentially measures the 
length of the orbits of fa (which therefore must be closed), 
or equivalently the number of times the space-time bundle 
winds around its fiber. If the expressions of Nand N.f are to 
agree, a similar geometrical interpretation should be avail
able at f. Let us prove that it is so. 

A A I 
Let D[awb] denote the pullback to f of V[aIL - f b ] 

where Wb is some covector field on f. Since 

(4a) 

and 

naD[aWb] = ¥-nWb - ~Db (w'n), (4b) 

we can choose W b such that W' n = C (a constant) (note that 
Wb is arbitrary up to a gradient). Hence Wb defines a connec
tion onf. Next, we know, from Ref. 15 and formula (6a) in 
Ref. 13, of the existence of a gauge such that 
Sab =Rab - ~Rgab = ~ab' degenerate metric on f; this in 
turn implies that Sa b = i5a b - vanb, where Va is some co
vector field on f. In particular one can identify Vb with Wb. 
Under these conditions and since l3 

A A 

D[aSb ]c = !Eabm *K me = - D[a Vb ]nc, (5) 

N.r appears as a constant multiple of 

L", D[a Vb] dS
ab

; (6) 

here Y denotes the manifold of orbits of na, Vb is a covector 
field on Y which admits Vb as its pullback to f, and Da is 
some derivative operator on Y. (Recall 13 that for any infini
tesimal translation ana, at f, a satisfies on Y the rescaling 
invariant equation 

gmnDmaDna - gmnDmDna - ~Ra2 = const, 

hence can be chosen equal to a constant.) 
Let r denote the lift, to f, of some closed loop yon Y, 

say originating at some point p on Y. Since Vb defines a 
unique horizontal lift, on f, we can choose for r the closed 
curve consisting of a horizontal curve originating at PI and 
ending at P2, two points on the fiber above p, and of that 
segment of the fiber (vertical piece of r) starting at P2 and 
ending at PI' This implies that 

r Vb dS b = c (, ds (7) Jr jp, 
where s is, along the fiber, the affine parameter defined by 
naDa = a las. Since Y can be swept by a one-parameter 
family ofloops Ys (t), O,;;;;s,;;;; 1, starting and ending (with op
posite orientation) at the point p [ the trivial loop 
YO(t)=YI(t)=P], it is clear from (6) and (7) that, as s 
varies from 0 to 1, P2 must describe the whole fiber above p. 
Hence N.r is essentially a measure of the length of the orbits 
ofna (Hopffibration of f) or equivalently of the number of 
times f winds around its fiber. It is to be noticed that Vb 
plays, in the above proof, a role analogous to that played by 
kb' the null vector field which had to be introduced in Ref. 
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14 to show that ~ must have closed orbits. This completes 
the proof. 

Theorem: The two definitions of Nand N.r are in agree
ment. In both cases the magnetic mass measures the number 
of times the (corresponding) bundle winds around its 
( closed) fiber. 

III. BUCHDAHL-EHLERS-HARRISON-GEROCH 
TRANSFORMATION: A MECHANISM TO GENERATE 
GRAVITATIONAL (MAGNETIC) MONOPOLES 

Recently we introduced 14 a mathematical framework 
suitable for the description of gravitational magnetic mono
poles. In this framework a mechanism was presented by 
which tensor fields (e.g., metrics) can acquire a weight B, 
and derivative operators a torsion Fab (B). In this process the 
key role was played by "charging" mappings/e, B being an 
element of a cyclic group. The existence of singularities in 
the potential of Fab (B) is a manifestation of the presence of a 
magnetic monopole, the flux of Fab being a measure of its 
charge. 

On another hand, a transformation is available, the 
BEHG (Refs. 9-12) transformation, which generates ex
plicit, exact, source-free solutions to Einstein's equation 
with one Killing vector field, starting from one of them. The 
resulting family forms a circle. Repeating the transforma
tion merely results in a further rotation within the original 
circle of solutions. In this section we want to show that this 
transformation can be considered as a charging mapping/e 
in the sense of Ref. 14. Starting from a particularly chosen 
solution, the transformation can generate a gravitational 
magnetic monopole. For instance, if one starts from the 
Schwarzschild (resp. Kerr) black-hole solution, there is a 
value of B for which the resulting charged metric is the 
Taub-NUT (resp. Kerr-NUT) solution, the corresponding 
magnetic charge being the NUT parameter. Hence this 
transformation provides a mechanism by which black-hole 
singularities and event horizons can be converted into wire 
singularities (or equivalently causality violations 14) , and 
conversely. This transformation can thus be viewed as in
ducing topological modifications [e.g., the Schwarzschild 
S2XR 2 topology being converted intoS 3 xR topology and 
conversely (intuitively, the time arrow, which is available on 
each asymptotic region of the Schwarzschild solution, disap
pears-closing of the orbits of the timelike Killing vector 
field-as the region of trapped surfaces shrinks into a wire 
singularity and gets absorbed into new topological fea
tures)]. 

We shall briefly summarize the BEHG transformation. 
Let (M, gab) be a solution of Einstein's equation Rab = 0, 
with Killing vector field t a. In this section, the norm 
and twist of t a are, respectively, - IL = tata and 
CtJa =EabcdtbVctd=grada CtJ. Lethab = gab +IL -Itatb be 
the induced metric on T, the manifold of orbits of 5' . As
suming IL #0, a rescaled metric hab and complex potential 7" 

can be introduced l2 on T: 

hab = ILhab' 

7" = CtJ + ilL. 
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It then follows l2 that Einstein's vacuum equation Rab = 0 
reduces to 

- 2 - -Rab = - 2( 7 - 7) - (D(a 7) (Db) 7), (9a) 

(9b) 

where Da and Rab are the derivative and Ricci tensor with 
respect to hab (D 2 = h ab D aDb ). Given a solution hab' 7 of 
(9), a new solution h ~b = hab' 7' = 7' ( 7) can be obtained 

g~b «(J) = [(cos (J - OJ sin (J)2 + A 2 sin2 (J ]gab 

+ 2S(a [2ab) cos (J - P b) sin (J ] sin (J 

I 

after substitution of h ~b and 7' in (9). The resulting poten
tial 7' is given by 

7' = (a7 + b)/(c7 + d), (10) 

where a, b, c, d are real numbers such that ad - bc = 1. If 
one sets 

(; !) -( -::: ::::) (11) 

the resulting metric exhibits a weight (J, 

+..1, [(cos (J - OJ sin (J)2 + ..1,2 sin2 (J] -I [2aa cos (J - Pa sin (J] [sin2 (J] [2ab cos (J - Pb sin (J], (12) 

where coefficients a b and Pb have been introduced in Ref. 
12. It has been charged in the sense of Ref. 14. Another way 
to display the charging mappingfe consists in introducing 
the following potentials: 

<PM=!(A 2+OJ2-1), <PJ=OJ/U. (13) 

Substituting into the expression for 7', a straightforward cal
culation shows that the transformation reduces to 

fe(<PM) = ( c~s 2(J sin 2(J)(<PM). 
<PJ - sm 2(J cos 2(J <PJ 

(14) 

This provides a representation of the cyclic group in the 
(<PM,<PJ) plane. For the Schwarzschild solution, <PM = 1/ 
4..1, (A 2 - 1) and <P J = O. Hence the mass monopole (in <PM) 
is nonzero (since ..1,= - 1 + 2M /r), while the dual (mag
netic) monopole vanishes. A rotation in the (<PM,<PJ) plane 
leads, for (J = 1T/4, to a new solution, with potentials <p~ = 0 
and <P; = - <PM' This solution is precisely the Taub-NUT 
metric with NUT parameter N = - M. This parameter ap
pears clearly as dual to the mass. For the Kerr solution, the 
action offrrl4 leads to a solution that, in the absence of dipole 
angular momentum, must reduce to the Taub-NUT solu
tion: hence this solution is one of the Kerr-NUT solutions. 
We shall now display the topological charges that can 
emerge from the action of fe. Recall the existence of three 
real divergence-free vector fields on T, 

vl
a( 7 - 7) -2h am(Dm 7 + Dm 7), 

V/( 7 - 7) -2h am(7Dm 7 + 7Dm 7), 

V3 a( 7 - 7) -2h am(rDm 7 + rDm 7) 

(15) 

(16) 

(17) 

with the following properties: (i) under fe, these vector 
fields are mapped into linear combinations of themselves 

fe Via = Via cos2 (J - V2
a sin 2(J + V3 a sin2 (J, (18) 

fe V2
a = ~Vla sin 2(J + V2

a cos 2(J - !V3 a sin 2(J, (19) 

feV3a= Vl
a sin2 (J + V2a sin2(J + V3aCos2(J; (20) 

and (ii) the corresponding curl-free two-forms 
Eabc V/=.Piab (i = 1,2,3) on T admit the following pull
backs l2 on the space-time (M,gab): 

(21) 
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I 
F2ab = V[a OJA -ISb 1 - ~EabcdVcSd, (22) 

F3ab = V[a(A -1(OJ2 + A 2)Sb 1) - UVaSb - OJEabcd VCS d. 
(23) 

Integrating the forms piab on a two-sphere surrounding the 
nontrivial topological features leads to various conserved 
quantities: (i) in the case of a magnetic monopole P lab pro
vides the magnetic mass; (ii) in the static case,F 3 ab is identi
cally zero, while F2ab provides the Komar mass; and (iii) 

consider the Kerr solutions representing the stationary axi
symmetric asymptotically flat field outside a rotating mas
sive object; an evaluation of 

1 Flab d~ab, 

the flux of Flab through a cap ~ bordered by a closed loop r 
surrounding, in the physical space-time, the rotating source, 
can be obtained. Choose for r one of the closed orbits of the 
rotational Killing vector fields R a 

, and consider the timelike 
two-dimensional cylinder J-l generated by the orbits of the 
stationary Killing vector field f1 , through r (J-l is an integral 
manifold of the two commuting Killing vector fields). We 
know, from Ref. 14, that 

t:u = U 1/21 V[aA -I tb 1 dS ab = U -1/2 i ta dS a, 

(24) 

where s denotes the affine parameter along the orbits of f1 . A 
direct calculation leads to 

t:u = U -1I2(R' R) -1/2. (length of r)' (t. R). (25) 

In Boyer-Lindquist coordinates, the cylinder will be defined 
by r = ro, <P = <Po. Ifwe further require that the four-velocity 
of the loop r be a multiple of f1 , the expression of t:u reduces 
to 

t:u = 41T( 4AoMoro sin2 <Po) 

X (r02 + Ao 2 cos2 <Po - 2Moro) -1/2 

X (r02 + A02 cos2 <Po) -1/ 2
• 

This formula shows that, in the absence of wire singularity 
(or causality violation), the conserved quantity generated 
by Flab is a measurement of the state of rotation of the 
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source, or equivalently of the dipole angular momentum of 
the solution. 

Let us return to the BEHG transformation. Let S2 de
note, in the manifold of orbits of S a, a two-sphere surround
ing the nontrivial topological features. The associated 
charges are 

i -I ab 
QI = F ab dS , 

s, 

i -2 ab 
Q2 = F ab dS , 

s, 

i -3 ab 
Q3 = F ab dS . 

s, 

(26) 

(27) 

(28) 

Under the action of the (BEHG) circle group, these quanti
ties obey the same transformation rules [( 18)-(20)] as the 
corresponding forms, implying the existence of an invariant 
of the transformation 

E = QIQ3 - (Q2)2. (29) 

This leads to the following theorems. 
Theorem 1: The action oflk1T + 11"/4 on any (causally well

behaved) vacuum static solution with nonvanishing Komar 
I 

mass generates angular momentum. If the static solution is 
the Schwarzschild black-hole solution, the resulting solution 
is the Taub-NUT magnetic monopole. 

This follows immediately from the fact that Q3 = 0 
when 5 is hypersurface orthogonal and from formulas ( 19) 
and (29). 

Corollary: The mapping/k11"+ 11"/4 can induce modifica
tion in the space-time topology. 

This follows immediately from Ref. 14. 
Theorem 2: The action of lk1r + 11"/4 on a Kerr solution 

(with angular momentum dipole) induces an angular mo
mentum monopole. The resulting solution belongs to the 
Kerr-NUT family. 

This follows immediately from formula (19) and 
Theorem 1. 

These results suggest that a relation should exist 
between the invariant E and the concept of gravitational en
tropy, bringing support to the following. 

Definition: Each solution of Einstein's vacuum equa
tion, with one timelike Killing vector field, will be assigned a 
gravitational entropy defined by 

'll = [L, V[a A -ISb ) dS ab ][i, {V[a(A -1(W2 + A 2)Sb J) - UVaSb - WEabcd VCSd}dS ab ] 

- [L, {V[a WA -ISb ) - !EabcdVcSd}dsab r 
Theorems 1 and 2 imply in particular that'll reproduces the 
Bolt charge and NUT charge which have been proposed 19 to 
describe the gravitational entropy of a Schwarzschild black 
hole and of a Taub-NUT (Kerr-NUT) magnetic mono
pole, respectively. 

Remarks: Such a formulation has the advantage to cure 
some of the drawbacks listed in the Introduction: (a) it is 
obtained within the hyperbolic regime, and does not require 
the introduction of gravitational instantons in the Euclidean 
regime; (b) it is not based on null hypersurfaces and could, 
in principle, be tested on a space section; (c) it emphasizes a 
possible role of the notion of entropy in the description of 
modification of the structure of singularities (due to gravita
tional clumping) and onset of new topological features; (d) 
the definition could be generalized and adapted to more real
istic situations (absence of an isometry, expanding uni
verses); and (e) although the problem of the relation with 
physical entropy and thermodynamics is left open, further 
support to such a geometrical approach will be given in our 
concluding remarks. 

IV. CONCLUDING REMARKS 

We believe that the following remarks would bring sup
port to the viewpoint developed in this paper according to 
which the notion of gravitational entropy (entropy increase, 
time arrow) could be related to (modifications of) the topo
logical structure of the space-time manifold. 

(i) In semiclassical electrodynamics, magnetic charge 
can be introduced as a purely topological construction. Let 
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(30) 

us outline it briefly. The wave function of a particle, a com
plex-valued field on the space-time manifold, is defined up to 
phase. Hence it is more appropriate to introduce a principal 
S I fiber bundle !!lJ over the space-time manifold M, the 
group structure G on the fiber being induced by the group of 
complex numbers with modulus unity. The field is thus asso
ciated to a cross section of this bundle, the electromagnetic 
potential serving as a connection, 

This connection in turn provides a notion of horizontal lift 
for any closed loop r in M (originating say at point p). Let r 
denote such a lift, a curve originating at point PI' on the fiber 
abovep, and meeting the fiber again at pointP2• The segment 
P2P I on the fiber completes r into a closed loop r. The map 
¢: PI -P2 defines a subgroup of G, and a subgroup of the 
holonomy group of the bundle. With each element of the 
second homotopy group 1T2(M) of the space-time manifold, 
there is associated an element of the phase group G describ
ing the change in phase of a field Fab (0) as a two-sphere in M 
[an element of 1T2(M)] is spread by a one-parameter family 
of closed loops. This phase shift can be evaluated as the flux 
of Fab (0) (the curvature of the connnection on the bundle) 
and thus be identified with the magnetic charge. Further
more, this charge is invariant under continuous deformation 
of the curve r in the bundle. This in turn provides a measure
ment of the following mapping of homotopy groups: 
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A physical quantity (the Bohm-Aharanov phase shift) 
turns out to be a purely topological concept. 

(ii) On another hand, we have shown (Ref. 14) that in 
the presence of a magnetic mass, a stationary space-time M 
(such that T, the manifold of orbits of the timelike Killing 
vector field, has S 2 X R topology) must be an S I bundle over 
T. The magnetic mass is a physical quantity associated to the 
space-time topological structure (S 3 X R topology). Such to
pological charges could be used to test the presence of map
pings between homotopy groups (associated to the space
time topology), or equivalently the presence of exact 
sequences l6 of homomorphisms such as 

'!Tn (M,p)'" -'!Tn _ I (M,p) -'" ->'!To(M,p) -0, 

where each homomorphism in the exact sequence is the ker
nel of the next. A similar test has already been proposed 17 

within the context of Maxwell theory. These ideas bring 
further support to the viewpoint presented in this paper ac
cording to which characteristic classes and associated topo
logical charges might play an important role in the descrip
tion of the modification of the structure of singularities due 
to gravitational clumping and, consequently, might shed 
some light on the concept of entropy. IS 
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An Ehlers transformation on the Ernst potential for the Nutku-Halil solution [Phys. Rev. 
Let~. ~9, 1379. (l~77) 1 provides a new solution of the Einstein field equations describing 
collIdmg gravItatIOnal plane waves with noncoUinear polarization, the first of an infinite 
sequence of solutions that can be generated using techniques described in this paper. 

I. INTRODUCTION 

Many examples are known of exact global solutions of 
the vacuum Einstein field equations that describe the colli
sion of two gravitational plane waves I with collinear polar
ization, but few are known that describe the collision of two 
such waves with noncollinear polarization, where the metric 
is nondiagonalizable. In the former category are the Khan
Penrose solution2 and an infinite family of solutions ob
tained recently by Ferrari and Ibanez3 using the inverse scat
tering technique of Belinskii and Zakharov.4 In the latter 
category the Nutku-Halil solution5 and a solution con
structed by Chandrasekhar and Xanthopoulos6 using the re
gion of the Kerr metric 7 interior to the event horizon stand 
alone. With the exception of the Khan-Penrose and the 
Nutku-Halil solution, which involve purely impulsive plane 
waves, all the other known solutions involve a combination 
of impulsive and shock waves, and their physical signifi
cance is not well understood at present. 8 

Some time ag09 one of the authors of the present paper 
showed that a double-Harrison IO (Backlund) transforma
tion, when applied to the isotropic Kasner metric, yields the 
Nutku-Halil colliding wave metric. The derivation was car
ried out using the Hauser-Ernse I homogeneous Hilbert 
problem (HHP) formulation. It is, of course, well known 
that the same double-Harrison transformation, when ap
plied to Minkowski space, another Kasner metric, yields the 
Kerr solution, which Chandrasekhar and Xanthopoulos 
showed also admits a colliding wave interpretation. It was 
natural, therefore, to suppose that such a double-Harrison 
transformation, when applied to the other Kasner metrics, 
would yield additional colliding wave solutions with noncol
linear polarization, each generalizing one of the solutions of 
Ferrari and Ibanez. 

Exploiting a generalization of the Kinnersley-Chitre 
transformation 12 group structure, we observed in the course 
of studying this problem some interesting relationships 
among the colliding wave solutions corresponding to differ-

a) This research was carried out while this author was at the Centro de In
vestigaci6n y de Estudios Avanzados del Instituto Politecnico Nacional 
in Mexico City. 

ent values of the Kasner parameter. Instead of calculating 
each metric directly from the corresponding Kasner metric, 
it was possible to obtain one colliding wave solution from 
another merely by performing a coordinate transformation 
together with a simple Ehlers transformation. In fact, given 
any colliding wave solution, one may use nothing more than 
a sequence of coordinate and Ehlers transformations to con
struct an infinite family of additional solutions. 

We propose, therefore, to apply this iterative procedure 
to the two known colliding wave metrics with noncollinear 
polarization, the Nutku-Halil solution and the Chandrasek
har-Xanthopoulos solution. In this paper we shall demon
strate that this procedure actually does yield new colliding 
wave solutions by displaying and studying the first new met
ric so obtained. 

In one or more sequels we shall adapt the Hauser-Ernst 
homogeneous Hilbert problem formalism to the colliding 
plane wave problem. Among our objectives are the follow
ing: ( 1 ) deriving a closed form expression for the whole fam
ily of solutions with noncollinear polarization correspond
ing to the Ferrari-Ibanez solutions; (2) identifying which 
generalized Kinnersley-Chitre transformations produce 
bona fide colliding wave solutions, and which do not; and 
(3) identifying some examples of colliding wave solutions 
that result from something other than a single double-Harri
son transformation, together with gauge transformations, 
on a Kasner metric. 

It is our belief that the experience gained through this 
effort will lead to a better understanding of the interrelation
ships among colliding wave solutions, and it is our hope that 
it may also suggest some way to tackle the general "initial 
value problem" in which data is specified on null surfaces. 
Xanthopoulos has already solved the corresponding initial 
value problem for colliding waves with collinear polariza
tion. I3 

II. FERRARI-IBANEZ METRICS 

In the interaction region the Ferrari-Ibanez metrics can 
be expressed in the form 
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ds2 = _p(n'-I)12(l_X)I+n(l +X)I-n 

X{(dX)2/(l_X2) - (dy)2/(l_y2)} 

+pl+n[(l-x)/(1 +X)](dXI )2 

+pl-n [(1 +x)/(l_X)](dX2)2. (2.1) 

The determinant 

2 IgII gl21 P ·-.-
g21 gZ2 

has the explicit form 

p2 = (1 _ xz)( 1 _ yZ) (2.2) 

in terms of the x,y coordinates. The well-known Khan-Pen
rose solution corresponds to the special case n = 0. 

Metrics with positive and negative values of n are relat
ed by the substitution 

(2.3) 

More significantly, the metrics with parameter values nand 
n' = n + 2 are related by a coordinate transformation 

(2.4) 

followed by a simple Ehlers transformation under which 

gIl--+gil =p4/(gIl), g2Z ...... g;z = 1I(gz2). (2.5) 

One may introduce conventional null coordinates u,v 
through the coordinate transformation 

x=uV+vU, y=uV-vU, (2.6) 

where 

U: = + [1- UZ )1/2, V: = + [1- VZ p12. 

The region of interaction corresponds to 

u > 0, v > 0, p = 1 - u2 
- v2 > 0, 

while the collision of the incident plane waves takes place at 

u = v = 0. 

III. A DERIVATION OF THE SIMPLEST NEW COLLIDING 
WAVE SOLUTION 

Colliding plane wave metrics with noncollinear polar
ization can be described in terms of a complex Ernst poten
tial, 14 say g' = H 22, the real part of which is - gZ2. 

Examples are known 15 of solutions of the vacuum Ein
stein equations that have singular metrics at u = ° and 
v = 0, where all null tetrad components of the curvature ten
sor vanish. Such solutions only admit an interpretation in 
terms of the collision of plane waves, the interaction of which 
commenced an infinite time in the past, for the surfaces 
u = ° (v> 0) and v = ° (u > 0) are, in reality, at minus null 
infinity, where the initial data are prescribed. 

Solutions of this type have not received much attention, 
and are generally regarded as things to be avoided as one 
searches for bona fide colliding plane wave solutions in 
which the interaction did not commence at an infinite time in 
the past. It is, therefore, noteworthy that the application of 
an Ehlers transformation 

(3.1 ) 

to a bona fide colliding wave solution should in general give 
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rise to a metric that also admits a bona fide colliding wave 
interpretation, since the Ehlers transformation cannot pro
duce a metric that is singular at u = ° or at v = ° if that 
singular behavior was not present in the seed metric. This 
observation convinces us that there are an enormous number 
of colliding wave solutions that we are now in a position to 
derive. 

Let us, however, focus our attention upon the solution 
that results from the application of transformation (3.1) to 
the Ernst potential of the Nutku-Halil solution. We shall 
show that when the complex potential H22 of the Nutku
Halil metric, the noncollinear generalization of the Khan
Penrose metric, is subjected to the coordinate transforma
tion (2.4), followed by the simple Ehlers transformation 
(3.1), one obtains a new colliding wave metric, which is a 
noncollinear generalization of the n = 2 Ferrari-Ibanez 
metric. Repeated application of such coordinate and Ehlers 
transformations yields solutions corresponding to n = 4, 6, 
8,... . Similarly, if one begins with the solution of Chandra
sekhar and Xanthopoulos, such a procedure yields solutions 
corresponding to n = 3, 5, 7, .... 

The interaction region of the Nutku-Halil metric can be 
expressed 16 in the form 

ds2 = - [NoI(p) 112){ (dX)2 /(1 _ x2) _ (dy)2/(l _ yZ)} 

+ [p/No){ll-sI2(dx 1
)2 

- 4 Im(s)dx l dx2 + 11 + sI2(dx2)2}, (3.2) 

where 

No: = 1- SS*, S: =px + iqy, 

and 

p2 + q2 = 1. 

When q--+O andp ...... l, the metric (3.2) reduces to the n = ° 
Ferrari-Ibanez metric. Both the metric (3.2) and the asso
ciated curvature tensor are free of singularities except where 
p-+O. 

In terms of the x,y coordinates the region of interaction 
of the colliding plane waves corresponds to 

O<x< 1, -x<y<x, p =XY>O, 

where x plays the role ofa "time" coordinate,y plays the role 
of a "spatial" coordinate, X: = + [1 - x 2

) II2, and 
Y:= + (1_y2]II2. 

The introduction of symbols such as p, q, U, V, X, and Y 
is motivated to a large extent by the desire to deal with ra
tional expressions, which can easily and accurately be ma
nipulated on a microcomputer. It has also been our experi
ence that those microcomputer calculations proceed more 
efficiently when the various fields are expressed in terms of x 
andy rather than in terms of the null coordinates u and v. 

After the coordinate transformation (2.4) is applied to 
the metric (3.2), we obtain the following form ofthe N utku
Halil metric: 

ds2 = _ [NoI(p)I/2]{(dx)z/(l-x2) - (dy)z/(l_yz)} 

+ [pINo]{ll + SI2(dx l
)2 

(3.3 ) 
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The Ernst potential If: = H22 of the metric (3.3) is 
found to be given, up to an arbitrary constant imaginary 
term, by 

If =XY - 2(pY - iqX -xY)/(pX - iqY). (3.4) 

The real part of If yields! = - g22' while from the imagi
nary part of If, the twist potential t/J, one may evaluate the 
ratio w: = g21/ g22 by integrating the well-known 14 equation 

dW=p/-2*dt/J, (3.5) 

where * is a two-dimensional duality operator with the prop
erties 

*du = du, *dv = - dv. 

The gil component of the metric tensor is obtained using the 
relation 

(3.6) 

while the determination of the rest of the metric involves an 
additional integration. 14 From the Ernst potential If dis
played above one can easily regenerate the Nutku-Halil 
metric (3.3). 

It is to the Ernst potential (3.4) that we applied the 
Ehlers transformation (3.1). The real part of the new H zz 
yields the new - g22' while from the imaginary part the new 
g21/g22 may be obtained. The new gil is obtained using Eq. 
(3.6), and the coefficient of 

{(dx)2/0 - x 2) - (dy)2/0 _ y2)} 

is obtained by noting that the product of this coefficient with 
g22 is invariant under the Ehlers transformation (3.1). The 
resulting metric has the form 

ds2= _ [NI(p)I12]{(dx)2/0-x2) _ (dy)2/(l_y2)} 

+ [piN ]{K(dx l )2 + 2L dx 1 dx2 + M(dx2)2}, 
(3.7) 

where K, L, M, and N are polynomials in p, q, x, and y. 
Introducing the fields 

A = 2 [ (1 - 2px + x 2) (1 - y2) - 2iqy( 1 _ x2)] _ Bp2 
(3.8a) 

and 

B = 1 - g = 1 - px - iqy, (3.8b) 

we may express K, L, M, and N in the following form: 

and 

K = IA 1
2

, (3.9a) 

L = Im(AB*) 

= _ 2qy[p2 _ 2( 1 _ px) (x2 _ y2)], 

M=IBI2, 

N= Re(AB*) 

= f 1 - 4px + 6x2 - 4px3 + x 4
]( 1 _ y2) 

+ q2(X2 _ y2)(p2 _ 4). 

(3.9b) 

(3.9c) 

(3.9d) 

It is important to note that the last quantity, which plays an 
important role in the Weyl conform tensor as well as in the 
metric, vanishes nowhere within the range of coordinates 
being considered. 
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IV. COLLINEAR LIMIT AND FURTHER 
GENERALIZATION OF THE n=2 METRIC 

When q ..... 0, the metric (3.7) reduces to 

ds2 = - p3/2[ (1 + x)3/(1 - x)] 

x{(dx)2/(l _ x 2) _ (dy)2/(l _ y2)} 

+p-I[(I-x)/(1 +X)](dXl)2 

+ p3[ (1 + x)/(1 - x) ](dx2) 2, 

which is the n = 2 solution of Ferrari and Ibanez. 

(4.1 ) 

The Ernst potential (3.4) from which we started may be 
generalized in a number of ways. We have actually consid
ered a generalization involving two additional parameters, 
one of which corresponds to the inclusion of an arbitrary 
imaginary constant term in (3.4), and the other of which 
results from rotating the Xl, x 2 coordinate axes through an 
arbitrary fixed angle. These extra parameters are, of course, 
not essential for the Nutku-Halil solution, but we believe 
they are essential for the solution which results from the 
application of the Ehlers transformation (3.1). While we 
have not completed the study of the Weyl tensor for the 
resulting three-parameter n = 2 solution, we believe for rea
sons already stated that solution will, in fact, admit a bona 
fide colliding wave interpretation. In this paper we shall 
present the detailed analysis only for the one-parameter 
n = 2 solution (3.7). 

V.INTERPRETATION OF THE SOLUTION 

Let H denote the Heaviside step function. In order to 
interpret the metric of Eq. (3.7) as a colliding gravitational 
wave solution we replace u by uH(u) and v by vH(v) in the 
definitions of x and y as well as in p, and we permit the null 
coordinates u and v to assume negative values. 

We identify four regions of the space-time: 

region I u < 0 v < 0 
region II u < 0 0 < v < 1 
region III 0 < u < 1 v < 0 
region IV u > 0 v> 0 

(p: = 1 - u2 
- v2 >0). 

The analysis begins with region IV, the region of interaction. 
Because of the symmetry mentioned earlier, it suffices to 
check the junction conditions across the null surfaces that 
separate region IV from region II and region III from region 
I, i.e., across the null surface u = o. 

The metric is obviously continuous across u = 0, 
though not smooth. The first derivative of uH(u) with re
spect to u is H (u ), while the second derivative is a Dirac 
delta function, which may appear in certain components of 
the curvature tensor. The metric in region II is independent 
of u and has the form of a Petrov type N plane wave solution, 
while the metric in region III is independent of v and also has 
the form of a Petrov type N plane wave solution. The metric 
in region I is independent of both u and v and is a portion of 
Minkowski space. 

The evaluation of the curvature tensor9 of the new 
space-time is facilitated by the introduction of a null tetrad 
{k,m,t,t *}, where 
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k = - [2N I(p) 1/2] 1/2(dvlv) 

= - [N 12(p)1/2]1/2[(dxIX) - (dyIY)]' 

m = [2N l(p)I12]I12(duIU) (s.l) 

= [NI2(p)1/2]t/2[(dxIX) + (dyly)]' 

t = [pl(2N) ]1/2(A dx t + iD dx2). 

With this choice of null tetrad the only non vanishing compo
nents of the Weyl conform tensor are C2, Co, and C_ 2, where 
the index denotes the spin weight of the component. (Our C2 

corresponds to the Newman - Penrose 11'0' while our Co and 
C -2 correspond to 11'2 and 11'4' respectively.) 

Formulas for the null tetrad components of the Weyl 
conform tensor and the Ricci tensor can be found in many 
places, including some of our early papers. 14,17 For the pres
ent studies we found it somewhat more convenient to use 
formulas in terms of the fields A and D, which were devel
oped more recently by Ernst.9 All our calculations were 
checked using the Grad Student: Rational Calculator sym
bolic manipulation program. 18 

Our tetrad (5.1) is substantially identical to the tetrad 
of Ref. 9. The one-forms a and /3 of Ref. 9 are given by 

a: = (D * dA + A * dD)/(2N) = :(duIU)au + (dvlV)av, 

/3: = (A dD-DdA)/(2N) = :(duIU)/3u + (dvIV)/3v' 
(5.2) 

We may infer from Ref. 9 that the null tetrad components of 
the reduced Ricci tensor 

Sij: = Rij - !Rgij 

and the Ricci scalar R are given by 

SI/' +RI4= - [(Uau)(Vav)(p)]/(2p I/2N), 

S" = [( U au )(p/3v) + (V av )(p/3u ) 

- (au - a~)(p/3v) - (au - a~)(p/3u )]/(2p l/2N), 

St'" = (S,,)*, (5.3) 

Skk = [(Uau)2(p) - (au +a~)(Uau)(p) 

+ 2p/3~/3u ]/(2p l/2N), 

Smm = [( vav )z(p) - (av + a~)( vau )(p) 

+ 2p/3~/3v ]/(2pI/2N), 

S", - R 112 

= (p Il2/6N) [( U au )(av + a~) + (v av )(au + a~) 
+ 2/3u/3 ~ + 2/3v/3 ~], 

and 
Skm = -SI/" 

The only null tetrad component of the reduced Ricci 
tensor that involves second derivatives with respect to u is 
the component Skk' and this only involves the quantity P.u.u. 
which has no delta function contribution on the null surface 
u = O. Similarly, the only null tetrad component of the re
duced Ricci tensor that involves second derivatives with re
spect to v is the component Smm' and this only involves the 
quantity p,v,v' Therefore, since the vacuum field equations 
are satisfied in all four regions I, II, III, and IV, and there is 
no delta function contribution either at u = 0 or at v = 0, the 
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vacuum field equations are, in fact, satisfied everywhere. 
The curious fact that the field equation Sit = 0 takes the 

form of an Ernst equation, 

(ReE){[(1-x2)E,x],x - [(1-y2)E,yL} 

= (1 - x 2) (E,x )2 _ (1 _ y2) (E,y )2, 

for the complex potential E: = AID was observed by Chan
drasekhar. In our case the complex potential E has the form 

E= 2[(1-2px+X2)(1_y2) -2iqy(1-x2)] _p2. 
(1 -px - iqy) 

(5.4) 

The nonvanishing null tetrad components of the Weyl 
tensor are given by 

Cz = [-p(Uau ){3u -~(3u(Uau)(p) 

+ 2pau/3u ]/(2p I/2N), 

Co - R 124 - !S/I' = - {p2/3u{3~ - H (U au )(p)] (5.5) 

X [( vau ) (p) ]}/(2p3/2N), 

and 
C_ 2 = [-p(Vav)/3~-~(Vav)(p)/3~ 

+ 2pa~{3 ~]/(2pt/2N). 
Alternatively, one might prefer to follow the example of 
what was done l9 in order to compute the Weyl conform ten
sor of the Tomimatsu-Sato solutions. In that case, once Co 
has been evaluated, one proceeds to calculate C2 and C_ 2 

using the vacuum Bianchi identities, 

/3 : (p3/ 2C2) = (U au )(p3/2Co), 

/3u(p3/2C_ 2 ) = (vau)(p3/2Co), 
(5.6) 

where the requirement of exact divisibility of the right-hand 
side by /3: or by /3u' respectively, serves as an excellent 
check upon the accuracy of one's calculation. 

Our results for the Weyl conform tensor components 
Cz, Co, and C_ 2 in region IV are contained in the Appendix 
to this paper. The denominators of C2, Co, and C _ 2 consist of 
a factor N 3 times p raised to a power. Since N nowhere van
ishes within the range of coordinates being considered, the 
only curvature singularities are located where p--.O, i.e., on 
the surface where U Z + v2 = 1. 

In region II, where one has a Petrov type N plane wave 
solution with no u dependence, C2 = Co = 0, while in region 
III, where one has a Petrov type N plane wave solution with 
no v dependence, Co = C -2 = O. While C2 is continuous 
across the surface v = 0 separating region III from region 
IV, there is a step discontinuity in Co and C_ 2• Similarly 
there is a step discontinuity in Co and C2 at the null surface 
u = 0 which separates region II from region IV. In addition 
to these step discontinuities, there is a 8(u) term in C2 and a 
o(v) term in C_ 2• Because our solution is not fiat in regions 
II and III, it involves gravitational shock waves as well as 
impulsive waves. At this time the only known solutions that 
are fiat in regions II and III are the Khan-Penrose solution 
and its Nutku-Halil generalization! 

Note added in proof 

After this work was completed we learned that Ferrari, 
Ibanez, and Bruni20 subsequently succeeded in obtaining 
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closed form metrical expressions representing colliding 
waves with noncollinear polarization and arbitrary n value. 
We in turn have succeeded in generalizing their result, add
ing one more adjustable parameter. Our solution, which will 
be described in detail later, has the E potential E = pn alb, 
where 

a=X{(p+p')[(1 +x)/(1-x)] -(n+\)/2 

- (p-p')[(1 +x)/(1_x)](n+ll/2} 

+iY{(q+q')[(1 +y)/(1-y)] -(n+l)/2 

_ (q - q')[ (1 + y)/(1 - y)] (n + 1l/2}, 

b = X {(p + p') [(1 + x)/(1 - x)] - (n - \)/2 

- (p-p')[(l +x)/(1_x)](n- ll/2} 

- iY{(q + q') [(1 + y)/(1 _ y)] - (n-l)12 

- (q-q')[(1 +y)/(l_y)](n- lll2}, 

where p2 + q2 = I and p,2 + q,2 = I. When q' is replaced by 
o andp' by I, one obtains solutions that are equivalent, after 
correcting misprints in their preprint, to those found by Fer
rari, Ibanez, and Bruni. 

In the case n = 0 the additional parameter q' is inessen
tial and one simply obtains the Nutku-HaliI solution. In the 
case n = lone obtains both the Chandrasekhar-Xantho
poulos solution6 and the Ferrari-Ibanez-Bruni n = I solu
tions as the respective special cases (q = 0, p = I) and 
(q' = O,p' = I) of the more general Kerr-NUT solution. In 
the case n = 2 one obtains a two-parameter generalization of 
the solution described in this paper. 
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APPENDIX; WEYL CONFORM TENSOR 

The evaluation of the Weyl conform tensor in region IV 
begins with the observation that 

W2: = - (2N)3p l/2C2 

= 2p[ NU(2N/3u ),u - UN,u (2N/3u) 

- (2Nau ) (2N/3u)] + 3NUp,u (2N/3u), 

Wo: = - (2p1/2N)3CO 

=p2(2N/3u )(2N/3~) + N 2(X2 _ y2), 

W_ 2: = - (2N)3p l/2C_ 2 

= 2p[NV(2N/3v),v - VN,v(2N/3v) 

- (2Nav) (2N/3v)] + 3NVp,v (2N/3v)' 

where 

and 

2N/3=A dB-BdA, 

2Na =A * dB +B* dA, 

A = 2[ (1 - 2px + x 2) (1 _ y2) 

- 2iqy( I - x 2)] - Bp2, 

B= I-px-iqy, 

N= Re(AB*) 

= [I - 4px + 6x2 - 4px3 + X4] (1 _ y2) 

+ q2(X2 _ y2)(p2 _ 4). 

Because of the similarity of C -2 and C2, one may infer the 
value ofC_ 2 from that ofC2• 

Using the Grad Student: Rational Calculator symbolic 
manipulation program on a 10 MHz 8086 microcomputer, 
we evaluated the fields Wo and W2• Anticipating that we 
might encounter problems due to the very limited amount of 
RAM; namely, 360 K bytes, we forced all fields into a format 
in which they were homogeneous in the auxiliary parameters 
p+ andp_, where 

I = p2+ + p2_, P = p2+ _ p2_, q = 2p +p _. 

In particular, the fields W2 , Wo, and W -2 are homogeneous 
of the eighth degree in p +,p _, while the field N is homogen
eous of the fourth degree in p +,p _, The evaluation of Wo 
required 9 min, while the evaluation of W2 required 34 min. 
It turned out that no difficulty was experienced due to the 
limited RAM, although we suspect that the expressions 
would not have to be much more complicated before such 
difficulties would be encountered in the evaluation of C2• 

The program is capable of exploiting up to 512 K of RAM, 
but eventually one would be forced to consider the terms of 
different degree in p + and p _ separately, if one wished to 
continue to perform the calculations on a microcomputer. 

Introducing p = XY, X and Yas much as possible, we 
found that the expressions for Wo and W2 assume the follow
ing forms: 

Wo = [p6( - IIX 2 - 72x + 224) + p4( - X 6 - 8X4x + 48X 4 + 176X2x - 448X 2 + 4OOy2x - 576y2 - 704x + 1024) 

+p2( _ 320y4x + 256y4 + 640y2x _ 640y2) _ 128y6x + 128y6]p8+ 

2159 

- [p7(48i) +p5(32iX 2x - 256iX 2 + 192iy2x - 384iy2 -768ix + 1408i) +p3( - 64iX 4x + 320iX 4 

+ 768iX 2x - 1280iX 2 - 384iy4x + 384iy4 + 1280iy2x - 1280iy2 - 1024ix + 1024i) ]p7+p_ 

J. Math. Phys., Vol. 28, No.9, September 1987 Ernst, Garcia D., and Hauser 2159 



                                                                                                                                    

+ [p6( _ 12X 2 + 56y2 _ 16x - 128) + p4(4X6 + 16X 4x + 32X 2x + 64X 2 + 96y4x - 64y4 - 224y2x 

+ 96y2 + 128x) + p2(32X6 + 128X4x - 256X 4 - 256X 2x + 256X 2 + 64y6x - 64y6 - 256y4x 

+ 256y4 + 256y2x - 256y2) ]p6+ p2 _ _ [p7 (48i) + p5( _ 32iX 2x _ 256iX 2 + 192iy2x _ 384iy2 

-768ix + 1408i) +p3(64iX4X + 320iX 4 + 768iX 2x - 1280iX 2 - 384iy4x + 384iy4 

+ 1280iy2x - 1280iy2 - 1024ix + 1024i) ]p5+ p 3_ + [p6(46X 2 + 64y2 -704) 

+ p4( _ 6X 6 _ 96X 4 + 1408X 2 + 16y6 - 128y4 + 960y2 - 2048) 

+ p2( _ 64X 6 _ 512X 4 + 1280X2) _ 256X6]p~ p4_ 

- [p7( _ 48i) + p5( _ 32iX 2x + 256iX 2 + 192iy2x + 384iy2 - 768ix - 1408i) + p\ 64iX 4X - 320iX 4 

+ 768iX 2x + 1280iX 2 - 384iy4x - 384iy4 + 1280iy2x + 1280iy2 - 1024ix - 1024i) ]p3+ p S_ 

+ [p6( _ 12X 2 + 56y2 + 16x - 128) + p4(4X6 - 16X4x - 32X 2x + 64X 2 - 96y4x - 64y4 + 224y2x 

+ 96y2 - 128x) + p2(32X6 - 128X4x - 256X 4 + 256X 2x + 256X 2 - 64y6x 

_ 64y6 + 256y4x + 256y4 - 256y2x _ 256y2) ]p2+ p6 _ _ [p7( _ 48i) + p5(32iX 2x + 256iX 2 

+ 192iy2x + 384iy2 - 768ix - 14080 + p3( - 64iX 4x - 320iX 4 + 768iX 2x 

+ 1280iX 2 - 384iy4x - 384iy4 + 1280iy2x + 1280iy2 - 1024ix - 10240 ]p+p7_ 

+ [p6( _ 11X 2 + 72x + 224) + p4( - X 6 + 8X 4x + 48X 4 - 176X 2x - 448X 2 - 400y 2x 

- 576y2 + 704x + 1024) + p2(320y4x + 256y4 - 640y2x - 640y2) + 128y6x + 128y6]p8_ , 

W2 = [p5( - 6X 2x + 56X 2 + 212x - 508) + p4( - 6X4y - 56X 2xy + 184X 2y + 228xy - 256y) 

+p3(4X4X - 60X 4 - 288X 2x + 800X 2 -736y2x + 1024y2 + 1344x - 1984) 

+p2(256y2xy - 64Oy2y) +p(576y4x - 576y4 - 1280y2x + 1280y2) -768y4xy + 768y4y]p8+ 

+ [p6(36ix - 160i) + p5( - 6OiX2y - 224ixy + 336iy) 

+ p4( 16iX 4 + 168iX 2x - 560iX 2 - 376iy2x + 680iy2 - 976ix + 12640 

+ p3( _ 48iX 4xy + 416iX 4y + 1248iX 2xy - 2208iX 2y + 32iy2xy + 352iy2y - 1792ixy + 1536iy) 

+ p2( _ 8iX 6 - 176iX4x + 784iX 4 + 1792iX 2x - 2944iX 2 + 704iy4x - 896iy4 + 384iy2x - 2304ix + 23040 

+ p(768iy4xy - 768iy4y - 512iy2xy + 512iy2y ) - 384iy6x + 384iy6 + 768iy4x - 768iy4]p7+ p_ 
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+ [p6( 168y) + p5( _ 84X 2x + 64X 2 - 24y2x + 192y2 - 24x - 432) 

+ p4( _ 84X4y _ 192X 2xy - 48X 2y + 256y2xy - 96y2y + 96xy - 1248y) 

+ p3(56X 4x + 256X 4 + 1184X 2x - 1856X 2 + 4OOy4x - 528y4 - 1312y2x + 2112y2 - 896x) 

+ p2( _ 288X 4xy + 144OX4y + 2304X 2xy - 2304X 2y + 320y4xy - 320y4y - 2304y2xy + 2304y2y) 

+ p( - 128X6 - 704X 4x + 1600X4 + 1792X 2x - 1792X 2 - 256y6x + 256y6 

+ 1600y4x _ 1600y4 _ 1792y2x + 1792y2) ]p6+ p2_ 

+ [p6( _ 228ix _ 1600 + p5( - 132iX2y + 144iy2y - 224ixy + 688iy) 

+ p4(208iX4 + 472iX 2x - 16iX 2 + 144iy4x - 192iy4 - 488iy2x + 136iy2 + 208ix + 12640 

+p\ - 112iX4xy + 96iX4y + 352iX 2xy - 1312iX2y + 64iy4xy - 64iy4y + 928iY 2xy 

- 928iy2y - 1792ixy + 1792iy) +p2( - 104iX 6 - 80iX 4x - 816iX 4 - 1152iX 2x 

- 96iy6x + 96iy6 - 704iy4x + 704iy4 + 2944iy2x - 2944iy2 - 2304ix + 2304i) 

+ p(768iX 4xy - 1024iX4y - 512iX 2xy + 512iX 2y) + 384iX 6 + 768iX 4x _ 768iX4]pS+ p3_ 

+ [p5( _ 240X 2 + 640y2 + 152) + p4(496X 2xy - 256y2xy - 384xy) + p\ - 136X4 - 1984X 2 

- 288y4 - 1152y2 + 3968) + p2(64X4xy - 512X 2xy) + p(256X 6 + 1152X 4 - 2560X2) 

+ 1536X4xy]p~p~ + [p6( -228ix+ 160i) +p5( -132iX 2y+ 144iy2y+ 224ixy+ 688iy) 
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+ p4( _ 20SiX 4 + 472iX 2x + 16iX 2 + 144iy4x + 192iy4 
- 4SSiy2x - 136iy2 + 20Six - 1264i) 

+p3(112iX4xy + 96iX4y - 352iX 2xy - 1312iX 2y - 64iy4XY - 64iy4y - 92Siy2XY - 92Siy2y + 1792ixy 

+ 1792iy) + p2( 104iX6 - SOiX 4x + S16iX 4 - 1152iX 2x - 96iy6x - 96iy6 - 704iy4x - 704iy4 

+ 2944iy2x + 2944iy2 - 2304ix - 2304i) +p( - 76SiX 4xy - 1024iX4y + 512iX 2xy + 512iX 2y) 

_ 3S4iX 6 + 76SiX 4x + 76SiX4]p3+ p5_ 

+ [p6( _ 168y) +p5(84X2X + 64X 2 + 24y2x + 192y2 + 24x - 432) 

+ p4(84X4y - 192X 2xy + 48X 2y + 256y2xy + 96y2y + 96xy + 1248y) 

+ p3( _ 56X 4x + 256X 4 - 1184X 2x - 1856X 2 - 400y4X - 528y4 + 1312y2x + 2Il2y2 + 896x) 

+ p2( _ 288X4xy _ 1440X4y + 2304X 2xy + 2304X 2y + 320y4xy + 320y4y - 2304y2xy - 2304y2y ) 

+p( - 128X 6 + 704X 4x + 1600X 4 - 1792X 2x - 1792X 2 + 256y6x + 256y6 

-1600y4x-1600y4+ 1792y2x + 1792y2)]p2+p6_ + [p6(36ix+ 1600 +p5( -60iX 2y+224ixy + 336iy) 

+ p4( _ 16iX4 + 168iX 2x + 560iX 2 - 376iy2x - 680iy2 - 976ix - 12640 

+ p3(48iX4xy + 416iX 4y - 1248iX 2xy - 2208lX zy - 32iY zxy + 352iYZy + 1792ixy + 1536iy) 

+p2(8iX6 - 176lX4X - 784iX 4 + 1792iX 2x + 2944iX z + 704iy4x + 896iy4 + 384iy2x - 2304ix - 2304i) 

+ p( - 768iy4xy - 768iy4y + 512iYzxy + 512iy2y ) - 384iy6x - 384iy6 + 768iy4x + 768iy4]p+p7_ 

+ [p5(6X 2x + 56X z - 212x - 508) +p4(6X4y - 56X Zxy - 184X Zy + 288xy + 256y) 

+ p3( _ 4X 4x _ 60X 4 + 288X zx + 800X 2 + 736y2x + 1024Yz - 1344x - 1984) + p2(256Yzxy + 640YZy) 

+ p( - 576y4x - 576y4 + 1280y2x + 1280y2) - 768y4xy _ 768y4y]p8_ . 

At the present time we do not have a simple elegant 
representation of the expressions W2 , Wo, and W -z. We be
lieve that it is easier to avoid the introduction of errors if 
complicated algebraic expressions are transmitted by elec
tronic means. This is likely to become an increasingly impor
tant consideration as we obtain ever more involved Weyl 
tensor results in the future. We propose, therefore, to make 
available to people who are engaged in research in this field a 
5! in. 360 K floppy disk upon which are recorded results 
obtained directly from the Grad Student: Rational Calcula
tor program. The results will be in standard ASCII files, 
which can be read and manipulated using a LISP interpreter 
and one's own program, or which can be read by the Grad 
Student: Rational Calculator program and subjected to ad
ditional analysis. 
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The problem of finding a class of solutions of Einstein's field equations for the interior of a 
uniformly rotating, axisymmetric perfect fluid is reduced to the integration of a known 
function. A number of solutions of the class is given explicitly. The equipressure surfaces of all 
solutions of the class are planes. The class contains solutions with the equation of state p = rl-', 
r> 0,0> r> - 1 + 2/$, and r< - 1 - 2/$, which are given explicitly. 

I. INTRODUCTION 

By introducing a new system of coordinates Bonanos 
and Sklavenitis l were able to reduce Einstein's field equa
tions for the interior of a uniformly rotating axisymmetric 
perfect fluid to a system of six partial differential equations, 
four of which involve only first derivatives of the metric 
functions. Four of the six equations are independent. Then 
they reduced the problem to two second-order partial differ
ential equations. Solutions of Einstein's equations with van
ishing magnetic Weyl tensor, whose existence had been 
proved before,2 were found explicitly as solutions of these 
two equations. 3 

In this paper it is shown that we can get a wide class of 
solutions of the original system of six equations, which satis
fy the boundary conditions, by integrating a known func
tion. This is done in Sec. II where it is also shown that for all 
solutions of the class fluid's equipressure surfaces are planes. 
Therefore the solutions do not represent the gravitational 
field of isolated rotating masses. 

In Sec. III we derive explicitly a number of solutions of 
the class. Since the equations of state of these solutions are in 
one case simple but not realistic and in all other cases compli
cated we derive in Sec. IV by a different method a new solu
tion whose equation of state is physically interesting. Finally 
in Sec. IV by calculating the Killing vectors of one solution 
of the class we find that the axial symmetry is the highest 
symmetry. In general we expect this to be the case for the 
solutions of the class. We should mention that the number of 
known axially symmetric perfect fluid solutions is limited.4

•
5 

II. THE CLASS OF SOLUTIONS 

To derive our class of solutions we shall follow the nota
tion of Ref. 1. In this work the line element ds2 for stationary 
axially symmetric space-time was written in the form 

1 ds2 = J;2 (dt + A dq:;)2 - h 2p2 dq:; 2 

- h 2 a 2 {p ( ~h r + Q dp2 + 2R ~h dP}, (1 ) 

where 

1i2 = l/(PQ _ R 2) (2) 

and t, q:;,p, and h are the coordinates of the problem. Also in 

this work the pressure p and the energy density 1-', which 
appear in the energy-momentum tensor 

pb = (I-' + p ) uaub - pg"b ( 3 ) 

of a perfect fluid, were parametrized as follows: 

81TP = L, 81T(1-' + p) = /h _ 2/ ( 4) 
h 2 h h 2 ' 

where/ =/(h) and/h = d/ldh. Generally in the paper we 
shall use the notation G x = aG / ax for every coordinate x 
and every function G. The field equations lead to a system of 
six equations involving the functions P, Q, R, a, A, andf. A 
solution of the four first-order equations satisfies the other 
two. We shall find solutions of a system of four equations 
three of which are first order and the other of second order 
and then we shall show that these solutions satisfy the re
maining first-order equation. We shall choose the following 
set of four equations 1: 

(l/pa){(pa)p - h(Ra)h} - 2/= 0, (5) 

{(a/ph 4)(PAp - RhAh )}p 

+h{(alph 4)(QhAh -RAp)h =0, (6) 

We shall find solutions of the system of equations (5)
(8) when a is independent of p, that is, when 

a = Ii(h). (9) 

We define sand z by the relations 

t=p2, Z= hZ. 

Then since/=/(z) Eq. (5) becomes 

(Pli - sa/)s - z(Ral.jf)z = O. 

Therefore we get 

pa - sli/= zrz ' 

Ral# = r s ' 

( 10) 

(11 ) 

(12) 

(13) 

where r is an arbitrary function of sand z. Also writing Eq. 
(6) in the form 
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(
!:J.PA s _ ll.RAz) + Z(!:J.QAz _ ll.RAs ) = 0, (14) 

Z2 z.Jf s ZS z2.Jf z 

we see immediately that we must have 

!:J.P(As/z) - !:J.R(AJ.Jf) =z2Hz' 

ll.R(As/z) - !:J.Q(Az/.Jf) =z.Jf Hs' 

(15) 

(16) 

where H is an arbitrary function of sand z. Solving the above 

system for As/z and Az/.Jf we get 

As/z = z!:J.(zQHz -.JfRHs), (17) 

(18) 

Expressing Rand Q of Eqs. (7) and (8) in terms of Sand z 
and subsequently using the above relations to eliminate As 
andAz we get 

R = (zPz/2.Jf + z3.JfPHsH z )/(1 + z4H;), (19) 

Q= (Ps -1+rsPH~)/(I +z4H;). (20) 

Also from Eqs. (2) and (20) we get 

!:J.2p(Ps -1+z2sPHP - (!:J.2R2+ 1)(1 +z4H;) =0. 
(21) 

Finally the expressions A s and A z of Eqs. (17) and (18) 
must satisfy the relation 

Asz = Azs' (22) 

To find solutions of the system ofEqs. (12), (13), and 
(17)-(22) we make the ansatz 

rHz = hl(z), 

Hs =0, 

P= 1 + SPI(Z). 

Then Eqs. (12) and (13) give, respectively, 

(23a) 

(23b) 

(23c) 

r z = (l/z)!:J.[ 1 + S(PI -I)], (24) 

rs =z!:J.Plz/2(1 +hi), (25) 

while using Eq. (13) we find that Eq. (21) is equivalent to 
the relations 

q=PI' 

!:J.2(PI -I) = 1 +hi· 

From Eqs. (25) and (26) we get 

Plz = ± [2!:J.(PI - I)..[ii;];z. 

(26) 

(27) 

(28) 

Also the relation rzs = rsz' where r z and rs are given by 
Eqs. (24) and (26),leadstoEq. (28). The functions As and 
Az canbeeasilycalculatedfromEqs. (17)-(20), (23), (27), 
and (28). We get 

As =zhl/!:J., 

Az = ± shl/ji;· 

Then the relation Asz = Azs gives 

!(Z~I)= ±hl..[ii;. 

(29) 

(30) 

(31) 

But ifEq. (31) is satisfied Eq. (30) can be integrated. The 
result is A = s(zhl/!:J.) + I(s), where I(s) is an arbitrary 
function of S. Also since h I and !:J. are functions of z only the 
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integration ofEq. (29) givesA = szhl/!:J. + O'(z). Therefore 
we must have 1 = 0' = c, where c is an arbitrary constant. 
Choosing c = 0 to satisfy the boundary conditions we get 

A = szhl/!:J.. (32) 

Therefore if we know h I and !:J. we can obtain A using Eq. 
(32). We shall find functions!:J., hl,PI' and/, which satisfy 
Eqs. (27), (28), and (31). 

From Eqs. (27) and (28) we get 

(..[ii;)z= ±(1+hi)/z!:J.. (33) 

Using the above expression to eliminate PI from Eq. (31) 
and replacing z by w, where 

W = lnz, 

Eq. (31) becomes 

or 

~{~ ~[ln(!!.J.)] +~} = 
dw !:J. dw !:J. !:J. 

~(1 + 1]w) = ~ + !:J.e2T/ 

dw!:J. !:J. ' 

where 

1] = In(hl/!:J.)· 

If we introduce q by the relation 

!:J.= (I +1]w)eq
-T/ 

1 + hi 

!:J. 

(34) 

(35) 

(36) 

(37) 

and use this expression to eliminate!:J. from Eq. (35) we get a 
second-degree equation of 1]w' which involves q and qw be
sides 1]w. Solving this equation with respect to 1]w we get 

1]w = [l/2(e2q 
- 1)] X{1 - qw - 2e2q 

± [(qw + 1)2 + 4(1 - e2q
) f/2}. (38) 

For any q we can proceed in the calculation of 1] using Eq. 
(38). Then we can compute!:J., hI, PI'/' and A using Eqs. 
(37), (36), (31), (27), and (32), respectively, while we can 
find Rand Q using Eqs. (19), (20), and (23). Since q is an 
arbitrary but known function of w the calculation of !:J., hI' 
PI'/' A, R, and Q is reduced to the integration of a known 
function. In this way a wide class of solutions can be ob
tained. We can show that every solution ofEqs. (27), (28), 
and (31) satisfies the fourth first-order equation I 

(.Jfll.R)s -z(!:J.Q)z + ~ !:J.PA~ + ~ !:J.QA; 

2 1 
- --!:J.RA As - -zl, !:J. = 0 

z.Jf z. 2 z 

and therefore gives a solution of Einstein's equations. 
We shall examine now if the solutions of the class satisfy 

the boundary conditions. Since in the general case the prob
lem can be reduced to the solution of two partial differential 
equations involving P, A, and/, the boundary conditions are 
imposed on these functions. We must havel 

P-+l +SPI(Z), A-+Sal(z) as S-+O, (39) 

where PI (z) and a I (z) are arbitrary functions of z. For our 
class of solutions we havepI(z) =PI(Z) andal(z) =zhl/!:J., 
as we see from Eqs. (23c) and (32). Also we must havel 
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PI-f-(a l /z)2>0. (40) 

For our class of solutions we get, if we use Eq. (27), 

PI-f_(:1)2=PI-f-(~r = ~2 >0, (41) 

that is the relation (40) is satisfied. Therefore all solutions of 
the class have the proper behavior near the axis. Finally f(z) 
must lead to a realistic equation of state. The explicit form of 
f(z), and therefore the equation of state, depends on the spe
cific solution. 

Also we shall find the equipressure surfaces of the solu
tions of the class. To do that we compare 1 the metric offtuids 
equipressure surfaces 

dcr = h 2(p2 dip 2 + 6,?Q dp2) (42) 

with the metric ddi of a surface of revolution in Euclidean 
three-space described in cylindrical coordinates p, z, and ip 
by the equation z = z(p). This metric is 

ddi = [1 + (:; Y] dp2 + p2 dip 2. (43) 

From Eqs. (42) and (43) we obtain 

hp=p, (44) 

a2Q_l = (:;r (45) 

But from Eqs. (20), (23), and (27) we get for all solutions of 
the class 

a 2Q - 1 = O. ( 46) 

Then Eq. (45) gives 

z = const. (47) 

Therefore the equipressure surfaces are planes. 

III. EXPLICIT EXAMPLES 

In this section we shall give explicitly a number of solu
tions of the class. Two such solutions can be obtained if we 
assume that 

(48) 

The general solution of this equation is 

where C 1 is an arbitrary constant. Then Eq. (38) gives 

(50) 

Therefore we get from Eqs. (34) and (50) 

{ 
- 2lnz + C, 

711.2 = _ (1/2c
l
)z-2 + c, (51) 

where C is an arbitrary constant. If we know q and 71 we can 
proceed as explained before to calculate a, hl,PI,j,A, R, and 
Q. For q and 71 given by Eqs. (49) and (51) we get the 
following two solutions. 

Solution 1: 
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R2 = clc~Kz2 exp( - --4), 
c1z 

CiC~Z4 ( 1) 
Q2 = r 1 exp - --2 ' 

c1 + C1Z 

where CI and C2 are arbitrary real constants. 
Other solutions can be found as follows: Integrating Eq. 

(38) and setting 

q = pn T (54) 

we get 

f dw 
71 = - w - lln( 1 - T) -

4 2(lIT)-I) 

f ~( - (Twl2T) + If + 4(1 - liT) + dw. 
- 2(1/T- 1) 

(55) 

We shall find solutions of the above equation for which 

( - Tw/2T + 1)2 + 4(1 - liT) = T. (56) 

The solution of (56) is 

(57) 

where C is a constant. Substituting this expression in Eq. 
(55), performing the integration, and expressing the final 
result in terms of z we get the solutions 

{
In[C I (1 - C~3)Z-2], 

713,4 = _! In[c
1 
(2 + C~3)zll/3] - (lII8c2)z-3. 

(58) 

Starting from the expressions (54), (57), and (58) and pro
ceeding as before we easily get two solutions. 

Solution 3: 

a 3 = -r/cI(1-c~), (h l )3= -1, 

P3 = 1 + (t /z4)ci (1 + 2C~3)2, 
f3 = (Ci/Z4) [2(2 + C~3)2 - 9], 

A3= (t/Z)CI(1-C~), 

R3 = - (K /z4)ci (1 - C~3) (1 + 2C~3), 
Q3= (ci/z4)(1-c~3)2. 

Solution 4: 
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(60) 

K 
3cfc~(1 + 2c~)(2 + C~)1/2 

R-f:---------
4 - !> (1-C~)3 

XZ-
11/6 

exp( - 9C~). 
9c~~~(2 + C~)3/2 -11/6 ( 1) 

Q4 = ..3 4 Z exp - ----:3 ' 
(1- C~ ) 9c~ 

where c 1 and C2 are arbitrary real constants. 
Additional solutions can be found explicitly as follows: 

Let us take 

(61) 

where c 1 and C2 are constants. Substituting the above expres
sion in Eq. (38) and performing the integration we get 

11 = (c4 - 1 ± ~c~ + l)w - (1 ± 1) (C4/cl) In (c2e C
,W - 1) ± (2c4/c1)ln [~c~ + 1 - C2ec,w - c4 ] 

~ (2/cl)~C~ + Iln[ ~d + 1 - C2ec,w - ~d + 1] + In c3±' (62) 

where C4 = (c 1 + 2) 14 and c 3 ± are constants. Starting from Eqs. (61) and (62) and proceeding as before we can find two 
solutions. 

Solutions 5 and 6: 

.:1S,6 = (,JC;/c3± )zc4 =t=p.+I ( - C4 ~ ~d + 1 - c~' ) (2c.lc,) - I (~c~ + 1 - c~' - ~d + 1) ±2,)~+ I/C" 

,JC;z<,/2 
(h 1)s,6 = + 2 , 

~d + l-c~' ±c4 

PS,6 = 1 + S(c~ ± /c2)Z- 2C
d 2~ch 1 ( ~ ~c~ + 1 - c~' - c4 ) -4c';c, (~d + 1 _ c~' _ ~c~ + 1) =F~~+ I/c" 

fS,6 = 2c4 (d ± I C2)Z - 2Cd ~ ( ~ ~ c~ + 1 - c~' - c4 ) - 2/c, ( ~ d + 1 - c~' - ~c~ + 1) =t= ~ ~ + I IC" (63 ) 

AS,6 = SC3 ± zCd~ch I ( +~d + 1 - c~' - c4 ) -2c';c, ( ~d + 1 - c~' - fcf+1) =F2p.+l/c" 

R S,6 = K(c~± /c2)Z-2Cd2~ch I ( ~~d + 1 - c~' - c4 ) -2/c, ( ~c~ + 1 - c~' - ~c! + 1) =t=4p.+)/c" 

QS,6 = (d± /c2)Z-2Cd2,)~+1 (+~d + l-c~' -c4 ) -(4C4/C'l+2(~C; + l-c~' -~d + 1) =t=~chl/C" 
where C2 is a positive but otherwise arbitrary real constant, the C3 ± are arbitrary real constants, and the upper sign corre
sponds to one ofthe solutions and the lower sign to the other. 

IV. EQUATION OF STATE AND ANOTHER SOLUTION 

Using Eqs. (4) and the expression for f of the various 
solutions we can find the equation of state of these solutions. 
For example, for solution 1 we get the equation of state 

f.l + IIp = 0, (64) 

which is not very meaningful physically. However axially, 
symmetric perfect fluid solutions of Einstein's equations 
with an equation of state of the form f.l + 3p = const (see 
Refs. 5 and 6) or ofthe form f.l + 3p = 0 (Ref. 7) have been 
reported. The equation of state of the other solutions of Sec. 
III are complicated and will not be given explicitly. 

It is interesting to get solutions of the class with a realis
tic equation of state. We shall do that now following a way 
that differs from the one we have followed above. More spe
cifically we shall not use Eq. (38) but from Eqs. (27), (31), 
and (33) we shall eliminate hi and .:1 and we shall get a 
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relation betweenpl and! Then we shall try to find solutions 
of this equation, whosefgives a reasonable equation of state. 

If we set 

8 = (h l/.:1)2, ~ =Pl' 

Eqs. (27), (31), and (33) take the form 

~-f=8+ 1/.:12, 

aw (In 8) + 2 ~ 2v.:1 = 0, 

Vw = ± .:1(8 + 1/.:12
). 

(65) 

(66) 

(67) 

(68) 

Solving Eqs. (66) and (68) for 8 and .:1 and substituting in 
Eq. (67) we get 

aw [In(1 - (~- f)/v!,)] + 2 - fwl(~ -f) = O. 
(69) 

We see that the problem of finding solutions of the class has 
been reduced to the problem of finding solutions of the above 
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equation, which has two dependent variables. 
The equation of state 

p = rf.l, (70) 

where r is a positive constant, is very interesting physically.· 
Using Eqs. (4) we find that the functionfwhich gives the 
equation of state (70) is 

C = (3r + 1)/2r, 

(71a) 

(71b) 

where C I is an arbitrary constant. Substituting the above 
expression in Eq. (69) we find that this equation takes the 
form 

2(v - cleCW)2vww + [2(v - c1eCW ) - clceCW]v~ 

- 2v(v - cleCW)~ - 2(v - c1ecw - c1ceCW ) 

X (v - c1eCW)vw = O. (72) 

A special solution of this complicated nonlinear second-or
der differential equation is given by the simple expression 

(73) 

where C3 is a constant, provided that c l , c3, and c satisfy the 
relation 

clc-2(c~ -cl) =0 

or the relation 

(74) 

C~C2 - 4(c~ - c l ) = O. (75) 

But ifEqs. (71a), (73), and (75) are satisfied the expression 
1 - (v - j)/~, whose In appears in Eq. (69), becomes O. 
Therefore the relation (75) cannot be accepted, which 
means that our solution is given by Eqs. (71), (73), and 
(74). Calling it solution 7 and using these relations and Eqs. 
(19), (20), (23), (32), (65), (66), and (68) we find its 
explicit form, which is the following: 

A _ 7r + 1 z- (3y+ 1)/4y 
~7- , 

4rC3 

(h ) = ~5yz + lOr + 1 
I 7 4r ' 

In Eqs. (76) C3 is an arbitrary real constant. Also since the 
constant r appears as a factor in the denominators and the 
expression 5f + lOr + 1 must be positive, r can take any 
value in the intervals 

r> 0, 0> r> - 1 + 21.j5, r< - 1 - 2/.j5. (77) 

The equation of state of solution (76) is given by Eq. (70), 
where r takes the above values. Since r can take any positive 
value this equation of state is physically meaningful. Cases of 
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particular interest of the above solution are the "(incoher
ent) radiation" case 

p = j f.l, r = j, (78) 

and also the "stiff matter" case 

P =f.l, r= 1, (79) 

which leads to a sound speed equal to the velocity of light.4 

The "dust" case 

p = 0, r = 0 (80) 
is a limiting case, which is excluded. The pressure can be 
small, but not exactly zero. Exact solutions with equations of 
state of the form (70) are of interest, for example, in connec
tion with cosmological models, as interior solutions to be 
matched with vacuum exterior solutions, etc. 

Generally we can use Eq. (69) to derive solutions of the 
class. We can assume a certain form forf(or v) and calcu
late v (orf) by solving Eq. (69), in which case we have to 
solve a second- (or first-) order nonlinear differential equa
tion. 

v. SYMMETRY OF SOLUTIONS 

The fact that the surfaces of constant pressure of all 
solutions of the class are planes may lead one to suspect that 
the solutions are probably plane symmetric. 8 To face this 
problem we recall the well-known fact that the Killing vec
tors of a solution determine its symmetry in a manner inde
pendent of the coordinate system. Therefore to check if a 
solution of the class is plane symmetric we can calculate its 
Killing vectors. If we find only two commuting Killing vec
tors, one timelike and one spacelike, the highest symmetry of 
the solution is the axial symmetry, that is, the solution is not 
plane symmetric. We did the above calculation for the solu
tion 7 and we found that it has only two Killing vectors, a 
timelike and a spacelike (5 = a" 'TJ = a<p)' Therefore the 
solution 7 has no symmetry higher than the axial symmetry. 
We should point out that the solution 1 for C 1 = 0 and solu
tion 3 for C2 = 0 become identical with the solution 7 if 
llr + 1 = 0, C2C3 + 1 = 0 and if llr + 1 = 0, C1 = C3' re
spectively. In general we expect the symmetry of the solu
tions of the class to be the axial symmetry. 
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A scalar matter field coupled to general relativity and electromagnetism in a five-dimensional 
Kaluza-Klein model is considered. The five-dimensional space is assumed to be a fiber bundle 
as in the usual description of a gauge theory and not a more general manifold. Properly taking 
this into account allows one to use a Lagrangian density for the scalar field which includes 
charge quantization but not the unphysical superheavy masses found by other authors. A 
natural, satisfactory explanation of why charge is quantized results. 

I. INTRODUCTION 

There is presently no satisfactory explanation of why all 
observed free particles have a charge that is an integer multi
ple of the absolute value of the charge on the electron e. 
Dirac I sought such an explanation but was led to a quantiza
tion condition for eg, where g is the strength of the magnetic 
monopole, somewhat to his disappointment. (In the modern 
language of a fiber bundle model of a UI gauge theory, pio
neered by Wu and Yang,2 this quantization condition arises 
from the requirement that the gauge transformation in the 
overlap region of the two domains necessary to cover the 
base space be single valued. ) 

A promising alternative approach to understanding 
charge quantization follows from the Kaluza3-Klein4 five
dimensional geometrical unification of general relativity and 
electromagnetism. This was developed by Einstein, Barg
mann, and Bergmann5,6 who treated the fifth dimension as a 
compact space. Bergmann 7 showed that the circumference 
of a closed space in which all self-intersecting geodesics are 
closed lines without discontinuities of direction is a charac
teristic constant of that space. This strongly suggests that 
this circumference should represent some invariant physical 
quantity. We see below that it is related to electric charge. 
Note that assuming the fifth dimension to be compact in the 
original five-dimensional general manifold has little justifi
cation and in fact partially dismantles the unification. If we 
view the five-dimensional space to be a fiber bundle, how
ever, as in the modern description of a gauge theory by Cho,8 

with a UI gauge group (isomorphic to a circle) and space
time as the base space, then the above cylindrical space is 
quite natural. 

Klein9 first got charge quantization in a rather heuristic 
paper out of a Kaluza-Klein model by defining the momen
tum conjugate to the fifth dimension and then putting an 
integer number of de Broglie wavelengths around the com
pact space. Souriau, \0 in a better approach, considered the 
Klein-Gordon equation for a scalar field in a general five
dimensional manifold. His work has been used by Chodos 
and Detweiler I I and by Gross and Perry. 12 The Lagrangian 
density can be written as 

(1) 

where ytB is the metric of the five-dimensional manifold. 

(A, B take on five values here while p, v refer to the usual 
four-dimensional space-time.) If the yl's components of ytB 
are identified with the electromagnetic vector potential AI' 
as in the Kaluza-Klein theory and ¢ is assumed to be a peri
odic function of the coordinate of the fifth dimension X s, 
with period equal to the circumference of the fifth dimen
sion, then e is proportional to the reciprocal of the circumfer
ence of the fifth dimension and is quantized (see below). 
Unfortunately the y5s (as¢) (as¢t) term in (1) leads to su
perheavy Planck scale masses for all the charged particles. 
Putting a mass counterterm into ( 1) by hand to yield small 
physical masses also does not work. The added mass term 
would require fine tuning to 20 decimal places II and would 
have to be separately fine tuned for each charged particle. 
This is clearly very unsatisfactory. If the closed fifth dimen
sion has a dynamical origin as in the work of Chodos and 
Detweiler, II the charged particle would have been a tachyon 
in the past and would become very massive in the future. 

In the present paper, we show that if a Klein-Gordon 
particle is considered, not in a general five-dimensional Rie
mannian manifold, but in a five-dimensional fiber bundle 
with the fiber bundle structure properly taken into account, 
then ( 1 ) is not the only possibility. Using a more appropriate 
Lagrangian density, which is invariant to any change of basis 
that does not destroy the fiber bundle, leads to Souriau's 
charge quantization but without the superheavy masses ap
pearing at all. We thus arrive at a satisfactory explanation of 
the origin of charge quantization. 

II. QUANTIZATION OF ELECTRIC CHARGE WITHOUT 
SUPERHEAVY MASSES 

We will assume that electromagnetism is correctly de
scribed by a principal fiber bundle with a U I structure group 
G and space-time for the base space M. The usual four-po
tentials A I' are then cross-section-dependent components of 
the connection form in the fiber bundle. The fiber bundle can 
be viewed locally, but not globally, as the product of G and 
M. This elegant fiber bundle description of a gauge theory 
has been developed by many authors. 8

•
13

-
18 Following the 

nice treatment by Ch08 and leaving out many details, let us 
choose a coordinate basis Sp = ap for M, where . 

[Sp,Sv] = 0, (2) 
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and a set of n linearly independent left invariant vector fields 
Sj for a basis of G, where 

[Sj,Sj] =f~Sk . (3) 

Here n will be 1 for the UI electromagnetism case and the 
structure constants f~ vanish for this Abelian group. In 
much of the following, we will treat the more general non
Abelian case since many of our results hold there. (Upper
case Latin letters will range over n + 4 values in general, 
lowercase Greek letters over four space-time indices.) The 
Sj can be naturally mapped into the fiber bundle space as the 
fundamental vector fields sr. Also the SP can be horizon
tally lifted into the bundle to become tp • Here tp and S r can 
be used as a basis for the fiber bundle if we wish. Their com
mutation relations are 

[sr,s!] =f~sr, [srlp] = 0, 

[tplv] = -F~vsr, 
(4) 

where F~v are the Yang-Mills fields. Following Cho,8 we 
can also introduce a metric for the fiber bundle r AB invar
iantly defined to satisfy 

f;-°A/:'°B 
rAB~j ~k =gjk' 

(5) 

where gpv is the metric of M and gjk the invariant metric of 
G. For the UI case we will takegss = 1. We could put a scalar 
field in for gss but such Brans-Dicke 19 type scalar fields seem 
not to be seen in nature. 

The five-dimensional fiber bundle is now a Riemannian 
manifold on which the Hilbert Lagrangian density R can be 
defined. Using this in an action principle rather miraculous
ly gives general relativity correctly coupled to the (source
less) Maxwell equations. The complete Einstein-Maxwell 
field equations are 

(6) 

except that we have no Rss equation in the UI case since agss 
must always vanish from our above assumption that gss = 1. 
We note that we have to be careful not to do something, in 
this case vary gss, which would be inconsistent with the as
sumed fiber bundle structure. 

Now to have electric charge present, we must have a 
source field 4> in addition to the gauge fields above. We will 
treat a scalar field for simplicity. A Dirac field would be very 
similar. We want this scalar field to act as a source both for 
general relativity and for the Maxwell equations. In order to 
do this, we need a Lagrangian density for the scalar field, 
!£' scalar' which can be added to R in the five-dimensional 
fiber bundle. Variation of!£' scalar with respect to 4> will then 
yield the Klein-Gordon equation for the scalar field and 
variation with respect to yAB will give a 4> contribution to the 
energy momentum tensor. If 4> is a quantum field, this latter 
can be treated approximately as a vacuum expectation val
ued source in the classical general relativity equations. A 
better approach is to quantize general relativity as well, of 
course. This really will not concern us here since we are 
primarily interested in the 4> field itself. Note that 4> and 
!£' scalar live, at least initially, in the five-dimensional fiber 
bundle in this view. Ordinarily a scalar field is viewed as a 
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cross section of a vector bundle associated to the principal 
fiber bundle through a representation of G. 16,18 The connec
tion in the principal fiber bundle (gauge covariant deriva
tive) induces a connection in the associated bundle. We will 
recover this description in the end but only after we integrate 
over the gauge degrees of freedom in !£' scalar in the fiber 
bundle to get an effective four-dimensional variational prin
ciple. 

Treating !£' scalar as an object in the five-dimensional 
space is exactly along the lines of the approach of Souriau, 10 

Chodos and Detweiler,12 and Gross and Perry. I I The differ
ence below is that we take account of the fact that this five
dimensional space is a principal fiber bundle and they do not. 

We now need an invariant expression for!£' matter' Sour
iau 10 and later authors 11,12 using his approach use (1) for 
this Lagrangian density. 

Souriau 10 uses a metric of the form 

B _ (gpv 
yA - _AV (7) 

which is equivalent to using SP from (2) and sr as basis 
vectors in the fiber bundle picture.8 In this basis, a A in ( 1) is 
the usual partial derivative. As alluded to in the Introduc
tion, using (7) in (1) leads to 12 

yAB(aA4>)(aB4>t) = I(ap + i(nlR s)Ap)4>12 

(8) 

for the Fourier component of 4> with X S dependence given by 
ejnx'/R' , where 21T R s is the circumference of the fifth dimen
sion. Equation (8) represents a particle of charge 

(9) 

where n is an integer, and of unphysical superheavy mass 

m = nlR s . (10) 

IfAp in (7) is put into conventional units, the properly nor
malized gauge field is (161TG) -1/2 Aft' The fine structure 
constant is a = (2LpIR S)2, whereLp is the Planck length. 
Thus R s must be about 23 times the Planck length. 

What is wrong with the Lagrangian density (8)? Can we 
preserve the charge quantization (9) while eliminating the 
r s(as4> )(as4>t ) mass term? Equation (8) is invariant under 
general coordinate transformations in a general five-dimen
sional Riemannian manifold. We have a fiber bundle, how
ever, not a general five-dimensional manifold. In particular a 
connection always exists on the fiber bundle. If s r is consid
ered the basis of a vertical subspace Vp of the tangent space 
Tp to the fiber bundle P then a connection is a choice of 
horizontal subspace Hp such that8 

(a) Tp is the direct sum of Vp and Hp' 
(b) aEG andpEl', Hpa = RaHp, 

where Ra is right multiplication by a, 
(c)Hp is smooth on P. (11) 

We will exploit the fact that we have a fiber bundle to find a 
more appropriate Lagrangian density. 

We want a Lagrangian density for the scalar field which 
is invariant under a change of basis of G, invariant under a 
change of basis of M, and finally invariant under any change 
of basis of the fiber bundle P which preserves the bundle 
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structure. We also want the usual Klein-Gordon Lagran
gian upon integration over the x 5 gauge coordinate. A La
grangian density that satisfies these conditions is 

_ p A A t 
2" scalar - l' (SatP )(Sp tP ) (12) 

as we shall now prove. Note that the horizontal lift vector 
fields ta are invariant vector fields ta and do not depend 
upon the basis in which they are written, although their com
ponents of course do depend upon the choice of basis. Ifwe 
write these out in terms of the local direct product basis,s 
they are t = a a - Aa a5 in the U1 case and look like gauge 
covariant derivatives. The 1'P are the space-time sector 
components of the fiber bundle metric y4B . Equation ( 12) is 
written in terms of the fiber bundle metric as it must be since 
it lives in the five-dimensional fiber bundle space. 

We note that (12) is at least as natural a Lagrangian 
density as ( 1) if one is dealing with a fiber bundle. Both can 
be viewed as a generalization of the usual Lagrangian density 
of a scalar field extended to a higher-dimensional fiber bun
dle. As we shall see below, (12) does not lead to unwanted 
superheavy masses but (1) does. The fact that we are in a 
fiber bundle does not rule out (1), but rather opens up the 
possibility of using (12) instead, thus avoiding the super
heavy masses. 

Equation ( 12) as it stands certainly does not look invar
iant to a change of basis in Psince it only involves some of the 
components of y4B. However, we must preserve the fiber 
bundle structure and we will find that any change of basis 
which does this will leave (12) invariant. We will show, in 
fact, quite generally even for the non-Abelian case, that 
1'P = gaP, where ~P is the usual space-time metric of the 
base space. Note that other components of y4B are not being 
discussed and raP i= gap in general, for example. We also 
verify that at least for the horizontal lift basis and for the 
local direct product basis in Chos that 1'P = gaP. Let us 
now show this in general. 

Consider a general basis 't I' ' 't i in P. We can write this in 
terms of the horizontal lift vector fields and fundamental lift 
vector fields as 

'tJL = y;tv +Z~sr, 'ti = W{st+XftJL , (13) 
where the W, X, y, Z are systems of coefficients. It is easy to 
show that by rechoosing basis vectors in G and M, we can 
always write this in the form 

(14) 

Now we use the crucial fact that a connection exists on our 
fiber bundle. Consider the tangent space Tp to the fiber bun
dle at point pEP. A subspace of Tp is those vectors which are 
only tangent to the fiber passing through p. This is the verti
cal subspace Vp mentioned above. A connection is then a 
choice of Hp satisfying ( 16). It is clear that 'ti can at most be 
linear combinations of the sr. Thus X f = 0 in (14). Also 
using Hp we can introduce a connection forms satisfying 

u/(.t- )=u/.t- A =0 Wi(k*)=Wi k~A8i (15) '::JJL - A'::JJL ' '::Jj - A'::Jj j' 
Thus Z ~ = Wi ('t I' ) for self-consistency in (14). Thus quite 
generally any choice of basis in the fiber bundle can be put 
into the form 

(16) 

2169 J. Math. Phys., Vol. 28, No.9, September 1987 

Now let me introduce dual vector fields to the tJL' These are 
defined as 

;;'(tv)=~:J~=8:, ;;'(sr)=~s1·=0. (17) 
Now in the general basis ( 16), the components of tJL and S r 
can be written as 

S;A = 81 andt~ = 8~ . (18) 

Note thatthe remaining component of t ~ ,namely t ~ , 
depends upon the basis used and is not needed below. Using 
( 18) we can now find some of the components of w~ and 
~ . Using (18) in (17) gives 

~=~. (19) 

Using (18) in (15) gives 

w; = 8; . (20) 

Now we have rAB defined in (5). For our Lagrangian 
density (12), we need y4B. This is most conveniently given 
in terms of the dual vector fields;;' as 

(21) 
y4B w~ w~ = gik . 

This is a basis invariant definition and can easily be 
shown to be consistent with the definition of r AB in (5) and 
relations like r AB yBc = 8~ . Substituting (19) into (21) 
then gives 

1'P =~P (22) 

exactly as we wanted for a general basis in P. Substituting 
(18) into (5) also gives 

(23) 

in the general non-Abelian case. All other components of 
y4B and r AB do not behave so nicely under a change of basis. 

Using (22), (12) can now be written as 
_ P A A t 

2" scalar -~ (SatP)(SptP ). (24) 

If tP is a scalar, it is clear that this is invariant under a change 
of basis of M since it is a space-time covariant scalar. It is 
invariant under a change of basis of G since ta is an invariant 
vector field. Also we have shown above that (24) is invariant 
under any change of basis of P which does not destroy the 
connection. In fact~P is specified independently of the fiber 
bundle so that basis invariance in P for the form (24) is 
obvious. The fact that ( 12) is invariant to a change in basis in 
Pis not so obvious, but we have shown (12) is equivalent to 
(24). 

If we work (24) out in the local direct product basis 
where the basis vectors become ordinary partial derivatives, 
we have 

2"scalar =~p(aatP-Aa a5tP)(aptPt -Ap a5tPt ). (25) 

Assuming that tP must be periodic in x 5 with a period equal to 
the circumference of the fifth dimension (tP must return to 
the same value after going around the closed fifth dimen
sion) gives the usual gauge covariant derivatives with the 
same charge quantization condition as before, namely (9), 
for the Fourier component of tP given by tP(n) (xl' )einx'IR 5. 

(Note that under a "gauge transformation" of the form 
X

5 
..... X

5 + f(xJL ), this x 5 dependence gives the usual phase 
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change to the wave function.) The difference is that now we 
do not get superheavy masses and in fact no mass at all. An 
invariant mass term m 2¢¢} can be put in by hand giving the 
charged particles any mass we like. This is exactly what we 
want. If we add .!/ scalar to the Hilbert action in the five
dimensional fiber bundle and integrate over x 5 to get an ef
fective four-dimensional theory, we end up with exactly the 
usual Klein-Gordon Lagrangian density for ¢(n) (xi' ) with 
the usual gauge covariant derivatives coupled to the usual 
Hilbert action for ga{3 and the Maxwell Lagrangian density. 
After the a5 derivatives are taken, the x 5 dependence cancels 
out between ¢ and ¢t in (25). 

At this point we can view ¢ as given by a cross section of 
an associated vector bundle if we wish. This is the usual view 
of matter fields in fiber bundle models of gauge theories. 
Note that the fact that ¢ originally lives in the fiber bundle 
itself was important above and led both to the acceptable 
form of .!/ scalar without supermassive modes appearing and 
to the fact that ¢ has x 5 dependence. This in turn led to a 
relation between the electric charge and the circumference of 
the fifth dimension and to the quantization of the charge. We 
end up with a completely satisfactory explanation of why 
charge is quantized based on (12) in the fiber bundle. 

III. CONCLUSION 

Fiber bundles are a natural and elegant language for the 
description ofa gauge theory. We have found a Lagrangian 
density (12) for a scalar matter field ¢ coupled to general 
relativity and electromagnetism in a five-dimensional fiber 
bundle which is invariant under any choice of basis which 
preserves the fiber bundle structure. This Lagrangian den
sity reduces to the usual Klein-Gordon expression in four 
dimensions with the circumference of the fifth dimension 
inversely proportional to the charge and with superheavy 
masses not appearing. The charge is quantized because ¢ 
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lives in a principal fiber bundle with a UI gauge group (iso
morphic to a circle). Thus ¢ must be periodic in the x 5 coor
dinate with period equal to the circumference of the fifth 
dimension. The fact that the charge is related to this circum
ference is consistent with the work of Bergmann7 who 
showed this circumference to be a constant of the space. The 
realization that we are dealing with a fiber bundle and not a 
general five-dimensional manifold allows us to restrict the 
Lagrangian density to a form without superheavy mass pres
ent. The fact that the fiber bundle plays a crucial role here 
and leads to the first satisfactory explanation for charge 
quantization, without unphysical elements arising, suggests 
that the elegant fiber bundle models of gauge theories con
tain considerable truth value. 
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Within nonlinear electrodynamics of Born-Infeld type allowing for the freedom of duality 
rotations, explicit type D solutions are constructed. The obtained type D solutions, which 
generalize the charged Taub-NUT (Newman-Unti-Tamburino) metric with A, exhaust all 
solutions within the considered class, under the assumption that the real eigenvectors of the 
electromagnetic field are aligned along the geodesic and shear-free principal null directions. 
Various relevant limiting transitions, in particular those of the flat space-time, are studied in 
some detail. 

I. INTRODUCTION 

More than fifty years ago Born and Infeld published 
their relevant papers 1.2 about nonlinear electrodynamics 
proposing a consistent convergent classical field theory. 
Further developments3

.4 have led to the conclusion that non
linear electrodynamics can be obtained from QED-in the 
limit of high occupation numbers-and therefore can be 
considered as a classical model of the vacuum polarization 
processes, concluding finally in a spectacular derivation of 
the Schwinger Lagrangian. 5 

The basic problems of the theories of Born-Infeld type 
are the following: the still somewhat unsettled status of the 
"correct" structural function, and the technical difficulty of 
devising solutions to nonlinear equations. If the structural 
function is to be considered as derived from QED it should 
be presently deduced taking into account the established 
facts concerned with the unification of the electromagnetic 
and weak interactions. This likely can be relatively easily 
done. However, if the Dirac monopoles really exist, the 
structural function should be derived from a quantum field 
theory that incorporates both types of charges-magnetic 
and electric-and that with large magnetic charge, does not 
allow for a perturbative treatment. With the charges mod
eled in nonlinear electrodynamics as the singularities of the 
field, as the only formal idea when magnetic monopole 
charges are included, there is still the possibility of demand
ing that the dynamical equations of nonlinear electrodynam
ics should allow the properly generalized freedom of the du
ality rotations. We will show in this paper how this can be 
consistently arranged. 

Now, as far as the technical difficulties in handling the 
nonlinear equations are concerned, indeed, even on the level 
of special relativity, the exact solutions of the dynamical 
scheme of Born-Infeld are rather scarce. Most of the litera
ture of the 1930's has dealt only with the spherically sym
metric solution corresponding to various Ansiitze for the 
structural function. On the level of general relativity we en
counter about the same situation; after the early paper,6 the 

a) Also at Escuela de Ciencias Fisico-Matematicas, Universidad Autonoma 
de Puebla, Puebla, Mexico. 

b) On leave of absence from the University of Warsaw, Warsaw, Poland. 

spherically symmetric case is studied more generally in Ref. 
7, although the later paper8 has shown that the Robinson9

-

Bertotti 10 metric can be considered as a carrier of the Born
Infeld structure. 

The basic goal of this paper consists in constructing-by 
employing more up to date techniques of the theory of exact 
solutions in general relativity-some nontrivial solutions to 
the dynamical scheme of nonlinear electrodynamics en
dowed with the freedom of the duality rotations which per
mits the inclusion of magnetic monopole charges. 

The most likely class of metrics that can relatively easily 
be shown to be the carrier of Born-Infeld structure can be 
guessed to be contained within the metrics of type D. We 
thus explored all known D branches in the assumption of the 
alignment of real eigenvectors of the electromagnetic field to 
the shear-free and geodesic principal null directions, con
cluding that the only "viable" branches from our point of 
view are the Carter ll separable B ( ±) branches and their 
limiting contractions. 

In this situation we have structured this paper as fol
lows. Section II gives the description of nonlinear electrody
namics in general relativity in terms of the null tetrad for
malism, and defines the class of nonlinear theories endowed 
with the freedom of the duality rotations. In Sec. III we show 
that B ( ± ) branches are indeed carriers of solutions to the 
dynamical scheme of nonlinear electrodynamics, deriving 
explicit solutions which generalize the Taub-NUT (New
man-Unti-Tamburino) charged solutions with A (Refs. 12 
and 13) to the case of "nonlinear charges" e and g. Section 
IV examines the special relativistic limits of the sub
branches of our solutions. The final section discusses the 
completeness of our solutions within the type D solutions 
and adds some closing remarks. 

11_ NONLINEAR ELECTRODYNAMICS AND THE 
DUALITY ROTATIONS 

In nonlinear theories of Born-Infeld type the electro
magnetic field has the Lagrangian 

51'1/ = - (l/41T){!?'Jl'v -J¥'(9,g)}, (2.1) 

where/,.v is a curl (];. ;v = 0++1" = A - A ) and cor-
r- r-V 'J jlV J-l.V v.Jl 
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responds to the intensity of electric field and magnetic induc
tion vectors (E and B), while tensor p"v corresponds to the 
electric induction and the intensity of the magnetic field vec
tors (D and H). The structualJunction JY'depends on the 
two invariants of the tensor P"v' 

v 

9: = !P"Vp"v' !?2: = !jI'vP"v; 
(2.2) 

v • _ ('/2 ~)"#vpa p"v'- I ,,-g e' Ppa' 

One constrains the admissible structural functions by de
manding (i) the correspondence to the linear theory 
[JY' = 9 + O( 9 2,£2 2

) 1, (ii) the parity conservation 
[JY'( 9,£2) = JY'( 9, - £2 )], (iii) the positive definite
ness of the energy density (JY' &' > 0), and (iv) the require
ment of the timelike nature of the energy flux vector 
(9 JY' .. ~ + £2 JY'g - JY';;;.O) , see Ref. 14. 

The action S = Sd4x.[=g (R + U + it'i!')' extrema
lized with respect tog"v, AI" andp"v leads to the dynamical 
equations: 

Einstein equations, 

G"v = 81TE"v + Ag"v' 
where 

(2.3a) 

41TE"v = - /,.lpvA + g"vit', it'. - - 41Tit'i!'; 
(2.3b) 

Faraday equations, 

j"v;v =fJ+.+/,.v =A",v -Av.,.; (2.3c) 

Maxwell equations, 

p"v;v = 0; (2.3d) 

and additionally-in analogy with the Lorentz theory of 
electrons-

the "material equations," 

(2.4 ) 

This basic description of the dynamical equations of 
nonlinear electrodynamics within general relativity can be 
now easily "translated" into a description in terms of the null 
tetrad formalism of Debney-Kerr-Schild 15 according to 
which the metric is given by 

(2.5) 
e3 = Ce3

), e4 = (~), 
where the eaEA 1 have to fulfill the first Cartan structure 
equations 

(2.6) 

with r a 
b EA 1 satisfying the second structure equations 

drab + r a
s 1\ r\ = ! R abedee 1\ ed. (2.7) 

(The tetrad components of a tensorial quantity are deter
mined from the coordinate components according to 

T ab'" a b T"v'" a _8 ) cd", = e" ey ' . . ap", eee'd' ". 

The Riemann curvature components R a bed may be replaced 
by the Weyl conformal tensor components, which are char
acterized by five complex curvature coefficients C (a l , 

a = 1, ... ,5, and the components of the traceless Ricci tensor 
Cab: = Rab - AgabR, where Rab: = R sabs' and R = R aa. 
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The Maxwell-Faraday equations of nonlinear electro
dynamics can be conveniently stated in terms of differential 
forms. Indeed, j"v;v = 0 is equivalent to /,.v being a curl; 
similarly, p"v;v = 0 is equivalent to P"v being a curl. There
fore, the Maxwell-Faraday equations (2.3c) and (2.3d) are 
equivalent to a complex condition 

Ul: = !( /,.v + P"v )dx" 1\ dxv 

(2.8) 

ExpressingJ"v in E"v in terms of P"v, one easily infers 
that the Einstein equations (2.3a), in the null tetrad descrip
tion, amount to 

Gab = 81TEab + Agab , 

where 

41TEab = JY' & ( - PasPb s + gab 9) 

+ (9JY'& + £2JY'g -JY')gab' 

which, in particular, imply 

R= -4A-8(9JY'& +£2JY'g -JY'). 

(2.9) 

(2.10) 

(2.11) 

The material equations in terms of null tetrad compo
nents are now 

jab;b =0 = pab;b , Jab =JY'&Pab +JY'gPab' (2.12) 

The null tetrad image of the tensorial duality operation (2.2) 
is defined by 

vab. __ 1 Abed ..... _ ~ 
P . - :1 e Pcd Pab - Pab' (2.13 ) 

Until now the choice for the null tetrad was left arbi
trary in these considerations. Assuming now that the elec
tromagnetic field is algebraically general, i.e., 

9 + P2 = !P"Vp"v + !jI'vp"v #0 

..... F + G = :!f"'f"v + !j"'f"v #0, 
(2.14 ) 

we select the null tetrad in such a manner that out of all 
independent components of Pab and Jab they are different 
from zero only 

P34 = D, PI2 = iH, J34 = E, JI2 = /fJ, (2.15 ) 

where D, H, E, and B are real. 
Geometrically, the assumption that Pab and Jab have 

only nontrivial independent components (2.15) means that 
the null tetrad is chosen to coincide with the common eigen
vectors of lab and P ab . 

The invariants (2.14) are now 

9 + P2 = -! (D + iH)2#0, 
v v 

F+G= -!(E+iB)2#0, 
(2.16 ) 

so that (D,H) and (E,B) can be interpreted as independent 
parameters of the complex invariants of the electromagnetic 
field, and therefore invariants as such. 

The essential advantage of our choice for the null tetrad 
is that Eab from (2.10) diagonalizes; out of all independent 
components of this object only EI2 and E34 are different from 
zero, and are given by 

41TEI2 } 2 v 2 = +! (D + H )JY' & 
41TE34 

Salazar I., Garcia D., and Plebanski 
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Used in Einstein equations from (2.9)-with Gab 
= Cab - 19abR -this means that the information con
tained in Einstein equations reduces to 

Cab = 0, except for C12 = - C34 

= - (D 2 + H2)7t" 9' 

(2.18 ) 

while R is given by (2.11). 
Next, within the present assumptions--employing the 

tetrad duality operation (2.13 )-we easily find that the 
Maxwell-Faraday equations (2.8) reduce to 

w = (D + ifJ)e1/\ e2 + (E + iH)e3
/\ e4 

-+dw = 0. (2.19) 

Similarly, one easily finds that under the present as
sumptions the material equations amount to 

(2.20) 

In this null tetrad description of the dynamical scheme 
of nonlinear electrodynamics in general relativity, the main 
weight of the differential structure is shifted onto that null 
tetrad ea subjected to Cab = 0, except for C12 = - C34 :;i:O. 
This is even more evident if one tries to solve the considered 
dynamical equations as in Ref. 16 under a strong restrictive 
assumption that P + g = const:;i:O, and hence all D, H, E, 
and B are constants. This subcase studied in Ref. 16 accord
ing to the Newman-Penrose (NP) formalism 17 is of some 
interest, since within its ideology any standard electrovac 
solution with F + G = const:;i:O-and necessarily with 
A. :;i:O-can be reinterpreted as a solution to the general 
Born-Infeld scheme. 

Now, the studied differential structure, Eqs. (2.11) and 
(2.17)-(2.20), can be equivalently described in terms of al
ternative structural functions obtained from 7t" via Le
gendre transformations. Indeed, the structural function 
7t"(P,Q) , with 9 = - !(D 2 - H2), g = - i DH, can be 
considered as a function of the independent variables D and 
H, 7t"(D,H). The material equations (2.20), in terms of 

v v 
7t" (D,H), reduce now to E = - 7t" D' B = 7t" H' therefore 

d7t" = - E dD + B dB. (2.21) 

Defining the functions 

1(+): = BH - 7t", 1(-): = ED + 7t", 

1(+) + 1(-) = DE + BH, 

..? = - DE + BH - 7t", 
we have 

d1(+)=EdD+HdB, 

d..? = -DdE + HdB. 

(2.22) 

d1(-) = D dE + B dH, 
(2.23 ) 

One easily sees that the so defined"? precisely coincides 
with ..? = - 41T..? Iff' see (2.1), i.e., with the original La
grangian of the theory, which can be considered as a function 
of (E]J) or, equivalently, of the invariants (F,G). 

Most of the early pa,pers on nonlinear electrodynamics 
work with ..? = ..? (F,G) as the fundamental structural 
function. 

When one works with the equivalent 7t" or "energy 
function" introduced in Ref. 18 considered as the fundamen-
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tal, one has the technical advantage that!l'v's are given di
rectly by material equations as functions of PI''' 'so Of course, 
the theory is equivalently uniquely defined with any of our 
"middle of the road" structural functions 

1(+) = 1(+)(D]J) and 1(-) = 1(-) (E,H) (2.24) 

considered as given and fundamental. In principle, given and 
v v 

known any of the four functions 7t"(D,H) , L(EJ]), 
1( +) (D]J) , and 1( -) (E,H), the remaining three functions 
can be always calculated. 

According to (2.21) and (2.23) the material equations 
thus have four equivalent representations 

E+ iB= (-~+ i~)7t" 
aD aH ' 

D+iH= (-~+i ~)..?, 
aE aB 

E+iH=(~+i~)1(+) 
aD aB ' 

(2.25) 

D+iB=(~+i ~)1(-). 
aE aH 

Working with the structural functions 1( ± l, the field 
equations amount to the following: 

(i) Einstein equations, 

R = -4..1. +81(±) ±4(DE+BH), 
vv (2.26) 

C12 = - C34 = - (DE + BH); 

(ii) Maxwell-Faraday equations, 

w: = (D + iB)e1/\e2 + (E + iH)e3 /\e4 

-+dw = 0; (2.27) 

(iii) material equations, 

E+iH= (~+i ~)1(+) 
aD aB 

++D+iB= (~+i ~)1(-). 
aE aH 

(2.28) 

The special Bianchi identities, valid with Cab = ° except 
for C12 = - C34, are 

a
l
(-) + (r

413 
+ r

314
) (1(+) + 1(-» = 0, 

a
2
(-) + (r

423 
+ r

324
)(1(+) + 1(-» = 0, 

a
3
(+) - (r

312 
+ r

321
)(1(+) + 1(-» = 0, 

a4(+) - (r421 + r 412 ) (1(+) + 1(-» = 0, 

(2.29) 

where rabc are the connection coefficients defined in (2.6). 
At the same time, we find that Maxwell-Faraday equa

tions dw = 0, worked out by using the first structure equa
tions, amount to four complex conditions 

v v 
a,(E + iH) + (r314 - r413 )(D + iB) 

+ (r314 + r 413 ) (E + iH) = 0, 

a2(E + iH) + (r423 - r 324 ) (D + iB) 

+ (r 324 + r 423) (E + iH) = 0, 

a3 (D + iB) - (r312 + r 321 ) (D + iB) 

- (r312 - r321 )(E + iH) = 0, 
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a4(D + ill) - (r421 + r 4l2 ) (D + in) 

- (r421 - r 4l2 )(E + iIi) = o. 
Nonlinear theory allowing for the freedom of duality ro

tations: We should like now to determine a subclass of non
linear theories that admits the freedom of the duality rota
tions, hence being compatible with the existence of magnetic 
monopole charges. 

We begin by observing that with;Po = const, given D, H, 
E, and B, which fulfill (2.27) and (2.28), the new "duality 
rotated" objects 

D' + /fJ = ei4>o(D + in), E' + iH': = ei4>n(E + iH) 
(2.31 ) 

also satisfy Eqs. (2.27) and (2.28). Indeed, as far as the 
Maxwell-Faraday equations (2.27) are concerned, this 
statement is trivial; with m closed, certainly m': = ei4>nm is 
closed when ;Po = const. On the other hand, the material 
equations from (2.28) are also invariant under the consid
ered transformation. Now, as far as the Einstein equations 
are concerned, we easily verify first that under the transfor
mation (2.31) the expression 

(2.32) 

is invariant, and hence so are the components of Einstein 
equations which involve Cab. On the other hand, the right
hand member of R from (2.26) in the form involving the 
structural function 1(+), in general is not invariant with 
respect to the duality rotations. It becomes invariant iff the 
structural function 1(+) = 1(+)(D,n) is such that for ev-
ery ;Po 

1(+)[cos;PoD - sin ;PoD, sin;PoD + cos ;PoD] 

=.1(+)(D,n). (2.33) 

This last condition can be easily seen to constrain the func
tion 1(+) to a function of one variable !(D 2 + n 2) only 

(2.34 ) 

Therefore, with the freedom of the duality rotations de

fined by the condition that "given ea, D + in, and E + iH 
which satisfy (2.26)-(2.28), thenea,D' + in, andE' + iH' 
from (2.31) are also a solution to (2.26)-(2.28) for arbi
trary;Po = const," the argument given above clearly con
strains nonlinear theories endowed with that freedom to 
those ones with 1( +) from (2.34). 

It will be convenient to understand 1( +) from (2.34) as 
determined by an arbitrary dimensionless function of a di
mensionless variable,f(+)(x), in the form 

1(+): = b 2/(+)(X), x: = (l/2b 2) (D 2 + B 2) = :x(+), 
(2.35) 

where b is a constant of dimension of electromagnetic field 
[=.in gravitational units to (length) -I]. Working with this 
structural function, denoting the derivative of A x ) with re
spect to x by superscript V, one easily sees that the condition 
of the correspondence to the linear theory for weak fields 
now takes the form 

(2.36 ) 

while the parity conservation is automatically assured. The 
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conditions of positive definiteness of the energy and the time
like character of the energy flux are then easily seen to be 
equivalent to 

/(+)(x)lx;;;./V( + ) (x) > o. (2.37) 

Knowing 1(+) in the form of (2.35), the remaining 
three structural functions (1( - ), JY, and 2') can be 
worked out. In particular, we find that 

1(-) = b2~-)(y), y: = (l/2b 2)(E2 +H2) = :x(-), 
(2.38) 

where 

/(-)(y) = 2x/V ( + lex) - /(+)(x), 

x=x(y), y:=x(/V(+»2. 

Notice that 

(2.39) 

x/V(+)(x) =y/V(-)(y), /V(+)(x)·/V(-)(y) = 1, 

~+)(x) = 2y/V( - ley) - ~-)(y), (2.40) 

where superscript V denotes the derivatives off(+)(x) and 
f(-)(y) with respect to their arguments. 

Observe also that the material equations (2.28) now be-
come 

E+iH= (D+iB)/V(+), 

D+in= (E+iH)/V(-). 
(2.41) 

Hence E + iH and D + in have a common phase and can be 
thus parametrized according to 

E + iH = (2b 2X(-» 1/2ei4>, 

D + i'fl = (2b 2X(+» 1/2ei4>. 
(2.42) 

Now, the closure condition of the two-form m, dm = 0, 
modulo the special Bianchi identities (2.29), implies 

i d;P + /V( -) [(r314 - r 413 )e l + (r423 - r 324 )e2] 

- /V( +) [(r312 - r 321 )e3 + (r421 - r412)e4] = o. 
(2.43 ) 

An important example; the Born-Infeld theory: We spe
cialize now ~+)(x) for the specific case of 

~+)=~1 +2x -1, (2.44) 

compatible with conditions (2.36) and (2.37). It follows 
from (2.39) that/(-) = /(-)(y) is given by 

~-) = 1 - ~1 - 2y, (2.45) 

so that 

1(+) = b 2{~1 + b Z(D 2 + B 2) - 1}, 
(2.46) 

1(-) = b 2{1 - ~1 - b -Z(EZ + jj2)}; 

while the equivalent structural functions JY and 2' can be 
computed as given by 

and 

JY= b 2 - ~(bz +D2)(b 2 - jj2) 

=.b 2 _ ~b4 - 2b 2:}'J + 1222, 

2'=~(b2_E2)(b2+B2) _b 2 

=.~b4+2b2F+G2 -p 
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~ ~ - g SC = b 2{~ - det(gl'v + b -1I'v) 

- ~ - det(gl'v)}' (2.47) 

In SC above we recognize the original Born-Infeld La
grangian proposed exactly 52 years ago. 1,2 According to the 

second equation of (2.47) [=g SC is a natural tensor den
sity. The Born-Infeld Lagrangian is exceptional as the only 
one which leads to single characteristic cones for the propa
gation of small perturbations of the electromagnetic 
field. 14.19 For further developments concerned with charac
teristics and discontinuities in nonlinear theories see Ref. 20. 

The fact that the original Born-Infeld theory is a special 
case of a theory endowed with the freedom of the duality 
rotations reinforces our interest in the general class oftheor
ies of this type, with an arbitrary-modulo (2.36) and 
(2. 37)-function 1'(+) = I'(+)(x), and b consistently inter
preted as the Born constant, related in the convergent theor
ies to the radius of the electron. 

III. EXPLICIT 0-TYPE CARTER B( +) SOLUTIONS TO 
EINSTEIN EQUATIONS WITH NONLINEAR 
ELECTROMAGNETIC SOURCES 

Our objective is now to show that the Carter li ( ± ) 

branches of D-type metrics are carriers of solutions to the 
dynamical scheme of nonlinear electrodynamics whose 
structural function allows for the freedom of the duality ro
tations. 

We shall assume that (i) the natural tetrads of the li ( ± ) 

metrics are aligned along the eigenvectors of the algebraical
ly general electromagnetic field, and (ii) the nonlinearity of 
the electromagnetic structure is characterized for the li (+) 

and li (-) metrics by the functions 1'( +) (x) and 1'( -) (y). Of 
course (ii) is assumed for convenience only; 1(+) = b 21'(+) 
and 1( -) = b 2~ -) describe the same nonlinear structure 
endowed with the freedom of the duality rotations. 

Let the Carter li ( ±) type D metrics, with signature 
( + + + - ), be given in the charts {xl'}: = {;,;,r,r} and 
{x!'}: = (u,v,r,O'} by 

g: = (r + e)dS 2( ±) + r + 12 dr®dr 
y(±) s 

where 

and 

du®dv 
4-.......;.......;

(1 + EUV)2 ' 

(3.1 ) 

(3.2) 

1T(±):= (1+E;;) (3.3) 

{

d7 + 2il ; d; - ; d; , 

dO' + 21 v du - u dv. 
(1 + EUV) 

In these expressions, ( + ) corresponds to the li ( +) metric, 
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while the quantities with sign ( - ) determine the structure 
of the li (-) solution. The real coordinates r, 7, and 0' are of 
dimension oflength, while the complex; and the real u and v 
coordinates are dimensionless. The parameter E is a dimen
sionless constant, and I is the constant of dimension of 
length. The gravitational constant G and the velocity oflight 
c are equated to the unit. The real analytic functions 
y( ±) = y( ±) (r) are of dimension (length)2. In the li (-) 
case, in order to assure the signature ( + + + - ), we 
must require y( -) > O. In the case of li (+) the sign of Y( +) 

remains in principle arbitrary, with the values of r for which 
Y( +) (r) = 0 expected to correspond to the causal horizons. 

It can be easily shown that the Carter I I separable li ( ± ) 

branches of type D can be brought-without any loss of gen
erality-to the form of (3.1). 

In the considered representation of the li ( ±) metrics, 
only the sign of the parameter E is relevant. By a scaling 
transformation E can be brought to the discrete values 
1,0, - 1. When c = 1, the curvatures of dS 2

( ±) have the 
unit radii. In subsequent considerations we shall follow in 
principle this normalization for E, although many forthcom
ing formulas-in particular those for the natural tetrad and 
its connections-remain valid apart from this normaliza
tion; the last remark is useful when one studies the limiting 
transitions (contractions) of li ( ± ) metrics. Notices that a 
formal transformation 

;-+ - u, ;-+ - v, 7-+iO', Y<+)-+Y<-I, (3.4) 

which obviously implies dS 2(+) -+ds2(-), 1T(+) -+i1T<-), brings 
theli (+) metric into theli (-) metric. Therefore, if we consider 
the li (+) branch as a complexijied space-time, 2 

I then both 
real li ( ± ) metrics can be interpreted as the two different real 
cuts22 of the same complex structure. Hence one can restrict 
oneselfto the determination of the li ( + ) metric and derive the 
li (-) solution according to (3.4); in this way we shall proceed 
in what follows, omitting for typing reasons the sign ( + ). 

A natural choice of the null tetrads for the li ( + ) metric is 

el} _ . (r + 12)1/2 {d;, 
2 - -Ji -

e 1 + E;; d;, 

e
3

} _ 1 (r + 12)1/2 (Y )112 -- --- dr+ --- 1T. 
e4 Ji Y - r + 12 

(3.5) 

The connection one-forms r ab computed for these te
trads from the first structure equations amount to 

r 42} y1I2 1 {d;, 
r 31 = r+il' 1 +E;; d;, 

Y [ (Y1I2)]' r I2 +r34 = ---- In -- 1T 
r+/2 r+il 

(3.6) 

+E;d;-;d; , 
1 +E;; 

where dots denote the r derivative. 
The second Cartan equations can be written as 

dr42 + r 42 /\ (r12 + r 34) = ye3 /\e l
, 

dr31 + (r12 + r 34 ) /\ r 31 = ye4 /\e2, (3.7) 

d(r l2 + r 34 ) + 2r42 /\ r 31 = pel /\e2 + ae3 /\e4
, 

where 
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a.- --- In--· _ [Y [ (YI/2)]]' 
r+/2 r+i1 ' 

1 {. Y [ (YI/2)]' {3:=-- 2"-- In--
r+/2 r+/2 r+i1 (3.8) 

Y } + -E 
(r+i/)2 ' 

1 1 [ Y ]. 
y: = -"2 r - iI (r + i/)2 

We can now read off from (3.7) the corresponding curva
ture coefficients, understanding by these the scalar curva
ture R, the five C (a),s, a = 1, ... ,5, the tetrad components of 
Cab' Observe that because of Cab = C(ab) and the trace con
dition C12 + C34 = 0, the last object has, in general, nine 
independent components only. According to (3.7), the only 
nontrivial curvature coefficients are 

C(3) = i (a + (3 + 2y), R = 2(a + (3 - 4y), 
(3.9) 

CI2 = !({3 - a) = - C34• 

Now, evaluating these nontrivial curvature coefficients 
in terms of the structural function Y, it is convenient to give 
it in the form of 

Y = E(r _/2) _ 2mr _ ...1.qr" + 2Fr _/4) + 'If, 
(3.10) 

where A is the cosmological constant, m is a mass parameter 
(Schwarzschild constant for B (+), and magnetic mass for 
B (-), and 'If = 'If (r) is a real analytic function expected to 
be related to the electromagnetic sources to Einstein equa
tions. A simple-but rather tedious--(;omputation leads to 

-2 
(r+i/)3 [m+i1(E-~JU2)] 

+ ~ (r + i/)3 [ 'If ] .. 
6 r+/2 (r+i/)3 ' 

R= -4...1.+ [1I(r+/2)]~, 
(3.11) 

C
12

= _H(r+/2)2]-1 

X [(r + /2)~ - 4r?ff + 4'1f]. 

Of course, with only C(3) #0 out of all C (a),s, the B ( ± ) 

metrics are of the type D, and e3 and e4 are the principal 
(double) null directions, which in both cases are geodesic 
and shear-free (r424 = 0 = r 313, r 422 = 0 = r 311 ). In the 
B (+) case these directions, taken modulo a real proportional
ity factor, are 

(
r + /2)1I2{e

3 
_ r + /2 ( . -; dt - tit) .J2 <7"( +) 4 - () dr + dr + 2z1 , 

..T e Y + - 1 + Ett 
(3.12) 

and they have the common complex expansion Z = 11 
(r + i/), while in the case ofB (-) the double null directions 
have vanishing complex expansions r 421 = 0 = r 312, and 
they are gradients, 

_1_ 1 + EUV {e
4

3 
__ {dU , 

.J2 JT+P e dv . 
(3.13) 

Let us now start the integration of the field equation with 
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nonlinear electromagnetic sources for the B (+) metric. We 
shall omit the symbol ( + ) in the structural function, 

;t<+) =:/. x(+) =:x, 1(+) = :1, ~(+) = :~. (3.14) 

Comparing C12 and R from (3.11) with their expressions 
from (2.26c), one arrives at 

H (r + /2)2] -I [(r + /2) ~ - 4r?ff + 4'1f] 

= (DE + ElI), 
H(r+/2)]-I~ = -21 + (DE + Eli). 

(3.15a) 

(3.15b) 

These equations now determine easily the r dependence 
of the x, 

x = (1I2b 2)(D 2 +E2). 

Indeed, subtracting Eqs. (3.15a) and (3.15b) and mul
tiplying the result by" - (r + /2)2" we have 

r?ff-'lf= _2(r+/2)2b 2/. (3.16) 

which, differentiated with respect to r, yields 

r~= _8r(r+/2)b 21'_2(r+/2)2b 2I'vx. (3.17) 

On the other hand, using DE + EN = 2b 2xl'V substituting 
for 'If from (3.15b) into (3.17), and canceling by b 21'V, one 
arrives at 

dx (3.18 ) 
x 

where we have denoted the positive integration constant by 
e2 + gz /2b 2, anticipating that e and g will play the roles of 
electric and magnetic monopole charges, respectively. 

Equation (3.16) can now be written in the form 

r(1Ir)'If)" = - (e2+g2)I'/x, (3.19) 

and thus integrates easily in the form 

'If = (e2 + V)r (00 dr As), s: = e
2 + gz . 

g J r s 2b 2(r+/2)2 
(3.20) 

Notice that a contribution from the integration constant 
of (3.19) to 'If of the form const'r can be omitted, being 
considered as incorporated into the constants m or n of the 
structural function Y from (3.10). 

Now, as far as the electromagnetic field is concerned, 
with x given by (3.18) and using (2.41) and (2.42),remem
bering (2.40), we infer from the information deduced from 
the Einstein equations that 

v -
D+iB= [(e2+gz)I/2/(r+/2)k4>, 

E + iN = r[ (e2 + gZ)I/2/(r + /2) ]ei
:", 

(3.21 ) 

where ~ is real . 
The fundamental question arises whether with the so 

determined electromagnetic quantities from the Einstein 
equations (i.e., deduced from the energy-momentum tensor 
that leaves them arbitrary modulo the variable duality 
rotations), a sort of generalized Reinich-Wheeler pro
cess,23,24 can now fix ~ in such a manner that dw = 0, assur
ing thus the validity of Maxwell-Faraday equations f'w v 

= 0 = pl'v;v' ' 

The answer to this question is positive. Indeed, the two
form 
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OJ =Ael /\e2+ Be3 /\e4
, A=A(r), B=B(r), (3.22) 

when written explicitly in terms of tetrads (2.15) and (2.16) 
is easily seen to the closed iff 

[(~ + 12)A r - 2ifB = ~OJ = o. (3.23) 

Moreover, if this condition is met, OJ can be represented as an 
exact two-form, 

OJ= __ I_d[(~+/2)A(d7+2if;dt-t!;)]. 
2il 1 + Ett 

(3.24) 

On the other hand, by comparing 

OJ = (D + iB)el 
/\ e2 + (E + /H)e3 

/\ e4 

with (3.22) and using (3.21) we have 

(~+/2)A =~eiJ" 

B= [(~e2+gz)/(~+/2)]/VeiJ,. 
(3.25 ) 

Assuming thus ~ = ~(r) we can use the closure condi-
tion (3.23). Substituting A andB from (3.25) into (3.23), 
we obtain 

~ = [21/(~ + 12) ]/v, 

which integrates in the form 

~=~o-21('" _.2 dr 2/V(S), 
J r+1 

where ~o is a real constant. 

(3.26) 

We decide now to consider e and g as the real indepen
dent parameters of our solutions incorporating in them the 
constant phase ~o, 

e + ig = : - ~eiJ,o. (3.28) 

According to (3.24), our result for the electromagnetic 
field is then 

OJ = (e + ig) d {ei'if,( + >(d7 + 2if; dt - t d;)} , 
2il 1 + Ett 

v 1'" dr v e
2 + ~ ¢: = - 21 -:22/ (S), s: = 2 ~ 2 2· 

r r +1 2b ( +1) 
(3.29) 

We then establish that the nonlinear electromagnetic 
generalization of the Carter B(+) solution is given by 

2177 

g = 4 (~ + 12) dt ® d; + ~ + 12 d~ 
(1 + Ett)2 ,.9'-(+) 

,7(+) [ . ;dt - t d;]2 
- -:22 d7 + 2zl , 

r + I 1 +Ett 
,7(+)=E(~-/2) -2mr-A. 

X qr4 + 2/2~ _/4) + W(+), 

W(+) = (e2 + ~)r ('" dr ~+)(s) , 
J ~ S 
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(3.30) 

X [exp(i~(+» .(d7 + 2il; dt - t d;)] , 
1 +Ett 

~(+)= - 2/1'" ~~/2/V(+>(S)' 
where~+)(s) is an arbitrary function such that/V( + >(0) 

= 1, ~+)(s)/s>/V( + > (s) > o. The curvature quantities 
that characterize this solution can be easily evaluated from 
Eqs. (2.24). 

Following a similar integration process as in the B (+) 
case, or applying the formal transformation (3.4), one ob
tains the nonlinear electromagnetic generalization of the 
Carter B(-) solution, which may be given as 

g=4(~+/2) du®dv +~+/2dr®dr 
(1 + EUV)2 ,7(-) 

,7(-) [ v du - U dV]2 
+-:22 du+21 , 

r + I 1 + EUV 
,7(-) = E(~ - F) - 2rm - A.(j r4 + 2/2r _/4) + W(-), 

W(-) = _ (e2 + ~)r ('" dr ~-)(s) , (3.31) 
J ~ s 

where /(-)(s) is an arbitrary function fulfilling the condi
tions /v (0) = 1, ~-)(s)/s>/V( - > (s) > O. The curvature 
quantities are given by (2.24) with W replaced by W(-). 

We shall end this section giving some corollaries. 
Corollary 1· The finite symmetries of B ( ± > metrics 

amount to the product of (symmetries of spaces of constant 
curvature d~( ± » XR, or, more specifically, to the Lie 
groups 

B(+):{::~: 
E= 1: 

SU(2) XR (2++1)0(3) XR, 
E(+)(3) XR, (3.32) 

SU(1,I)XR (2++1)0(2,1)XR, 

and 

B(-):{E = ± 1: SL(2,R) XR(2++1)0(2,1) XR, 
E = 0: E(-)(3) XR, 

(3.33) 

where E ( ± > (3) are, respectively, the groups of symmetries 
ofthe Euclidean and pseudo-Euclidean planes, correspond
ing to signatures ( + , + ) and ( + , - ), which consist of 
two translation and one--correspondingly trigonometric or 
hyperbolic-rotation. If I =1= 0 and c = 1 the orbits of 0 (3 ) 
[resp. 0 (2,1 )] groups are three dimensional. The three-di
mensional nature of the orbits of the 0 (3) group has been 
recognized in the case of classical TaubI2-NUT13 metrics in 
Ref. 25 (see also Ref. 26). 

Notice that the B (-) metric admits for E = 0, according 
to the terminology of Ref. 27, two commuting Killing vec
tors with null orbits. 
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Corollary II: The jj (+) metrics admit a representation 
linear in the structural function Y(+). Indeed, replacing in 
(3.30) the coordinate 7 by 7' according to 

, f'r+/
2 

7=7 ± Y(+) dr, 

we have 

(3.34 ) 

In the case of jj (-) metrics a similar trick does not work 
because Y( -) > 0; it would be applicable, though, if the jj (-) 
structure were considered as complexified. 

Corollary III: The jj (+) solution in the case E = 0 admits 
via the coordinate transformation 

(r+/2 rzz 
7 = t - J Y(+) dr + r + f2 ' 

(3.36) 
;=~_z_=:~Z, v 2 =1, 

.fi r + iI .fi 
an alternative representation in a chart {xI'} = {z,z,r,t} ac
cording to which the metric assumes a Kerr-Schild28 form, 

g = 2dz d z + 2dr dt 

Y(+) - -
-~ (dt + Z dz + Z dz - ZZ dr)2, 

r + I 
w: = (e + ig) (1/2i/)d 

X [ei;f( + )(dt + Z dz +Z dz - ZZ dr)]' 

with Y(+) and ¢}+) from (3.30). 

(3.37) 

This special solution, in the case of the original Born
Infeld Lagrangian (2.47), was found long ago by one of us 
(J.F.p.).29 

Corollary IV: The class of jj ( ± ) solutions30 in the origi
nal Born-Infeld theory are obtained from (3.30) and (3.31 ) 
by setting 

j(+) = ~1 + 2s - 1, 

s: = [(e2 + ~)/2b 2](r + 12) -2, 

jH = 1 - ~1 - 2s, 

s: = [(e2 + g2)/2b 2](r + 12) -2, 

respectively. 

(3.38) 

(3.39 ) 

Corollary v.. The nonlinear jj ( ± ) metrics contain in the 
limit b- 00 the well-known results of the Maxwell theory. 
Indeed, in the limit b - 00, it follows in particular that 

lim exp i~( ± ) = (r - i/)/r + i1), 
b-oo 

(3.40) 
lim 1ft ±) = ± (e2 + g2). 
b-oo 

Corollary VI' The jj ( ±) solutions in the limit I- 0 
reduce to the nonlinear electromagnetic generalizations 
of the Reissner-N!6rdstrem (RN) class of metrics with 
E = 1,0, - 1. (The proper RN solution arises in the limiting 
case of b - 00 , I- 0, and E = 1.) 

Corollary VII: The Hamilton-Jacobi equation, 
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(3.41 ) 

for timelike or null geodesics (K
2;;;.0), are separable and 

hence their complete integrals can be obtained by quadra
tures. 

IV. THE SPECIAL RELATIVISTIC LIMITS OF GENERAL 
RELATIVISTIC SOLUTIONS 

The special relativistic limits of our jj ( ± ) solutions to 
the dynamical equations of nonlinear electrodynamics plus 
the associated Einstein equations in the case of the theory 
endowed with the freedom of the duality rotations can be 
obtained in two steps. First, abandoning the gravitational 
units, we restore the gravitational constant G in the structure 
jj ( ±) metrics by setting m - Gm, and If ( ± ) - Gif ( ± ). 

Then, switching off the gravitational field, we execute the 
limit G-->O, A -0. As a result of this, GI'Y -0, while the con
formal curvature coefficient C (3) from (3.11) reduces to 

jj(±): C(3)= -2i1E/(r+i/)3. (4.1) 

In the second step we require, additionally, 

jj(±): C(3)=~EI=O . (4.2) 

This assured, both the conformal curvature tensor and the 
Einstein tensor of jj ( ±) metrics vanish, and hence these 
metrics become fiat, while the limiting w's determine some 
solutions to the dynamical equations of the nonlinear elec
trodynamics in the fiat Minkowski space-time. 

Within this program, the sub-branches with E = 0 po
tentially leave I as a free parameter, while for E = 1, - 1 we 
must assume 1-0. Since in the special relativistic limit the 
signature has to be ( + + + - ), the only viable limiting 
solutions are the limits of jj (+) (E = 0=11), jj (+) (E = ± 1, 
I = 0), and jj ( -) (E = 1, I = 0). 

In the case of the branch jj (+) (E = 0=11), we have an 
alternative description of our general relativistic solution in 
the Kerr-Schild form (3.37). With the solution in this form, 
our special relativistic limit leads to a solution in the fiat 
space-time endowed with the free parameter I, and described 
by the formulas 

g = 2 dz d z + 2dr dt, 

w = [(e + ig)/2i1]d[exp(i~(+» 
X (dt + Z dz + Z d z - ZZ dr) ] , Z: = z/ (r + if) , 

~(+) = - 21 (oo .2 dr 2/V"'(S), 
J r +1 

s: = (e2 + g2)/2b 2(r + 12)2. 

(4.3 ) 

The coordinates {xl'} = {z,z,r,t} are the standard Cartesian 
null coordinates of the Minkowski space-time; there are no 
restrictions for the ranges of these coordinates, so that the 
discussed limiting solution can be understood as defined 
over the Minkowski space-time with the Euclidean topology 
ofR 4. 

The special relativistic limits of jj (+)(E = ± 1, 1=0) 
are given by 

g= 

w= 

4r 2 d; d{; + E(dr - dr), 
(1 + E;;) 
- (e + ig)d[ V(+)(r)d7 
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The coordinate transformations, for E = 1, 

t = ei<P cot(O 12), 

(4.4) 

T=t, x=rsinOcos<,b, y=rsinOsin<,b, (4.5) 

z = rcos 0, r= (x2 + y2 +Z2)1/2, 

and, for E = - 1, 

t = ei<P cotanh(O 12), T = Z, 

X = r sinh 0 cos <,b, y = r sinh 0 sin <,b, (4.6) 

t=rcoshO, r= (t2_x2 _y2)1/2, 

bring the metric above to the standard Minkowski line ele
mentg = dx2 + dy2 + dr - dt 2, while the electromagnetic 
two-forms can be rewritten as 

W(E = 1) = - (e + ig)d[ V<+)(r)dt - i cos 0 d<,b] 

= - (e + ig)d [v<+)( ~X2 + y2 + Z2) dt 

. xdy- YdZ] 
~:;;:::::::::;:::::::;;- 2 2 ' 
~X2 + y2 + ZZ X + y 

iz 

and 

W(E= -1) 

- (e + ig)d[ V<+)(r)dz + i cosh 0 d<,b] 

- (e + ig)d [v<+)( ~t 2 - XZ - y2)dz 

it x dy - y dX] + . 2 2 • 
~t 2 _ x 2 _ y2 X + y 

(4.7) 

(4.8) 

Understanding the Minkowski space-time as endowed 
with the Euclidean topology of R 4, we see that the limiting 
B < +) (E = 1, I = 0) solution covers the whole space-time and 
should be interpreted as the nonlinear analog of the Cou
lomb field generalized by the presence of the magnetic mon
opole charge. 

The limiting solutionB <+) (E = - 1, I = 0) covers only 
the regions of the space-time where t 2 - x 2 - y2 > 0, becom
ing singular along the set of points t 2 - x 2 

- y2 = O. 
The limiting B (-) (E = 1, 1= 0) solution is given by 

g= [4r/(l +uv)2]dudv+dr+dcr, 

( 'V)d ['V1-)()d v du - u dV] W = - e + 19 I r u - , 
1 + uv 

1"" dr e2 + g2 
V<-)(r) = - /V( - )(s), s: = --2-4-' 

r r 2b r 

(4.9) 

The metric above can be brought to the Minskowski line 
element by accomplishing the transformation 

u=e<P cot(OI2), v=e-<P cot(OI2), u=z, 

x = r sin 0 cosh <,b, y = r cos 0, 

t=rsinOsinh<,b, r= (X2 +y2_t 2)1/2. 

Then, the W acquires the form 
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(4.10) 

W = - (e + ig)d[iV<-)(r)dz - cos 0 d<,b] 

- (e + ig)d [iV(-)(~X2 + l- t 2) 

_ Y . x dt - t dx ] 

~ x 2 + l _ t 2 x 2 
- t 2 • 

( 4.11) 

This limiting solution covers the regions of the space
time where x 2 + y2 - t 2 > 0, becoming singular along 
x 2 + y2 _ t 2 = O. 

The explicit solutions to dynamical equations of non lin
ear electrodynamics endowed with the freedom of the duali
ty rotations in the Minkowski space-time, which we have 
obtained in this section via limiting transitions, are of inter
est for many reasons. Even in the case of flat space-time-as 
was mentioned in the Introduction-the explicit analytic so
lutions to the dynamical scheme of nonlinear electrodynam
ics are scarce. In the form of (4.3), (4.4), and (4.9) we 
devised some new solutions that allow for the presence of the 
magnetic monopole charges. A rather unexpected fact has 
emerged that in the basic limiting solution (4.7), apart from 
the nonlinearity of the Born-Infeld scheme, the magnetic 
monopole contribution to W enters into our solution precise
ly in the same form as in the case of the linear theory with 

W = ! (fll-v + fll-v )dxll- /\ dx
v 

= - (e+ig)d[(l/r)dt-icosOd<,b]. ( 4.12) 

Indeed, withe = 0, !~vdxll- /\dxv = - gd[cos 0 d<,b] isaso
lution in both linear and nonlinear theories. 

Our flat space-time solutions, with the physical inter-
pretation within an easy access, are prototypes of the corre
sponding general relativistic B ( ± ) solutions; similarly as in 
the linear theory the Coulomb field of the electric and mag
netic monopole charges, (4.12), is a special relativistic pro
totype of the Reissner-N0rdstrem solution. Thus, our flat 
space-time solutions are potentially the key to the physical 
interpretation of our general relativistic B ( ± ) solutions ob
tained via rather formal arguments. In this context we 
should like to observe that it is rather tempting to follow the 
point of view of Ref. 31, interpreting (4.7) as the field of 
nonlinear charges, with e and g being endowed with a rest 
frame, (4.3) as the field of these charges being lightlike, and 
in the presence of I, I #0, the complex field being endowed 
with some angular momentum, and finally attempting to 
interpret the (4.8) and (4.11) solutions as the tachyonic 
fields of nonlinear charges. The authors of this paper, espe
cially after the work of Refs. 32 and 33, are, however, rather 
skeptical about the physical status of tachyons. We prefer 
thus to consider our general and special relativistic results 
just as the technical output of the theory of exact solutions, 
leaving their possible physical interpretation open to further 
study. 

v. THE COMPLETENESS OF THE D-RESUL T FOR 
THEORIES WITH THE FREEDOM OF THE DUALITY 
ROTATIONS AND FINAL CONCLUSIONS 

Our exact solutions to the dynamical equations of non
linear electrodynamics endowed with the freedom of the du
ality rotations plus associated Einstein equations were ob
tained in Sec. III by postulating that the natural tetrads of 
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the D-type Carter II (± ) metrics coincide with the eigenvec
tors of the algebraically general nonlinear electromagnetic 
field. 

Are there other D-type metrics that are also carriers of 
the discussed dynamical structure? Within the present status 
of the theory of the D-type metrics, especially after the work 
of Refs. 27 and 34-37, we are able to answer this question in a 
negative manner: the D-type II ( ± ) metrics-together with 
their possible contractions-are the only D-type metrics 
compatible with the dynamical scheme of nonlinear electro
dynamics endowed with the structural function 
1(+)1(+)[!(D 2 +B2)]. This statement holds assuming 
that (i) the two principal null directions are geodesic and 
shear-free, and (ii) they coincide with the real eigenvectors 
of the algebraically general nonlinear electromagnetic field. 

Observe, however, that if we abandon the proviso "geo
desic and shear-free" for the principal null directions of D
metrics aligned along the real eigenvectors of the nonlinear 
electromagnetic field, then there exists an exceptional possi
bility satisfying the Bianchi identities outside the validity of 
the electromagnetic generalization38 of the Goldberg-Sachs 
theorem39 with 

or 

( a) [£' 9' (D 2 + B 2) _ ~ C (3)] . {r 424 = 0, 
r3!3 

(b) [£' 9' (D 2 + lI 2 ) + ~ C(3)]. {r422 = O. 
r 311 

(5.1) 

The exceptional D-branches with either the factor of 
(a) or (b) vanishing have been integrated in Refs. 40 and 41 
in the case of the linear electrodynamics. A forthcoming pa
per42 of Morales and Plebanski reexamines these exceptional 
branches in the nonlinear case. 

As always in the case of a negative result, details of its 
proof can be of interest for very specialized readers only. For 
this reason, this we will provide only with an outline of the 
basic ideas of its proof. 

According to the results of Refs. 35-37 all D-type met
rics which allow the choice of a null tetrad such that out of all 
independent curvature coefficients only C(3), R, and 
C12 = - C34 can be #0, either coincide with the general 
metric 

g= (l-pq)-2{(ll./P)dp 2 + (P/ll.)(dr+q2du)2 

+ (ll./Q)dq2- (Q/ll.)(dr-p2du)2}, (5.2) 

P = pep), Q = Q(q), ll.: = p2 + q2 

or amount to contractions of this metric; this statement also 
covers the case of D-metrics with the two commuting Kill
ing vectors having in particular null orbits. 27 

The metric (5.2) studied with the (linear) electromag
netic sources has led to the seven parametric families of solu
tions.43 

Two basic contractions of the (5.2) metric correspond
ing physically to switching off either the acceleration param
eter, or the rotation (Kerr) parameter, reduce the metric, 
respectively, to Carter A metric!! (see also Ref. 44) and to 
the generalized C-metrics discovered by Kinnersley45: 

2180 J. Math. Phys., Vol. 28, No.9, September 1987 

g = (ll./p)dp2 + (P /ll.)(dr + q2 dU)2 + (ll./Q)dq2 

- (Q/ll.)(dr-p2du)2, (5.3) 

and 

ds2 = (p + q)_2{~2 + 9 d~ + d~2 _ Qdr} . (5.4) 

Now, in order to derive the negative result from the 
introduction to this section, we have proceeded as follows: 
for all basic D-metrics (5.2)-(5.4) the tetrads and expres
sions for C (3), R, and C 12 are well known in the corresponding 
charts. By examining the equations R = - 4,1, - 81(+) 
+ 4(DE + BlI) and C12 = - (DE + BlI) we have found 
these conditions contradictory for the above quoted metrics, 
except for the limiting case to the linear theory, b -+ 00. In 
proving the corresponding contradictions exceptional care 
was given to the alternative of the possible solutions with the 
basic Killing vectors having null orbits. 27 

On the other hand, the work of this paper clearly dem
onstrates that the II (±) Carter separable D-branches are 
carriers of solutions to the dynamical scheme of nonlinear 
electrodynamics endowed with the freedom of the duality 
rotations. 

The moral of these considerations seems to be that the 
presence of the acceleration parameter and the rotation pa
rameter prohibits the existence of the D-type solutions for 
the dynamical scheme of the nonlinear electrodynamics en
dowed with the freedom of the duality rotations. In this situ
ation it is natural to conjecture that the possible solutions to 
the discussed dynamical sceheme which would include the 
rotation and acceleration parameters ought to be already of 
the G-type. We consider a derivation of such solutions, 
which would generalize the Kerr-Newman solution for the 
case of the nonlinear rotating charges as an open challenging 
problem within the theory of exact solutions in general rela
tivity. 

This paper has studied the general relativistic type D 
solutions to the dynamical scheme of nonlinear electrody
namics endowed with the freedom of the duality rotations, 
which in particular contains the original Born-Infeld 
scheme. On the other hand, if one understands nonlinear 
electrodynamics as derived from QED, the Schwinger La
grangian5 (see also earlier papers, Refs. 3 and 4) does not 
exhibit the invariance with respect to the duality rotations. 
This is perhaps not surprising; the Lagrangian has been de
duced from classical QED which distinguishes the charge e 
as the (small!) coupling constant, and possible modifica
tions of the properties of the polarized vacuum due to the 
presence of magnetic monopole charges are thus not taken 
into account. As t'Hooft46 pointed out, because oflarge val
ues of g, the second quantization of the magnetic monopole 
charges is "extremely hard." It still may turn out that a prop
er quantum theory of monopolic charges would lead to non
linear electrodynamics endowed with the freedom of the du
ality rotations, where the phenomenological "dressed" 
monopole charges have an assured place. Our general rela
tivistic results seem at least to indicate a formal fact: things 
are relatively simple if the freedom of the duality rotations is 
postulated, while when one works with a general structural 
function which does not allow for that freedom, even in the 
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case of the spherical symmetry, it is not clear whether the 
inclusion of magnetic monopole charges into the nonlinear 
analog of Reissner-N0rdstrem solutions is possible. 
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Anisotropic fluids in general relativity that admit a conformal collineation, a generalization of 
a conformal motion, are considered. By investigating the kinematic properties of such fluids, 
and then using the field equations, some recent results on the restrictions imposed by a 
conformal collineation symmetry are generalized. 

I. INTRODUCTION 

Recently Duggal and Sharma I investigated the dynamic 
restrictions imposed by a special conformal collineation in a 
class of anisotropic relativistic fluids. In this paper, using the 
methods of a previous paper, 2 we generalize the results of 
Duggal and Sharma. We show that there is an implicit kine
matic assumption in their paper, which may be dropped, 
allowing for a wider range of possibilities. Also, we extend 
their results to the general class of anisotropic fluids without 
energy flux. 

A conformal collineation l is generated by an affine con
formal vector field (ACV) S a, characterized by its effect on 
the metric tensor,3 

.Sf'sgab = 2t/Jgab + Hab , H[ab J = 0 = Hab;c' (I) 

where t/J is the scalar and Hab the symmetric, parallel (and 
therefore Killing) tensor associated with Sa. An ACV is a 
generalization of a conformal Killing vector field (CK V), to 
which it reduces iff Hab = Agab , A = const. A special con
formal collineation, generated by a special ACV, is charac
terized by (1) together with 

(2) 

and is therefore a generalization of a special conformal mo
tion. It is easily shown that an ACV is special iff it leaves 
invariant the curvature tensor R abcd' A special ACV is 
therefore a particular case of a Ricci collineation vector field, 

.Sf'sRab = O. (3) 

Following Herrera et al., 4 Duggal and Sharma I consider 
fluids without energy flux, in which there is a preferred di
rection of pressure anisotropy. Herrera et al. used the field 
equations to investigate the dynamic consequences when 
such fluids admit a special CKV Sa. Duggal and Sharma 
extend this work to the more general case of a special ACV 
S a, and show in particular that the stiff equation of state 
(p = J-l) is no longer singled out when S a is orthogonal to the 
fluid four-velocity ua

• In both ofthese papers, it is assumed 
that S a maps fluid flow lines into fluid flow lines, i.e., that 
.Sf' sua is parallel to ua. That this is not in general the case for 
CKV is shown by a counterexample given by Maartens et 
al. 2 This counterexample applies also to ACV, of which 
CKV is a particular case. 

In Sec. II we show that for an ACV, 

.Sf'sua = - (t/J - VibcUbuc)ua + va, 

where va is orthogonal to ua and involves the vorticity and 

acceleration of the fluid. We display a proper ACV with 
va#O in an Einstein static fluid space-time. We also give a 
detailed characterization of the kinematic restrictions im
posed by an ACV. In Sec. III we use the field equations to 
investigate the dynamic restrictions imposed by a special 
ACV. In particular, we show that the implicit assumption of 
Duggal and Sharma I that va = 0 amounts to assuming that 
ua is an eigenvector of H ab . Although Herrera et al.4 restrict
ed attention to the case where a special CKV maps fluid flow 
lines into fluid flow lines (va = 0), that assumption remark
ably turns out not to be a further restriction since ua is trivial
ly an eigenvector of Hab for the case of a special CKV. Fur
thermore, ua is also an eigenvector of Hab for the special case 
Hab = yRab considered by Duggal and Sharma, I so that 
their results for this special case are not affected by their 
assumption that va = O. In Sec. IV we extend the dynamic 
results for a special ACV to fluids with arbitrary pressure 
anisotropy. 

II. KINEMATICS 

The effect of an ACV on any non-null unit vector X a is 
given by 

.Sf's-Xa = - (t/J + (E/2)Hbcx bx c)Xa + YO, 

.Sf's-Xa =(t/J- (d2)Hbc X bXc)Xa +HabXb + Ya, 
(4) 

where ya is some vector orthogonal to X a, E = + 1 if X a is 
space like and E = - 1 if X a is timelike. The proof of Eqs. 
(4) is a generalization of that for the caseofa CKV (Ref. 2). 
We decompose .Sf'sXa as .Sf's-Xa = axa + ya, for some a 
and ya, where yaXa = O. Contracting with Xa, and using 
.Sf's (Xa xa ) = 0 and.Sf' sXa = .Sf's- (gabXb), we obtain 

a= -EXa.Sf'sXa 

= - EX a (2t/JXa + HabX b + gab.Sf' s-X b), 

and Eqs. (4) follow. In general ya # 0: an explicit example 
of a CKV (Hab = 0) with ya#o in Robertson-Walker 
space-time is given in Ref. 2. 

Now consider a fluid four-velocity ua (uaua = - 1) and 
a unit vector na orthogonal to ua(nana = 1, naua = 0). From 
(4) we get 

.Sf's-ua= - (t/J-Vibcubuc)ua+va, 

.Sf's-ua = (t/J + VibcUbuc)ua + Hab ub + Va' 
(5) 
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where vaua = 0, and 

it'sna = - (t/J + V/bcnbnc)na + rna, 
(6) 

it'sna = (t/J - V/bcnbnC)na + Hab nb + rna' 

where mana = O. Then (5), (6), and it's (naua) = 0 give 
the condition 

(7) 

In Sec. III we will identify na with the preferred direction of 
anisotropy in a particular class of anisotropic fluids. Duggal 
and Sharma I give (5) and (6) with va = 0 = rna. By (7), this 
implies that Hab uanb = O. This kinematic condition will hold 
if ua or na are eigenvectors of H ab , but in general it will not 
hold. 

We can display an example of a fluid space-time with a 
proper ACV which does not map fluid flow lines into fluid 
flow lines. Consider the Einstein static fluid space-time, 

ds'l = - dt 2 + (1- "z)-I d"z + "z(d(J2 + sin2 (Jdt/i) 

with ua = 8g. This space-time admits5 a proper CKV 
(Hab = 0, t/J;ab #0), 

S ~ = (1 - "z) 1/2 cos t8g - r(1 - "z) 1/2 sin t8~, 

and it admits6 a proper affine collineation vector (t/J = 0, 
Hab #0), 

S~ = t8g. 

If we take the combination S a = S ~ + S ~, we obtain a prop
er ACV (t/J;ab #0 and Hab #0), 

Sa = (t + (1 - "z) I /2 COS t )8g - r( 1 - "z) I /2 sin t8~ , 

t/J = - (1 -"z) 1/2 sin t, Hab = - 2t,at.b' 
(8) 

Now it is clear that S a does not map the fluid flow confor
mally, since it' sua is not parallel to ua. Hence (8) is an ACV 
which is not a CKV nor an affine collineation vector, and for 
which va#O in (5). 

Now t/J and va may be related to kinematic quantities of 
the fluid by following the approach of Ref. 2. We decompose 
Sa as Sa = aua + {3a, where a = - uaS a and {3 aUa = O. 
Then, using 

Ua;b = O'ab + j(Jhab + Wab - UaUb, 

we find 

it'sua = aUa + a[ ua + (log a-I);bh ba ] 

+{3bubua +2Wab{3b, 

which, together with (5), gives upon contraction with ua 

and h ac ( = Ft'c + uauc), 

t/J = a + uaS a + !HabUaub, (9) 

Va =2WabSb+a[Ua + (loga-I);bhba] -Hbcubhca' 

By (1), (5)-(7), and (19), (18) takes the form 

(10) 

I 

There are two special cases of interest. 
(a) S aUa = 0: Then a = 0, and (9) and (10) reduce to 

t/J = UaS a + V/ab Uaub, (11) 

(12) 

By ( 12), it follows that if S a is parallel to the vorticity vector 
wa (Wabwb = 0), or if the vorticity is zero, then S a maps flow 
lines into flow lines (i.e., va = 0) iff ua is an eigenvector of 
H ab . On the other hand, if ua is an eigenvector of H ab , then 
S a maps flow lines into flow lines iff S a is parallel to wa or 
Wab = O. 

(b) Sa = Sua: Then a = S and va = 0 (since it'sua is 
clearly parallel to ua

), so that (9) and (10) give 

t/J = t + V/ab Uaub, (13) 

ua = - [(logS-I);b -s-IHbcUC]hba' (14) 

By (14), it follows that if ua is an eigenvector of H ab , then 
S -I is an acceleration potential. The shear O'ab and the ex
pansion (J of the fluid may be obtained by contracting (1) 
with h ach bd - jh abhcd and h ab, 

O'cd = (2S)-I(h a
ch b

d _jhabhcd)Hab' (15) 

(J=3S- It/J+ (2S)-lh abH ab · (16) 

Equation ( 15) shows the close relation between Hab and the 
fluid shear. 

III. DYNAMICS 

We now consider how the field equations alter the pure
ly kinematic results of Sec. II for the particular case of a 
special ACV. Using (1) and (3), the Lie derivative of the 
field equations 

Rab - ~Rgab + Agab = Tab (17) 

gives an expression for the Lie derivative of an arbitrary en
ergy-momentum tensor, 

it's Tab = [2At/J + WA - !T)g<d + rcd)Hcd ] gab 

+ (!T - A)Hab . (18) 

In this section we consider a fluid with a preferred direc
tion of pressure anisotropy and no energy flux, so that Tab 
takes the form 1,2 

Tab =f.lUaub +Pl)nanb +PIPab' (19) 

wheref.l is the total energy density, na is the unit vector along 
thedynamicallypreferreddirection,Pab = hab - nanb is the 
projection tensor into the local two-planes of pressure iso
tropy (p ab ub = 0 = P ab nb), and PI! and PI are the pressure 
along and orthogonal to na, respectively.3 When PI! = PI> 
(19) reduces to the energy-momentum tensor for a perfect 
fluid. 

[it'sf.l + 2t/Jp + (p + PI )HrsUrUs]UaUb + [it' sPI + 2t/JPI ]Pab + [it' sPI! + 2t/JPII - (PI) - PI )H,sn'nS]nanb 

+ 2(p + PI )U(aVb) + 2 (PI) - PI )n(amb) + PIHab + 2(p + PI )U(aHb)tU' + 2(pl) - PI )n(aHb)tn' 

= [2At/J + !(p- PI! + 2A)Hrsp/'S + !(f.l + 2PI + PI) - 2A)H,..urus 

+ !eU - 2PI + PI) + 2A)H,sn'nS
] (Pab - UaUb + nanb) - ~(p - 2PI - PI) + 2A)Hab · (20) 
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By contracting (20) in turn with the tensors uaub, uanb, uapbc, nanb [using (7)], napbc, pab, andpacpbd _ ~pabpcd, we obtain 

!L'slL + 2t/J(1L + A) = -1(1L - PII + 2A)Habpab + 1(1L + 2Pl + PII - 2A)Hab uaUb -1(1L - 2Pl + PII + 2A)Hab nanb, 
(21) 

!L'sPIl + 2t/J (p II -A) =!(IL-PII +2A)Habp ab +!(1L+2Pl +PII -2A)Hab uaUb-!(1L-2Pl +PII +2A)Hab nanb, 
(22) 

!L'SPl + 2t/J(Pl - A) = 1(1L + 2Pl + PII - 2A)Hab uaUb + 1(1L - 2pl + PII + 2A)Hab nanb, 

(IL + PII )nava = - ~(IL + 2Pl + PII - 2A)Hab uanb, 

(23) 

(24) 

(25) 

(26) 

(27) 

(IL+Pl)pabVb = ':"-~(1L+2pl +PII -2A)pabHbcUc, 

(PII - Pl )pabmb = - ~(IL - 2Pl + PII + 2A)pabHbcnc, 

(IL - PII + 2A) (Pa CPh d - ~PabpCd)Hcd = O. 

Equations (21 )-(26) generalize Eqs. (12)-(17) of Ref. 1, which were derived under the implicit assumption that 
va = 0 = rna (and which have zero cosmological constant A). [Note that Eq. (15) of Ref. 1 is identically true by virtue of the 
kinematic condition (7), which implies Hab uanb = 0; this invalidates observation (ii) and part of observation (i) at the end of 
Sec. II in Ref. 1.] 

The following results are readily derived from (24 )-(26) and (7): 

IL + PII =j:.0=j:.1L + Pl and ua an eigenvector of Hab =>va = 0; (28) 

(29) va = O=>IL + 2Pl + PII - 2A = 0 or ua an eigenvector of H ab ; 

IL + PII =j:.O=j:.PII - Pl and na an eigenvector of Hab =>ma = 0; (30) 

rna = O=>IL - 2Pl + PII + 2A = 0 or na an eigenvector of H ab . (31) 

For example, ifma = o then (7) implies vana = - Habuanb, 
which is substituted in (24) to obtain 

(IL - 2Pl + PII + 2A)Hab uanb = 0, 

while (26) implies 

(IL - 2Pl + PII + 2A)pabHbCnc = 0, 

so that either IL - 2Pl + PII + 2A = 0, or (Habnb)ua 
= 0 

= (Habnb)pac. This proves (31), and (28)-(30) are proved 
similarly. 

Thus, apart from special cases, the vanishing of va (rna) 
is equivalent to ua (na) being an eigenvector of H ab . This is 
the dynamic characterization of the kinematic vectors va and 
rna, which the field equations impose in the case of a special 
ACV. There are two important cases when ua and na are 
eigenvectors of H ab , so that va and rna are forced to vanish by 
(28) and (30) (provided the physically reasonable energy 
conditions IL + PII =j:.0=j:.1L + Pl are satisfied). First, if the 
specialACVreducestoaspecialCKV, thenHab = Agab (we 
can set A = 0 by absorbing it into t/J). In this case, the results 
of Ref. 2 are regained. Second, if Hab = yRab (so that space
time is Ricci recurrent, by virtue of Hab;c = 0), then the field 
equations (17), with (19), show that ua and na are eigenvec
tors of H ab . This is the case chosen by Duggal and Sharma. 1 

Thus the main results of their paper (on the equation of 
state) are unaffected by their implicit assumption that 
va =0= rna. 

Note that the results (28)-(31) hold only for Sa a spe
cial ACV. The ACV (8) in Einstein static space-time is not 
special (t/J;ab =j:.0), and it does not satisfy (28): for this ACV, 
ua is an eigenvector of Hab by (8) (since 
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ua = - ~ = - t,a)' and PI! = Pl = 0, 1L=j:.0 (so that 
IL + PII =j:.0=j:.1L + Pl)' but va=j:.O. 

Consider now how the field equations restrict the kine
matic quantities of the fluid in the two cases considered in 
Sec. II. 

(a) Saua = 0: IflL + PII =j:.0=j:.1L + Pl and ua is an eigen
vector of H ab , then (28) and ( 12) show that either the vorti
city vector {J)a is parallel to the special ACV S a, or the vorti
city vanishes, 

(32) 

(b) Sa = Sua: Then va = 0, and (28) and (14) imply 
that 

1L+2Pl +PII -2A=0 or ua = - (logS-I);bhba' 
(33) 

In the case of a perfect fluid (PII = Pl = P and na an arbitrary 
unit vector orthogonal to ua ), contraction of (20) with 
hach b

d -jhabhcd gives (since va =0) 

!(IL - P + 2A) (h ach bd - jh abhcd )Hab = 0, 

so that by (15) we get 

IL - P + 2A = 0 or (Tab = O. (34) 

The results (33) and (34) were obtained for a Ricci collinea
tion (of which a special conformal collineation is a particu
larcase) by Oliver and Davis.7 IfPII =j:.Pl' then (27) and (15) 
give the generalization of (34), 

IL - PII + 2A = 0 or Pa cPb d(Tcd = - (!(Tcdncnd)Pab' 

Thus if IL - PII + 2A =j:. 0, the projection of the shear tensor 
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into the local two-planes of pressure isotropy is isotropic, 
i.e., the preferred direction of pressure anisotropy is also a 
preferred shear direction. 

Finally, we consider the restrictions on the equations of 
state, imposed by the field equations for an anisotropic fluid 
(19) which admits a special conformal collineation. Up to 
now, we have not used Eqs. (21 )-(23), which are the time
like components of the Lie derived field equations (20). 
These equations, together with the contracted Bianchi iden
tities, show that1 when 5 a = sua or 5 a = sna or 
5 aUa = 0 = 5 ana' either the equation of state is fixed or 
there is a condition on ¢ and H ab . Since (21 )-(23) do not 
depend on va and rna, the results of Duggal and Sharma) are 
unaffected by their assumption that va = 0 = rna. These re
sults, with cosmological constant included, are 

sa = sua~ (J.L + 2PL + PII - 2A) 

X(4¢+Haa +2HabUaub) =0, (35) 

sa=sna~(J.L-2pl +PII +2A) 

X (4¢ + Haa - 2Hab nanb) = 0, (36) 

saua = 0 = sana ~ (J.L - PII + 2A) 

X (4¢ - Hab UaU b + Hab nanb) = O. 
(37) 

[Equation (23) of Ref. 1 appears to contain a minor error by 
the inclusion of the term H = Haa.] By (13) and (16), we 
can rewrite the result (35) for sa = sua, 

J.L + 2PL + PII - 2A = 0 or e = ~(log 5)' (38) 

IV. GENERAL ANISOTROPY 

For a fluid without energy flux and without a preferred 
direction of anisotropy, the energy-momentum tensor is 

Tab =J.LUaUb +phab +1Tab , (39) 

where P is the isotropic pressure and 1Tab is the anisotropic 
pressure tensor (-Traa = 0 = 1TabUb). The energy-momentum 
tensor (39) reduces to (19) when 

P = j(PIl + 2Pl)' 1Tab = (Pl - PII ) (jhab - nanb)· 

Using (1), (5), and (39) in (18), we obtain the generalized 
form of (20), and when we contract with uaub, h ab, uah be' 
and h aeh bd - jh abhed , we obtain 

.? sJ.L + 2¢(J.L + A) = !(J.L + 3p - 2A)Hrsu'us 

- !(J.L - P + 2A)Hrsh rs - Vi,s1T's, 
(40) 

.? sP + 2¢(p - A) = !(J.L + 3p - 2A)H,su'us 

+ n(J.L - P + 2A)Hrsh 's + f,Hrs1T", 
(41) 

(43) 

Now it follows from (42) and (39) that the generalizations 
of (28) and (29) are 
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J.L + p=/=O and 

ua an eigenvector of Hab ~ Tab Vb = - J.LVa, ( 44 ) 

va = 0 ~ J.L + 3p - 2A = 0 or 

ua an eigenvector of Hab' ( 45) 

If we make the physically reasonable assumptions that J.L > 0 
and that spacelike eigenvalues of the energy-momentum ten
sor are positive (see Ref. 2 for a discussion), then (44) be
comes 

J.L + p=/=O and ua an eigenvector of Hab ~va = O. 

Thus the dynamic results on va of Sec. III are carried over for 
a general anisotropic pressure tensor, i.e., that apart from 
special cases, the special ACV 5 a maps fluid flow lines into 
flow lines (va = 0) iff ua is an eigenvector of the affine con
formal tensor H ab . The condition that ua be an eigenvector of 
H ab is equivalent to the condition that ua be an eigenvector of 
.? sR a b (Rab =/=0), since by (1) and (3), 

.? sR ab = - 2¢R ab - HaeR Cb, 

and since ua is an eigenvector of R a b for arbitrary 17' ab (pro
vided the energy flux vanishes), by ( 17) and (39). Thus ua is 
an eigenvector of Hab iff ua remains an eigenvector of R a b as 
R ab is deformed under sa. We see that the underlying rea
sons for the dynamic characterization of va = 0 are the in
variance of Rab under 5 a [Eq. (3)], and the vanishing of the 
energy flux. 

The restrictions on the kinematic quantities given by 
(32) and (33) also hold for arbitrary 1Tab [with 
2p 1 + PII = 3p in (33) ], as is readily seen by the same argu
ments used to derive (32) and (33). 

Finally, we consider the extension of the results in Sec. 
III on equations of state to the case of arbitrary 1Tab' using 
( 40) and (41). A straightforward generalization of the ar
guments of Ref. 1 (or of Ref. 2, Sec. VI) shows that for 
sa = sua, (38) is carried over, 

J.L + 3p - 2A = 0 or e = ! (log 5) '. 
For 5 aUa = 0, we obtain 

.? 5 (J.L - p) + (J.L - P + 2A)sa;a 

+ 2~b;aSb + ~bHab = 0, 

which, using (40), (41), (1), and (11), reduces to 

(J.L - P + 2A)(8¢ + H a
a + 4uaS a) 

+ 2~bHab + 12~b;aSb = O. 

Thus no simple generalization of (36) is obtained, and (36) 
is dependent on the special form of 1Tab for a preferred direc
tion of anisotropy. 

V. CONCLUDING REMARK 

The theoretical investigation of conformal motions, ini
tiated by Herrera et al,4laid the basis for a number of physi
cally applicable special solutions admitting conformal mo
tions.8

,9 Hopefully, the theoretical investigation of the more 
general conformal collineations, initiated by Duggal and 
Sharma,) will also give rise to physical applications in rela
tivistic fluids. 
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In this paper, a system made up of two different fermion species with two algebraical 
structures, a bigraded-Lie structure and a Lie superalgebra structure, are shown. The Lie 
superalgebra structure gives the normal commutation relations, while the bigraded Lie 
structure gives the abnormal commutation relations. The Lie superalgebra structure seems to 
be the most convenient for studying systems of composite and elementary particles. 

I. INTRODUCTION 

It is well known that the simplest case of a Lie algebra 
generated from bilinear products of creation and annihila
tion operators which do not change the number of particles, 
is the case of isospin 1 as it was originally conceived for sys
tems of neutrons and protons. If we include bilinear product 
which change the number of particles with the isospin opera
tors, this gives rise to the quasispin algebra,2 the quasispin 
operators are generalized and defined for any case where the 
number of quantum states n is even and can be grouped into 
pairs. 

In this paper we show that the set of creation and anni
hilation operators and their product for a system of compos
ite and "free" particles can have two algebraical structures, 
namely a Lie superalgebra3

,4 (or equivalently a graded-Lie 
algebra5

) structure, or a bigraded-Lie algebra one. Such sys
tems are encountered in astrophysics, chemical kinetics, 
plasma physics, and other fields. The Lie superalgebra struc
ture gives the "normal commutation,,6 relations (indepen
dent fermion fields anticommute), while the bigraded-Lie 
structure gives the "abnormal commutation" relations6 (in
dependent fermion fields commute). The well-known 
choice6 between commutation relations or anticommutation 
relations come from the choice between these two algebra
ical structures. In the bigraded-Lie case only the properties 
of the constituents appear explicitly, while the Lie superalge
bra structure allows us to have explicitly the properties and 
the presence of bound composites particles in the algebra of 
observables and thus to have their creation and annihilation 
operators as dynamical variables as well as the creation and 
annihilation operators for the constituents, That is why we 
believe that the Lie superalgebra structure is the best one to 
use in this field. 

II. BIGRADED LIE ALGEBRAICAL STRUCTURE 

A. State space 

We consider a system of composite and free particles 
(nuclei, electrons, and atoms); nuclei are considered as ele
mentary particles and atoms are obtained by the association 
of one nucleus and I electrons. 

Let Jf"n be the Hilbert state space for one nucleus and J 
its nuclear spin. If J is a half-integer, then .ifr~ is the r
fold antisymmetric tensor product of Jf"n' and 

00 

Y a (Jf"n ) = E9.if r~ (1) 
r~O 

is the antisymmetric Fock space over Jf"n' 

If J is an integer, then Y rJY;; is the r-fold symmetric 
tensor product of Jf"n' and 

00 

Y s (Jf"n) = E9 Y rJf"~ (2) 
r=O 

is the symmetric Fock space over Jf"n' 

Let Jf"e be the Hilbert state space for the electron. Then 
.ifIJY'~ is the I-fold antisymmetric tensor product of Jf"e' 

and 
00 

Y a (Jf"e) = E9 .if1Jf"~ (3) 
I~O 

is the antisymmetric Fock space over Jf"e' 

The state space for a system of atoms, free nuclei, and 
free electrons is, when J is a half-integer, 

Y = Y a (Jf"n) ® Y a (Jf"e) = E9 .ifr~ ® .if1Jf"~ 

E9 Y(2Jr.2sI) ' 
(2Jr,2sl) 

r,l 

(3') 

where 2Jr is the degree of r nuclei, which means, that when 
we exchange r nuclei with r other nuclei, the wave function is 
symmetric or antisymmetric depending upon whether 2Jr is 
even or odd. 

Here 2s1 is the degree of I electrons, s is the electron spin 
s= !, 

Y = E9 Y(2Jr'!)' 
(2Jr,1) 

When J is an integer, the state space is 

~ = Y s (Jf"n) ® Y a (Jf"e) = E9 YrJY;; ® dlJf"~ 

= E9 ~ (2Jr,l) , 
2Jr,1 

r,1 

(4) 

(5) 

and, we limit our study to the space Y; the state space ~ is 
treated similarly. 

The state space Y is a bigraded space, it is graded ac
cording to the 2Jr and graded according to electron number. 
(If J =!, Y is graded according to nucleus number and 
graded according to electron number.) 
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B. Algebra of operators on Y 

Let End(2Jr,l') (Y) consistofthosebilinearmapsjof Y 
into itself such thatj(Y 2Jr,/) CY(2J(r+ r),/+ 1'). 

It is clear that if jeEnd(2Jk.l) (Y) and 
geEnd(2Jk',I') (Y), then the composition /,g lies In 

End(2J( k + k' ),1 + I')' The algebra of operators on Y is 

L = End(Y) = Ell End(2Jr"/,) (Y) 
(r"/,) 

= Ell L(2Jr"/,) , 
(r,.I,) 

(6) 

where L is called a bigraded algebra. 
We define a bigraded Lie algebra structure on L if we are 

given a bilinear map denoted by [ , ] of L XL --+ L such that if 
jeL(2Jr,./,) and geL (2Jr2,/2 ) , 

and 

(7) 

[J,[g,k]] = [[j,g],h] + (_1)4J
2

r,r2 +/,/2 [g,[f,h]]' 
(8) 

c. Example 

For simplicity, we take a quantum mechanical model of 
a composite particle composed by two types offermions such 
that each type offermion can be represented by only a single 
state (the two types of fermions are proton and electron). 

The state space of this system is 

Y = Y(O,O) + Y(1,O) + Y(O,I) + Y(1,\)' (9) 

Denote the creation and annihilation operator for the 
electron by a+ and a, and those for the proton by b + and b. 
The space Y (0,0) is spanned by the vacuum state 10>, 
Y(1,O) is spanned by the electron state Ie) = a+ 10), Y(O,I) 
is spanned by the proton state IF) = b + 10) , Y (\ ,I) is 
spanned by the proton-electron state I ep) = a + b + 10). The 
state space Y is a four-dimensional space. 

The Hamiltonian of this sytem is taken to be 

H = ala+a + a 2b +b + va+b +ba. 

It has four eigenstates, consisting of the vacuum state 10) 
with eigenvalue zero, the proton state b + 10) with eigenvalue 
a 2 , the electron state with eigenvalue a I and proton-electron 
state a + b + 10) with eigenvalue a I + a 2 + v;a+ b + 10) can be 
thought as a simplified model of a composite particle (here a 
hydrogen atom). The operators A + = a + b + andA = ba are 
the creation and annihilation operators of a hydrogen atom. 

The algebra of operators on Y is 

End(Y) =L=L(_I,_I) +L(_I,I) +L(o,_I) 

+ L( -1,0) + L(o,o) + L(\,o) 

+ L(o,\) + L(\, _ I) + L(\,\) , (10) 

where L( _ I, _ I)' L( _ 1,1)' L(\, _ I)' and L(\,\) are one di
mensional and are spanned, respectively, by ab, ab +, a+ b, 
andb+a+;L(o,_I)' L(_I,o)' L(\,Q),andL(o,l) are two di
mensional and are spanned, respectively, by {b,a+ab}, 
{a,b +ba}, {a+,b +a+b}, and {b +,b +a+a}; and L(o,o) is 
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four dimensional and is spanned by I, a+a, b +b, b +a+ab; 
where I denotes the identity operator. The algebra L is 16 
dimensional. 

According to Eq. (7) the proton and the electron cre
ation and annihilation operators verify the following rela
tions: 

[a,a] =aa+aa=O, 

[b,b] = bb + bb = 0, 

[a,a+] = aa+ + a+a = 1, 

[b,b+] =bb+ +b+b= 1, 

[a + ,b +] = a + b + - b + a + = 0, 

[a + ,b) = a + b - ba + = 0, 

[a,b] =ab-ba=O, 

[a,b+] =ab+ -b+a=O. 

(11 ) 

We have omitted writing the other commutation and 
anticommutation relations since they can be obtained easily 
from Eqs. (7) and (11). 

Yet, note that the operators A + andA are not Bose oper
ators since they satisfy nontrivial commutation relations: 

[A,A +] =AA + -A +A = l-a+a-b+b, 

[A,a+] = Aa+ + a+ A = b, 

[A,b+] =Ab+ +b+A =a, 

[A,a] = [A,b] = 0, 

[A,A] = O. 

(12) 

The last four equations in (11) are the abnormal com
mutation relations. 

Consequently, the bigraded structure gives the abnor
mal commutation relations between independent fermion 
creation and annihilation operators. 

A representation of L on Y which agrees with the bi
graded structure is 

1 

o 
o 

o 
1 

o 
o 

o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
1 

o 
o 
o 
o 
o 

o 
o 
o 
o 

(13 ) 

o 0 
o 0 

o 0 
o 0 
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We have omitted writing the Hermitian conjugate of these 
operators. 

III. LIE SUPERALGEBRA STRUCTURE 

A. State space 

We have seen [Eq. (4)] that Y = IB (21r,/) Y(21r,/). 

Let Y (21r"/,) be the subspace of Y representing states of 
r l nuclei and II electrons. We consider bound atoms formed 
by the association of one nucleus and n electrons. We de
scribe these bound atoms via an orthonormal but incomplete 
set of wave functions <l>a (X,xI""'Xn ), (Here X refers to the 
nucleus coordinates including spin, and x to the electron 
coordinates.) To describe the "free" electrons and nuclei, we 
choose a complete orthonormal set <l>j (X) of one-nucleus 
wave functions and a similar set <1>; (x) of one-electron wave 
functions. We introduce functions 'I'm (XI" 'Xr" XI" 'X/, ) 
corresponding to m bound atoms, r l - m free nuclei, and 
II - m, free electrons describing a system of r l nuclei and II 
electrons. These functions can be expressible as linear com
binations: 
'I'm (XI, ... ,xr" x 1"",XI, ) 

im+ t"'jrl 

i,""+ 1"'iI1 

X<I>a, (XI,xI" ·xn )·· '<I>a
m 

(Xm ,x(m - \)n + 1 •• ·Xmn ) 

X <I> Jm +, (Xm + 1 ) ••• <l>j" (Xr ,) 

X <1>; (xmn+1)"·<I>;(x / ). (14) 
mn+l " I 

The coefficients C(a l " 'am , jm + 1 . "jr" imn + I" 'i/,) 
are totally symmetric or antisymmetric under interchanges 
of the atomic indices a depending upon whether 2J + n is 
even or odd, and totally antisymmetric under interchanges 
of the nucleus (electron) indicesjU) (Jishalf-integer). It is 
clear that the commutation or the anticommutation rela
tions between the atoms will depend on the sign of 
( - 1)21 + n. We want that ( - 1)21 + n appears explicitly in 
the commutation or the anticommutation relations which 
will characterize the algebra of operators on Y. 

We have Y = IB (21r"/,) Y(21r"/,) , 

We make Y into a graded vector space by setting 

(15) 

Then 

(16) 

We say that Y is a graded vector space. [Note that the wave 
functions that correspond to physical states in Yare 

X (X"'X ,x "'X ) =A'I' (X"'X x "'x) where m 1 r l 1 11 m 1 r' I II' 

A is the antisymmetrizer operator.] 
Here Y; may be written in the following form: 

Y; = IB .Y(21r"/,) 
2Jrl + 11 = I 
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where Y~21 + n)m is the state space for the m bound atoms, 
the parity of a state in Y~21 + n)m is ( - 1) (21 + n)m, and the 
parity of an atom is ( - 1) 21 + n; Yt( r, _ m) is the state space 
for the (rl - m) free nucleus, the parity of a state in 
Yt(r, _ m) is ( - 1) 21(r, - m), and the parity of a nucleus is 
( - 1)21; and Yr, _ mn is the state space for the (/1 - mn) 

free, the parity of a state in Yr, _ mn is ( - 1) I, - mn, and the 
parity of an electron is ( - 1). 

A state in Y; can be represented by 

1 1 f Ix ) =--- dX ···dX dX "'dx 
m ('I ') 2 I r, I I, r l · I' 

Xx (X "'X ,x "'X )'1'+ (X ) ... m 1 r, I I, I 

X '1'+ (Xr ,) '1'+ (XI)'" '1'+ (XI,) 10), (18) 

where 'I' + (X) is the field operator for the nucleus, 'I' + (X) is 
the field operator for the electron, and 10) is the vacuum 
state. From (14) we can write ( 18) in the following form: 

(n!)mI2 .. 
IXm) = ( 'I )1/2 2;d(a,I,J) 

r l • 1 a,IJ 

where 

A a+ =~fdX; dxu _ \)n+1 "'dx; 
, (n!) • 

X<I>a, (X;.XU_I)n + 1" ·X;.) 

X '1'+ (X;) '1'+ (Xu _ l)n + 1 ) ... '1'+ (X;) 

is the creation operator of an atom in the state a;. 

b/ = f dAj IPj (Aj)'I'+ (Aj) 

is the creation operator of a nucleus in the statej, and 

a;+ = f dx; IP; (x; ) 'I' + (x; ) 

is the creation operator of an electron in the state i. 
The annihilation operators are defined by 

(20) 

(21) 

(22) 

Aa,=(Aa~)+' bj=(b/)+, a;=(a/)+. (23) 

Equation (17) can be obtained by another method. Let Pm 
be the space of all wave functions X m ; it is a subspace of Y. 

It is obvious that the space Pm contain not only the 
states having m atoms but also the states having m + 1, 
m + 2, ... , etc. bound atoms, and we have the following rela-
tions: 

PO:JP1:J···:JPm:J···:JPq , q=min(rl,ll)' (24) 

We have a sequence of embedded vector spaces, we can de
fine in the usual way the quotient spaces or equivalently the 
factor spaces. 

Let 

(25) 

Then Qj is exactly the state space of physical j-atom wave 
functions, r 1 - j free proton wave functions, and II - jn free 
electron wave functions. We have then 

Po = QolB QIIB'" IB Qm lB'" IB Qq = Y;. (26) 

A. Zinoun and J. Cortois 2189 



                                                                                                                                    

B. Algebra of operators on Y 

We have seen [Eq. (15)] that 

Let Endk (Y) consist of those linear maps,f, of Y into 
itself such that/ Y n cYn + k' (27) 

The algebra of operators on Y is 

L=End(Y) = EIlEndk(Y) = EIlLk, 
k 

(28) 

where k = 2Jr + I. Here L is a graded algebra or equivalent
ly a superalgebra.3

-4 

We say that L is a graded Lie algebra5 or equivalently a 
Lie superalgebra, if we are given a bilinear map denoted by 
[ , ] of L XL-L such that the following three conditions 
hold: 

and 

[Lk,L 1 ] CLk + I' (29) 

[J,g] = - (_I)kl[gj] for /ELk, gEL 1 , (30) 

[f,[g,h]] = [[J,g],h] + (-I)kl[g,[f,h]], hELm· 
(31) 

Condition (29) says that the bracket multiplication is 
consistent with the grading. Condition (30) is the graded 
version of anticommutativity (supersymmetry). Condition 
(31) is the graded version ofJacobi's identity. 

We define a Lie superalgebra structure on 
L = End(Y) = Ell k L k , when k = 2Jr + Iby setting 

[J,g] = fg - ( - 1 )kpg.f, (32) 

for/ELk andgELp. 
It is obvious that conditions (29) and (30) are satisfied 

and a straightforward verification shows that condition (31 ) 
is also satisfied. 

C. Example 

We take the same quantum mechanical model as we do 
in Sec. I. The state space for this system is 

(33) 

where Yo = Y(o,Q) is spanned by the vacuum state, 
Y I = Y (1,0) Ell Y 0,1 is spanned by the electron and the pro
ton states Ie) and 11'), and Y 2 = Y(I,I) is spanned by the 
proton-electron state lep). 

The algebra of operator on Y is 

End(Y) =L =L_ 2 E1lL_ I EIlLoEilLI EIlL 2, (34) 

where L_2 and L2 are one dimensional and are spanned, 
respectively, by ab and b + a+. 

Here L _ I and L I are four dimensional and are spanned 
by {a,b,a+ab,b +ba} and {a+,b +,b +a+a,b +a+b}, and 
Lo is six dimensional and is spanned by {I, a + a, b + b, 
b +a+ab, b +a, a+b}. 

According to Eq. (32), proton and electron creation 
and annihilation operators satisfy the following relations: 
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[a,a] =aa+aa=O, 

[b,b] =bb+bb=O, 

[a,a+] =aa+ +a+a= 1, 

[b,b+] =bb+ +b+b= 1, 

[a + ,b +] = a + b + + b + a + = 0, 

[a,b+] =ab+ +b+a=O, 

[a+,b] = a+b + ba+ = 0, 

[a,b] = ab + ba = O. 

(35) 

The last four equations in (35) show that proton and 
electron creation and annihilation operators anticommute. 

TheoperatorsA + ,A, a, b, a+, andb + satisfy the follow
ing commutation relations: 

[A,A +] =AA + -A + A = 1 - a+a - b +b, 

[A,a+] =Aa+ -a+A =b, 

[A,b +] = Ab + - b + A = - a, 

[A,a] =Aa - aA = 0, 

[A,b] =Ab - bA = 0, 

[A,A] =AA -AA =0. 

(36) 

We have omitted writing the Hermitian conjugate of 
(36). [Note the difference between (36) and (12).] 

Consequently, the Lie superalgebra structure gives the 
normal commutation relations. A representation of L in Y 
which agrees with (32) is 

a+ab ~ (~ 
0 0 

~1) b+OO~(~ 
0 0 

V' 
0 0 0 0 

0 0 o ' 0 0 

0 0 0 0 0 
(37) 

ab~(~ 
0 0 

~1) a+b~(~ 
0 0 

V 
0 0 0 

0 0 o ' 0 0 

0 0 0 0 0 

We have omitted writing the Hermitian conjugate of (37). 

IV. CONNECTION BETWEEN THE TWO STRUCTURES 

We have associated to each structure a representation in 
the state space Y [see ( 13) and (37)]. 

These representations can be connected by a linear su
pertransformation L, the denomination supertransforma
tion comes from the fact that L acts on the space of operators 
(which is a vector space), not on state space. This super
transformation is exactly the Klein transformation. 

Denote by a", b ", (b +a+a)", ... the representation of 
algebra L in the bigraded Lie case, and a', b', (b +a+a)', ... 
the representation of L in the Lie superalgebrai.cal case. 

We can find a linear supertransformation L such that 
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A A 

a' = La", b' =Lb ", ... , 

aij = Lij,k/ak/' b ij = Lij,k/b k/,.", 

where 

aij is a matrix element of a', 

ak/ is a matrix element of aU. 

The supertransformation L can be expressed as a sym
metric matrix, with the following non-null elements: 

Lu,u = 1 for i = 1, ... ,4, 

L 12,12 = L 13,13 = L 23,23 = L 34,34 = 1, 

L 14,14 = L 24,24 = - 1. 

V. CONCLUSION 

A system made up of two different fermion species can 
have two algebraical structures a bigraded-Lie structure and 
a graded-Lie one. 3

-
5 The choice between these two struc

tures follows from the standard argument6 according to 
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which the choice between commutation or anticommutation 
relations of kinematically independent fermion species is a 
matter of convention. If one wants to have creation and anni
hilation operators of composite particles as dynamical vari
ables of the system, the Lie superalgebraical structure is the 
most convenient since these operators appear explicitly with 
their parity in the algebra of operators, while in the bigraded 
Lie structure, only the operators for the constituents appear 
explicitly. These two structures are connected by a super
transformation which is just the Klein transformation. 

'J. M. Blatt and Y. F. Weisskopf, Theoretical Nuclear Physics (Wiley, New 
York, 1952), pp. 158,220, and 255. 

2A. K. Kerman, Ann. Phys. (NY) 12, 300 (1961); H. G. Lipkin, Nucl. 
Phys.26, 147 (1961). 

'V. G. Kac, Adv. Math. 26, 8 (1977). 
40. A. Leites, Russian Math. Surveys 35, 1 (1980). 
5L. Corwin, Y. Ni'Eman, and S. Sternberg, Rev. Mod. Phys. 47, 573 
(1975). 

6R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That 
(Benjamin, New York, 1964), pp. 146ft". 
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The mathematical group chain of an n g-boson system is 

SU(9) ::)SO(9) ::)SO(5) XSU1(2) XSU2(2) 

U 

SUa (2) XSUb (2). 

In this paper, the mathematical basis of this group chain is obtained by using the briefer 
method and then constructing the states of n g-bosons with good angular momentum. 

I. INTRODUCTION 
In the preceding paper,1 we have shown that the mathematical group chain for n g-bosons is 

SU(9) ::)SO(9) ::)SO(5) XSU1 (2) XSU2(2) 

U 

SUa (2) XSUb (2) 

and the corresponding mathematical basis is explicitly given by 

nv' Aa' l: 8) _ ( (2v + 7)!! )112 2A + l: ( (A + a)!(A + .8)!(l: + r)!(l:a + 8)! )1/2 
I ,p, /3,,,, - 2Pp!(2p + 2v + 7)!! (2A)!(2l:)! 2a + P+ r +<5(A - a)!(A -.8)!(l: - r)!(l: - 8)! 

X (S+)p(IL)A-a(v_)A-P(u_)l:-rCT _)l:-6+ r;(g4+ )2l:(Z t )",-/(Z 2+)1 

X 2: r ~ (go+ )P - 2A - 2~(.8 0+ )~(gt )2A( ~(2A)!) -110) , 
~ 

where 

2w = v -p - 2l: 

and 

(1) 

r' _ (2l: + l)w!(2l: + w + 1)!(4l: + 2p + 2w + 5)!!)1I2 (2p + 3)!! (2) 
1 - (4l: + 2p + 4m + 5)!! i!(w -/)(w + 2l: + 1 -/)!(2p + 21 + 3)!! ' 

r =(2A+l)!(P-2A)!(P+2A+l)!!(P+2A+2)!!)1I2 1 . 
~ 22A + I (2p+ l)!! 2~a!(a+2A+ 1)!(p-2a-2A)! (3) 

Note that expression (1) has some differences with (18a) in Ref. 1. Here we have written it in a more compact form. 

II. THEORY 

In Ref. 1, we have already constructed the physical basis for the n = 2 g-boson system. Here we give the physical basis for 
an arbitrary n-boson system. 

As described in Ref. 1, in order to form states with good angular momentum, we take a maximum weight state which has a 
weight value of M = 4v and thus a unique value of L, then apply the L _ operator given in Eq. (8) of Ref. 1. It can be easily 
shown that the states (1) are eigenstates of Lo with eigenvalue M =.8 + 3a + 8 + 7r. The physical states thus have to be a 
linear combination of states with the same M, n, and v. 

For arbitrary n, the action of the operators appearing in L _ is given as follows: 

v_lnv;p,Aa.8;l:r8) = [!(A+.8)(A-.8+ l)r/2Inv;p,Aa.8-1;l:r8), (4a) 

Llnv;p,Aa.8;l:r8) = B(l:+8)(l:-o+ l)r/2Inv;p,Aa.8;l:ro-l), (4b) 

UlI!;~g~;~2) Inv;p, Aa.8; l:ro) 

2192 

= ~[(P - 2A)(p + 2A + 3)(A - a + I)(A +.8 + 1) ]1I2Inv. A 1 a-1.8 I'l: 8) 
2 (2A+ 1)(2A+2) ,p, +2' 2' +'1' r 
_ ~[(P - 2A + l)(p + 2A + 2)(A + a)(A _,8)]1I2 Inv' A-I a-1.8 I'l: 8) 

2 2A(2A+ 1) ,p, 2' 2' +2' ]/I , 
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Tg~m~;i)(1/2);( -1/2)(1/2) Inv;p Aa/3; l:yt5} 

_ ~ ( 1)i'+i+ k(p 'IITIIP> [ °fj(Ofj + 1)®aj®pj®rk®,sk ]112 
- i=~I,1 - +1 [2A+2f(j)][2A+2f(j) + 1][P+ 1 +f( -i)](2p+ 3)(2l: + 1)2 

j= -H 
k= -H 

x Inv;p + i, A +j, a + ~,/3+!; l: + k, y-!, 6 + p, (4d) 

where 

f(x) = {O, x<O, i'= {~+ I, ~<O, Ofj =p+ (-ll(i)+I(i+2f(j»)+2A( _1)fti)+.tV), 
I, x>O, I, 1>0, 

®pj = A + p( - 1 ).tV) + 1 + f(j), p = a, /3, ct>uk = l: + er( - 1 )f(k) + f(k), er = y, - 6, 

(p ± 111 T lIP) = '.l '.l 'f - 'f + '.l :2 r , 
[
(2l:+ 3 + 1)(a d_ +b d )]1I2[ (p+J+l)(2n+3) ]114 

(2l: + ~ ± !)(a+b_ + a_b+) (p + ~ ± ~)(2p + 3 ± 2) 

and 

a - 2 ---~-'---=~---
[ 

2p+3+2 ]112 
± - (p+!±!>(p+~±!)(2p+3) , 

b = [ (p + 2A + 1 + 2) (p ± 2A + 2 + 2) + (p + 2A + l)(p ± 2A + 2) ] 
± (2A + 1) (A + 1) A(2A + 1) 

X /3 , d = 2l: (l: + 1) 
[(p +! ± V (p + ~ ± ~)(2p + 2 ± 1 )(2p + 5 ± 1) r/2 ± l:(l: + 1) ± yt5 . 

As an example, we discuss the case n = 3. The possible 
values of L are 12, 10, 9, 8, 7, 62

, 5, 42
, 3, 2, 0, and the 

maximum weight state is 

By acting the operator L _ once again, we obtain 

IL = 12, M = 10} = (8/23)1/2133; 0, 000; B -~) 
- (7/46)1/21 33; IdH; 111) 

= (8/23) 1/2(g3+ )2(g/ ) 10} 
IL = 12, M = 12} = (1!{6) (g/ )310) 

corresponding to the state 

In = 3, v = 3; P = 0, A = 0, a = 0, /3 = 0; _ (7/46)1/2(g2+) (g/ )210) . (7) 

l: =~, y =~, 6 =~} . (5) 

With the use of the previous formulas, the action of L _ on 
the highest weight state can be calculated to yield 

The state IL = 10, M = 10} can be obtained by its nor
malization and its orthogonality with IL = 12, M = 10): 

L_133; 0, 000; m} = 2v'3133; 0, 000; HP 
= (6(g3+ ) (g4+ )210) . 

Since the state on the left-hand side corresponds to the state 
IL = 12, M = 12}, the state on the right-hand side necessar
ily corresponds to IL = 12, M = II}, 

IL = 12, M = 11) = (1!~)(g/ )(g4+ )210) . (6) 
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IL = 10, M = 10) = (7/46) 1/2 (g3+ )2g/ 10} 

+ (8/23) 1/2 (g2+ )(g4+ )210) . (8) 

By using this procedure, we can construct all states of 
n g-bosons with good angular momentum. 

lZ. R. Yu, O. Scholten, and H. Z. Sun, J. Math. Phys. 27, 442 (1986). 

X. Sen and Z. R. Yu 2193 



                                                                                                                                    

Exact solutions of the multidimensional classical ~8·field equations obtained 
by symmetry reduction 

P. Winternitz 
Centre de Recherches Mathematiques. Universite de Montreal. c.P. 6128. succursale A. Montreal. Quebec. 
Canada H3C 3J7 

A. M. Grundland 
Department of Mathematics and Statistics. Memorial University of Newfoundland. St. John's. 
Newfoundland. Canada A1C 5S7 

J. A. Tuszynski 
Department of Physics. Memorial University of Newfoundland. St. John's. Newfoundland. Canada 
AIB3X7 

(Received 18 November 1986; accepted for publication 15 April 1987) 

The often used ¢6 model of classical critical phenomena is studied in (3 + 1 )-dimensional 
Minkowski and Euclidean spaces. The Euler-Lagrange equations describing the kinetics of the 
scalar order parameter are in this case nonlinear Klein-Gordon equations. The method of 
symmetry reduction is systematically applied to derive all the solutions invariant under 
subgroups with generic orbits of codimension 1. Whenever the obtained ordinary differential 
equations have the Painleve property, they can be transformed to one of two standard forms. 
These are then solved in terms of elliptic functions or elementary ones. This results in a large 
number of new exact solutions. Particularly interesting solutions are found in the immediate 
vicinity of the tricritical point. Our treatment of the ¢6 theory is complete only for the four
dimensional spaces M (3, I) and E( 4), but many of the results are given for the more general 
cases ofM(n,l) and E(n + 1). 

I. INTRODUCTION 

The purpose of this paper is to obtain new analytical 
solutions of the equation of motion of the classical ¢6-field 
theory. The Lagrangian density of this theory is given by the 
expression 

i"'(x) = ~af'¢ af'¢ - V(¢), 

V( ¢) = a2¢2 + a4¢4 + a6¢6, 

(1.1 ) 

( 1.2) 

where ¢(x) = ¢(XO'x1, ... ,xn ) is a classical scalar field and 
summation over repeated indices is to be understood. 

The equation of motion is the Lagrange-Euler equation, 
obtained by minimizing the corresponding action. For the 
Lagrangian density, Eq. (1.1), the equation of motion is 

DE ¢ = - 2(a2¢ + 2a4¢3 + 3a6¢5), (1.3) 

where 

a 2 n a2 
DE=-+<~: - (E= ± 1), aX6 j~ 1 axJ 

is the Laplace-Beltrami operator in Minkowski space 
M(n,l) (E= -1) or in Euclidean space E(n+1) 
(E= + 1). Also, in Eq. (1.3) a2, a4, and a6 are constants 
anda6#0. We shall call Eq. (1.3) the nonlinear Klein-Gor
don equation (NLKGE). 

The method used consists essentially of two steps, appli
cable to a large class of partial differential equations 
(POE's). The first step is that of symmetry reduction from 
the considered POE to an ordinary differential equation 
(ODE). In particular, for the NLKGE (1.3) this is achieved 
by letting 

¢(x) =p(x)F(S'(x»), (1.4 ) 

where p and S' are explicitly given by symmetry consider-

ations. The function F(S') satisfies an ODE obtained by sub
stituting Eq. (1.4) into the NLKGE, Eq. (1.3). 

The second step is to integrate, if possible, the obtained 
ODE's. In degenerate cases, as we shall see below, the ODE 
simplifies either to an algebraic equation or to a first-order 
ODE that can be integrated directly. For most symmetry 
variables S' and multipliersp, however, we obtain a nonlinear 
second-order ODE. In this case we perform a singularity 
analysis in order to establish whether the equation is of the 
Painleve type (no moving critical points) .1-4 In the affirma
tive case we then reduce the ODE to one of the 50 standard 
forms 1 established by Painleve and Gambier.4 It turns out 
then that we can always integrate the resultant equation in 
terms of either elementary functions or Jacobi elliptic func
tions. 

In general, the symmetry group of the NLKGE, Eq. 
(1.3), is simply the corresponding Poincare group P(n,l) 
for M(n,l) or Euclidean group Pen + 1,0) for E(n + 1). 
However, if the right-hand side of Eq. (1.3) is a homogen
eous polynomial, i.e., a2 = a4 = 0, the group is larger. In
deed, in addition to translations, rotations, and Lorentz 
boosts the symmetry group of the equation DE ¢ = a¢Jm in
cludes dilations and hence is the corresponding similitude 
group: Sim(n,l) for E = - 1 or Sim(n + 1) for E = + 1. 
This additional symmetry will allow us to obtain many new 
analytical solutions of the NLKGE, Eq. (1.3), for 
a2 = a4 = 0, i.e., 

OE¢ = a¢5, a = - 6a6, E = ± 1. (1.5) 

For m = (n + 3 )/(n - 1) the invariance group is well 
known to be even larger,5 namely the entire conformal group 
of space-time. Since we concentrate below on the case 
m = 5, n = 3, not satisfying the above relation, we do not 
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dwell upon this point here. The NLKGE, Eq. (1.3), is of 
considerable interest in classical and quantum field theory 
and also in condensed matter theory. In all these areas it is 
considered in connection with various critical phenomena. 

In the context of classical and quantum field theory, 
NLKGE's typically arise as equations of motion for scalar 
meson fields with the Lagrangian density ( 1.1 ). The nonlin
ear field potential V( ¢;) depends on parameters whose values 
may cause it to become multistable, e.g., "mass" a2 , coupling 
constants a4 and a6 in the case of Eq. (1.3). In particular, 
massive or massless theories with polynomial potentials 
V(¢;) demonstrate a variety of interesting nonperturbative 
features. In classical theories ¢;(x) is a c-number field which 
can be considered a first-order approximation, or can be sub
sequently quantized in order to be useful in quantum theor
ies, where ¢;(x) is an operator field. For reviews of quantum 
field theory applications of classical solutions, see, e.g., 
lackiw6 and Rajaraman.7 Among the interesting features 
that we wish to mention are the following. 

(i) The existence of a degenerate vacuum leading to the 
possibility of spontaneous symmetry breaking. 

(ii) The presence of exact, "topologically stable" solu
tions that cannot be obtained using perturbation techniques. 
These may have the form of kinks [¢;(t) goes from one con
stant value ¢; 1 at t -+ - 00, to a different one ¢;2 at t -+ + 00], 
solitary waves [localized solutions such that ¢;(t) ap
proaches the same constant ¢;o at t -+ ± 00, where ¢;o mayor 
may not be 0], various types of algebraic solutions and, final
ly, periodic solutions which are usually expressed in terms of 
Jacobi or Weierstrass elliptic functions. s These solutions 
can, in turn, serve as the basis for further perturbative calcu
lations, perturbing around them, rather than around solu
tions of linearized equations. 

(iii) Theories with polynomial self-interactions, at least 
in (1 + 1) or (2 + 0) dimensions share some of the interest
ing properties of completely integrable field theories. A per
tinent example of such a theory is obtained for 
V( ¢;) = 1 - cos ¢; in Eq. (1.2). The equation of motion is 
then the sine-Gordon equation 

( 1.6) 

which can be solved by inverse scattering techniques.9 The 
set of solutions includes kinks, multikinks, and periodic so
lutions (cnoidal waves). However, there is an important dif
ference between the solitary waves and kinks of polynomial 
theories and those of completely integrable theories. While 
both types may be stable with respect to various perturba
tions, solitons (the latter type) are also stable with respect to 
mutual interactions: they survive collisions amongst each 
other. The integrability properties of soliton theories do not 
easily generalize to more than two dimensions. The methods 
employed in this paper, however, do not rely on integrability 
and are indeed applicable in (n + 1) dimensions. 

In the context of relativistic field theory ¢; (x) is in gen
eral a complex field (a scalar meson wave function), a2 is a 
~ass, and a4 and a6 are coupling constants corresponding to 
dtfferent types of nonlinear self-interactions. In this case we 
have E = - 1, on the other hand, the E = + 1 case is also of 
interest, since it leads to imaginary time solutions, i.e., in-
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stan tons which provide evidence for quantum mechanical 
tunneling. 6,7 

In condensed matter theory a Hamiltonian density of 
the Landau-Ginzburg-Wilsonlo form 

JY' = (mI2)¢;; + (D 12)(V¢;)2 + a2¢;2 + a4¢;4 + a6¢;6 
( 1.7) 

is often derived as a continuum limit of an appropriate lattice 
Hamiltonian. Here, ¢; is an order parameter whose average 
value is zero in the disordered phase and nonzero in the or
dered phase. On a microscopic scale, ¢; can either be discrete 
valued (spin) or continuous (elongation). The potential en
ergy of the lattice Hamiltonian has an anharmonic on-site 
part and a harmonic (for elongations) or an Ising (for spins) 
off-site part. A coarse graining procedure yields Eq. (1.7) 
where D defines the surface energy (in spin systems D > 0 is 
typical of antiferromagnetism, D < 0 of ferromagnetism). 
The Euler-Lagrange equations based on the Lagrangian 
corresponding to the Hamiltonian of Eq. (1. 7) lead to the 
NLKGE, Eq. ( 1.3 ), where we set E = - sgn (D); 
Xo = m- I

/
2t and (X 1,X2,X3 ) = ID 1-1/2(X,y,z). Thus both 

signs E = ± 1 in Eq. (1.3) are relevant in condensed matter 
applications (without the need of continuing the equations 
to imaginary time). Following Landau, II the temperature 
behavior is given by a2 = a( T - Tc). If a4 > 0, the transition 
is of second order while for a4 < 0 it is of first order. The 
condition a4 = 0 corresponds to a very important case of a 
tricritical point on the phase diagram where a line of first
order phase transitions intersects with a line of second-order 
phase transitions. The values of a4 may only be altered by 
external fields or by structural changes in the system. The 
transition temperature is obtained as Tc for a4 > 0 and 
T~ = Tc + a!l4aa6 for a4 < 0, at which the order param
eter experiences a discontinuity 11¢; = ± ( - a416a6 ) 1/2. 

Metastable states exist in the range of temperatures: 
Tc < T < T~ = Tc + a!l3aa6 thus giving rise to a thermal 
hysteresis. The plot V(¢;) at various temperatures is shown 
in Fig. 1 for a4 > 0 and in Fig. 2 for a4 < O. In principle ¢; is a 

V(q,) 
T>Tc 

T=Tc 

T<Tc 

--T--_~CP 

T 

FIG. 1. The form of the potential V(tf» and the corresponding plot of tf>( n 
fora4 >O. 
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V(4)) 

T~<T<T~ 
T=T~ 
TO<T<T~ 

r-~~~~~----~¢ 

T<To 

To 

T~ 

T 

FIG. 2. The form of the potental V(l,b) and the corresponding plot of l,b(T) 
for a. <0. 

real or complex function ofx, but in specific applications it is 
either one or the other, depending on its physical meaning 
(e.g., ¢ is real in structural phase transitions, where it repre
sents elongation, while ¢ is complex in superconductivity 
where it represents the Cooper pair's wave function). 

The polynomial form of V( ¢) is due to the basic as
sumption of Landau's thermodynamic theory of phase tran
sitions, 11 i.e., that close to criticality the thermodynamic 
potential is an analytic function of the order parameter and 
hence can be expanded in a convergent power series. For 
symmetry reasons (e.g., time-reversal invariance in the case 
of magnets) the expansion may be restricted to even powers 
only. 

The number of terms to be kept in the expansion de
pends on physical considerations. Since this is a theory of 
symmetry changes at criticality, group theoretical consider
ations will be decisive. For a more general situation of an n
component order parameter a truncation criterion has been 
proposed, 12 requiring that sufficiently many terms be kept to 
allow spontaneous symmetry breaking to the smallest (gen
eric) subgroup of the symmetry group G of the disordered 
phase. Another reason for truncating the series at a ¢I' term, 
relevant in both field theories and condensed matter physics, 
is given by renormalization theory. 10 A particular ¢I'-model 
is renormalizable when the dimension of physical space-time 
equals nc (p) = 2p/(p - 2). Thus, the ¢6-model is renorma
lizable when nc = 3, while the ¢4-model is renormalizable 
when nc = 4. The situation in other dimensions than n is 
determined by the type of cutoffs used. In field theories cul_ 
traviolet cutoffs restrict the usefulness of the ¢6-model to 
n<3 while in condensed matter infrared cutoffs imply that 
n>3. For a given n, the terms of the series expansion of V(¢) 
with powers greater thanp can, at most, affect critical ampli
tudes but not critical exponents. They are called irrelevant 
operators. Thus the ¢6-term is a small correction when n>4 
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but not when n = 3. 
Finally, we wish to mention that the special case of 

a2 = a4 = 0 in Eq. (1.7) is of particular interest, since it de
scribes the simplest example of a multicritical point, i.e., a 
tricritical point, occurrences of which have been spotted in a 
vast array of physical systems. 13,14 For reviews of the formal
ism of critical phenomena and the great variety of different 
fields where those phenomena occur we refer to the litera
ture. 13,15,16 In particular, Gordon 17 studies a one-dimension
al model which simulates a tricritical structural phase transi
tion. This model leads to Eq. (1.3) with n = 1, € = - 1, and 
a4 = O. The actual transition takes place when a2 -->0. As 
mentioned above, we find numerous new solutions of the 
NLKGE, ( 1.3), for a2 = a4 = 0, i.e., Eq. (1.5). These can be 
used to study, e.g., perturbatively, the approach to a tricriti
cal point which can be viewed as the "meeting point" of three 
different types of potential wells: single, double, and triple. 

There already exists a sizable literature on exact solu
tions of classical ¢6-field theories, i.e, solutions of the 
NLKGE, Eq. (1.3).17-23 They are mainly restricted to the 
(1 + 1 )-dimensional case, or equivalently, to translation 
wave solutions of the form ¢ (5'), where 5' = k xl-' in (n + 1) 
dimensions. An exception is Ref. 24 wher: a spherically 
symmetric static solution of Eq. (1.5) is found for n = 3. 
The literature on classical and quantum ¢4-field theories is 
quite extensive5.25-3o and is also largely restricted to (1 + 1) 
dimensions. Studies in higher dimensions, to our knowledge, 
have largely been either approximate or numerical ones31,32 
and have not engaged in a direct construction of exact classi
cal solutions. 

As stated above, our aim is to perform an exhaustive 
study of group theoretical reductions of the NLKGE 
Eq.(1.3), in (n + 1) dimensions, to an ODE-which is to b~ 
solved analytically whenever possible. Since we are interest
ed in applications in both relativistic field theory and con
densed matter physics, we shall allow solutions to be com
plex, but will discuss reality properties as well. Singular 
solutions will also be considered. A trivial comment is that a 
characteristic velocity c in Eq. (1.3) has been set equal to 
c = 1. In relativistic field theory c is the velocity of light in 
vacuum; in other applications it may represent some other 
characteristic velocity of the system (e.g., the speed of sound 
in a crystal). Hence "tachyonic" solutions corresponding to 
a velocity v> 1 (space independent in a specific frame of 
reference) will not necessarily be unphysical. 

Section II of this paper is devoted to the actual symme
try reductionofEqs. (1.3) and (1.5) to one of many possible 
ODE's. In Sec. III we analyze the reduced ODE's and deter
mine which of them have the Painleve property. Those that 
do pass the Painleve test are brought to one of two standard 
forms: (P XXIX, or P XXX) 1 which can be solved exactly. 
In Sec. IV we present the exact solutions to Eqs. (1.3) and 
( 1.5) and discuss some of their properties. 

II. SYMMETRY REDUCTION FOR THE EQUATION OF 
MOTION 

A. The symmetry group of the NLKGE 

As stated in the Introduction, our aim is to apply the 
method of symmetry reduction in a systematic manner so as 
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to obtain new analytical solutions of the NLKGE (1.3). We 
shall concentrate on the cases when the PDE (1.3) is re
duced to an ODE, or in some cases, actually to an algebraic 
equation. 

The process of symmetry reduction from a PDE to an 
ODE (or to a lower-dimensional PDE) is a standard 
one.33-38 It consists of the following steps. 

( 1) Find the symmetry group G of the equation and its 
Lie algebra L. Standard algorithms exist for doing this.33-35 

Moreover computer programs, written in REDUCE,39 
MACSYMA,40 or other symbolic languages, exist that greatly 
facilitate the task of determining the symmetry algebraL of a 
system of differential equations. If G is assumed to be a group 
of local point transformations, acting on the space of inde
pendent and dependent variables and transforming solutions 
of a scalar equation among each other, then the general ele
ment of the Lie algebra L has the form 

x = 1/i (x,¢l) ~ + \II (x,¢l) ~, 
aXj a¢l 

(2.1 ) 

where 17; (x,¢l) and \II(x,¢l) are known (they will involve 
arbitrary constants and in some cases arbitrary functions41 ). 

(2) Find all subgroups Gj CG having generic orbits of 
codimension 1 in the space of independent variables {x} (or 
of codimension 1 < k < n if we are interested in reducing to a 
PDE with k independent variables). This amounts to classi
fying the appropriate subalgebras of L into conjugacy classes 
under the action of the invariance group G, and choosing a 
representative of each class. 

Methods for classifying subalgebras of Lie algebras have 
recently been developed and are, at least for finite-dimen
sional Lie algebras, not difficult to apply.42-44 

(3) Consider each subgroup Gj (representing a conju
gacy class) separately and find the invariants of its action on 
the space {x,¢l} of independent and dependent variables. 
This can be done by solving a system of first-order linear 
partial differential equations 

XaH(x,¢l) = 0, a = 1, ... ,k, (2.2) 

where {XI, ... ,xk} isa basis of the subalgebraL; and eachXa 
is a first-order differential operator of the form (2.1). In the 
case when L; is the Lie algebra of a subgroup G; C G, having 
generic orbits of codimension 1 in {x}, the general solution 
of (2.2) will be an arbitrary function of two elementary in
variants II (x,¢l) and I z (x,¢l). Setting 

II(x,¢l) =CI , I 2 (x,¢l) =Cz (2.3) 

(where Cj are constants) we obtain a symmetry variable 

s= sex) (2.4 ) 

by eliminating¢l from (2.3) (ifpossible). Solving (2.3) for¢l 
we obtain an expression for¢l(x), involving a functionF(s). 
This function will satisfy an ODE in S, obtained by substitut
ing the expression for ¢lex) into the original PDE. 

In many cases of interest, in particular in all cases aris
ing in the present paper, a simplification occurs. The invar
iance group of the equation involves only transformations of 
the form 

x' = Ag (x), ¢l' = fig (x) + l:g (x)¢l. (2.5) 

Thus, the new independent variables x' depend only on the 
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old independent variables x, the new dependent variable ¢l' 
depends linearly on the old one. Equivalently, we have 

17; = 17; (x), \II = a(x) + P(x)¢l (2.6) 

in all the infinitesimal operators (2.1). In this case Eqs. 
(2.3) yield s = sex), ¢lex) = p(x)F(s) + u(x), where 
F(s) satisfies anODE. Moreover, ifa(x) = O,P = const we 
find u(x) = 0; if a(x) = P(x) = 0 we also have p(x) = 1. 
In all casesp(x) and u(x), as well as sex) are known func
tions determined by the symmetry. In the case considered in 
this paper we always obtain 

s = sex), ¢lex) =p(x)F(s)· (2.7) 

(4) Solve the ODE for F(s), substitute into (2.7) and 
thus obtain particular solutions of the original PDE. 

Let us now return to the NLKGE (1.3). Applying the 
standard algorithm (and the MACSYMA program40) we find 
that for general values of a z, a4 , and a6 the symmetry group G 
is the Poincare group pen, 1) for € = - 1 and the Euclidean 
group pen + 1,0) for € = + 1. These are the isometry 
groups of the corresponding flat spaces and they leave invar
iant much more general equations,:n.38 namely, 

(2.8) 

whereH is an arbitrary sufficiently smooth function of three 
variables. A larger group is obtained only in the special case 

az = a4 = 0, - 606 =a#0, (2.9) 

namely the isometry group extended by dilations, i.e., the 
corresponding similitude groups Sim(n,l) for € = - 1, or 
Sim(n + 1,0) for € = + 1. As mentioned in the Introduc
tion, for n = 2 the symmetry group is the conformal group 
Conf (2,1) -0(3,2), or Conf (3,0) -O( 4,1), but we restrict 
ourselves below to n = 3. 

A standard basis for the Lie algebra sim (n, 1) is given by 
the rotations Mab , Lorentz boosts MOa , translations PJ.L, and 
dilation D, realized by the differential operators 

Mab =xaab -xbaa, 

(2.10) 

¢l a 
PJ.L =aJ.L' D=xJ.LaJ.L ---, It =O,I, ... ,n. 

2 a¢l 

For the Euclidean similitude algebra sim(n + 1,0) the cor
responding basis is 

It,v=O,I, ... ,n. (2.11) 

In both cases we have put aJ.L =a lax" and summation over 
repeated indices is understood. 

We shall treat two cases separately. The first is symme
try reduction using subgroups ofthe corresponding isometry 
groups. In this case we will always have p (x) = 1 in (2.7). 
The second involves the use of subgroups of the correspond
ing similitude group, not contained in the isometry group, 
i.e., directly involving a dilation. 

A systematic study of symmetry reduction to lower-di
mensional PDE's would require the knowledge of all sub
groups of the symmetry group, having generic orbits of codi-
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mension k in the space of independent variables, with 
I<k<n. We are reducing to an ODE, hence we only need 
k = 1. All subgroups ofP(n, 1) and Pen + 1,0) having gen
eric orbits ofcodimension 1 in M(n,I) and E(n + 1), re
spectively, are known, as are their invariants, for arbitrary 
dimension n.37 The subgroups of similitude groups are more 
difficult to classify and are known only for small dimensions. 
For Minkowski space M (n, 1) the subgroups ofSim (2,1) are 
found in Ref. 44, and those ofSim(3,1) in Ref. 42. For Eu
clidean spaces only the subgroups of Sim(3,0) exist in the 
literature,45 those ofSim( 4,0) having orbits of codimension 
1 are easy to obtain and are presented below. For the prob
lem at hand, namely Eq. (1.5), we restrict ourselves to four
dimensional spaces (when using the corresponding simili
tude groups), although many of the results are valid for 
arbitrary n. 

B. Symmetry reduction by subgroups of the Isometry 
group 

1. Euclidean space E(n+1) 

Recent papers were devoted to symmetry reduction for 
Eq. (2.8) [containing (1.3) as a special case] in both 
E(n + 1) andM(n,l).37,38 In the case ofE(n + I) the only 
codimension 1 symmetry variables are the obvious ones, 
namely the radii of various spheres or cylinders, 

5=rk = (x~ +xt + ... +Xi)1/2, O<k<n. (2.12) 

They are invariants of the subgroups 

O(k+I)®P(n-k,O), (2.13) 

corresponding to the Lie algebras 

{Map}!B {Mab,Pa}, a,{J = O,I, ... ,k, a,b = k + 1, ... ,n. 
(2.14 ) 

Applying general results37.38 to the special case of Eq. (1.3) 
we find that the substitution of (2.7) with p = 1 into (1.3) 

provides the following ODE for F(5): 

Fss + (k /5)Fs 

(2.15 ) 

with5=rk as in (2.12) and A = 1. 
The properties of this equation and solutions for various 

values of k are discussed in Sec. III. 

2. Mlnkowskl space M(n, 1) 

The situation for Minkowski space M(n, 1) is somewhat 
richer. Again, all codimension 1 symmetry variables are 
known.37.38 Reductions analogous to those obtained in Eu
clidean space are provided by the subgroups 

O(k,l) ®P(n - k,O) and O(k + 1) ®P(n - k - 1,1) 
(2.16 ) 

corresponding to the Lie algebras 

{Map}!B {Mab,Pa}, a,{J = O,I, ... ,k, a,b = k + I, ... ,n 

and 

{Mab}!B {Mpa,Pp}' 

a,b = I, ... ,k + I, p,eT = O,k + 2, ... ,n, 

respectively. The invariants are, respectively, 
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5=rk = (x~ -xi -'" _Xi)1/2, O<k<n (2.17) 

and 

5 = rk = (xi + ... + xi+ d 1/2, O<k<n - 1. (2.18) 

Further invariants, having no analogy in Euclidean space, 
are given by subgroups involving lightlike translations. 
These invariants and corresponding Lie algebras are 

5 = Xo + XI {Mab.MOo - Mla,Pa,PO - PI' a,b = 2, ... ,n}, 
(2.19) 

5=X2 +pln(xo+xl ) 

{Mab,Moa - Mla,Pa,MOI + pP2,PO - PI' 

peR, p=/=O, a,b = 3, ... ,n}, 

5 = X2 + (Xo + x l )2/4 

(2.20) 

{Mab,MOo - Mla,Pa.M02 - MI2 + Po + PI,PO - PI' 

a,b = 3, ... ,n}. (2.21) 

An important phenomenon occurring in spaces with in
definite metric, in particular M (n, 1 ), is that of "degenerate 
symmetry variables.,,37,38 As opposed to ordinary codimen
sion 1 symmetry variables, the degenerate ones involve arbi
trary functions of a null variable, say Xo + x n • They are ob
tained from invariants of Euclidean subgroups of P (n, 1 ), by 
performing a Euclidean transformation, with coefficients 
depending on XO+x n • Thus, if ct>(x) =F(5k) with 
5k = (xt + ... + xi + I ) 1/2 with O<k<n - 2 is a solution of 
Eq. (2.8), or more specifically of ( 1.3), then so is 

¢D(X) =F(5f), 5f= {:t: (X-B,A;l2r
/2

, 

(2.22) 

where Aj and B are any vector functions of Xo + Xn , satisfy
ing 

(A;.Aj) = - 8ij' 

Moreover, F(5d and F(5f) satisfy the same ODE. In 
M(n,1) there will be n - 1 different types of degenerate 
symmetry variables, reducing the considered PDE to an 
ODE. Thus in M(2,I) any degenerate symmetry variable is 
conjugate under P (2,1) to 

51 =XI +/(xo+x2)· (2.23) 

In M(3,l) two types exist, represented by 

51 = XI cos () + X2 sin () + J, 

52 = [(XI +/1)2 + (X2 + 12)2] 1/2. 

(2.24) 

(2.25) 

In (2.24) and (2.25),J, ().!I' and/2 are arbitrary twice differ
entiable functions of (xo + x 3 ). 

Ordinary (nondegenerate) codimension 1 symmetry 
variables may be special cases of degenerate ones. This oc
curs when the corresponding symmetry algebra contains 
Po - Pn as an ideal. Thus, the variables (2.20) and (2.21) in 
M (3,1 ) are equivalent to (2.24) with () = 0 and 
1 = j.lln(xo + XI), or () = O,f = (xo + XI )2/4, respectively. 

For 5 = Xo + X I the substitution (2.7) with P = 1 re
duces the NLKGE (1.3) to the algebraic equation 

a2F + 2a4F3 + 3aJ5 = 0, (2.26) 

having constant solutions. In all other cases we obtain the 
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ODE (2.15) with A = ± 1, depending on the choice of t. 
The values of A and k for each variable t are indicated in 
Table I for both E (n + 1) and M (n, 1 ). Symmetry variables 
that are special cases of degenerate variables are listed under 
the same number as the degenerate ones. Thus No. 3a and 
No. 3b are special cases of No. 3. The subalgebra of the iso
metry algebra leading to a specific non degenerate symmetry 
variable is indicated in column 2 of Table I. 

The symmetry variables S introduced in E(n + 1) and 
M(n,I), and summarized in Table I, as well as the corre
sponding Lie algebras, are representatives of conjugacy 
classes. Applying the corresponding groups Pen + 1,0) or 
P(n,l) to the representative variables, we obtain the general 
form of the variable, without changing the form of the re
duced equation. Thus, e.g., Xl + f (xo + xn) in M(n,l) rep
resents the class of variables (A,x) + f [(B,x)], where A 
and B are constant vectors satisfying A2 = - 1, B2 = 0, 
(A,B) =0. 

c. Symmetry reduction by subgroups Involving 
dilations 

We now restrict ourselves to the case when a2 = a4 = 0 
in (1.3) and put - 6a6 =a. The equation we study is hence 
the one given in (1.5) and its symmetry group is 
Sim(n + 1,0) for € = 1 and Sim(n,l) for € = - 1. For 
practical reasons we restrict ourselves to n = 3 (the sub
group classification is not available for n > 3). 

1. Euclidean space E(4) 

We simplify notation with respect to the general case 
(2.11) and use the following basis for sim ( 4 ): 

Ll = - X2a3 + X3a2, Kl = xlaO - Xoal' 

L2 = - X3al + Xla3, K2 = x 2aO - Xoa2' 

L3 = - Xla2 + X2al, K3 = x3aO - Xoa3' 
(2.27) 

PI' = aI" D = Xla l + X2a2 + X3a3 + xoao - ~tPa~, 

f.l = 0,1,2,3. 
We are interested in subgroups of Sim( 4,0) having generic 
orbits of codimension 1 in E ( 4 ). The corresponding subalge
bras must be of dimension d>3. Subalgebras ofp( 4,0) have 
already been considered, hence we restrict ourselves to 
subalgebras containing the dilation operator D in some form. 
Using methods developed elsewhere42

-4S it is easy to show 
that only the five types of subalgebras of sim( 4,0), listed in 
column 2 of Table II (No. 2-6), lead to codimension 1 sym
metry variables. 

Consider first the algebras Nos. 2 and 3 of Table II: 
{D = D + bL3,K3'P3,PO}' b>O. To find the invariants (2.3) 
in this case we must solve the corresponding equations 
(2.2), Le., 

PoH(x,tP) = 0, P-P(x,tP) = 0, 

K-P(x,tP) = 0, DH(x,tP) = O. 
(2.28) 

The first two equations imply H = H (x 1,x2'tP ). The third is 
then satisfied identically. The last equation in (2.28) is 

- [ a a a DH= (xl+bx2)-+(X2-bxl)-+X3-
aX I aX2 aX3 

+xo---tP- H(Xl'X2,tP) =0. a 1 a] 
axo 2 atP 

(2.29) 

The characteristic system for (2.29) is 

dX l dX2 = _ 2 dtP . 
Xl + bX2 X2 - bXl tP 

(2.30) 

TABLE I. Reduction of the equation D,¢ =/(¢) totheODEF+ (kls)F=J/(F) inE(n + I)(E = + 1) andM(n,I)(E = - I) by means of subgroups of 
the isometry groups; ¢(x) = F(s); Ai and B are arbitrary vector functions of Xo + x •. 

No. 

2 

3 

3a 

3b 

2199 

Algebra 

M"v E& {Mab,Pa} 
Il,V = O,I, ... ,k; a,b = k + I, ... ,n 

M"v E&{Mab,Pa} 
Il,V = O,l, ... ,k; a,b = k + I, ... ,n 

Mij E& {Mup,Pu} 
i,j = I, ... ,k + I; a,/J = O,k + 2, ... ,n 

Degenerate variables 

M ab , MOa - MnaJ Po, 
Mo. + pPI , Po - Pn; a,b = 2, ... ,n - I 

M ab , MOo - MnaJ Pa, 
MOl +M.I +PO+Pn, po-p.; 
a,b = 2, ... ,n - I 
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E(n + 1) 

M(n,l) 

(X& -xi - ... _X~)1/2 

Ct: (Ai ,X-B)2r
2 

(Ai,Aj ) = -oij, I <'i,j<.k + I 
Xl +pln(xo+x.) 

k 

O<.k<.n 

O<.k<.n -I -I 

O<.k<.n - 2 -I 

o -I 

o -I 
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TABLE II. Reduction of the equation D,<,6 a<,65 (E = 1) in E(4) to an ODE; <,6(x) =pF(s). 

No. Algebra p s ODE 

M"v $ {Mab.Pa} (_a)-1/4 (~+xr + ... +X~)'I2. F+ (kls)F+F5 =0 
p..v O.l •...• k O<k<n 
a.b k+ t •...• n 

2 

3 

D.K),PO,P3 [-4a(xi +~l]-1/4 ~ arctan (x2Ix, ) F+F+F5 0 

D + bL3• K). po. p) [ - a[ (b 2 + l)lb 2] - [bl(b 2 + l)](arctan(x,lx l ) F+F+ [(b 2 + 1)/4b 2 ]F+F5 0 
b>O X (xi + xi >] -114 + (b 12)ln(xi + xi)] 

4 

5 

6 

D.L). Po [ _a~/4]-1/4 (xi +xi)/x; s(1 + s)F+ (14 + I)F + lr,F +F5 = 0 

D.L3.K) [-a(x~ +~)/4]-114 [(xi +xi)/(x~ +~l] s(1 +s)F+ (;$+ l)F+ir,F+F5=O 

D.L I .L,.L3 
[ _ax~/4]-114 (xi + xi + x~ )/x~ 5(1 +5)F+ (25+~)F+lr,F+F5=0 

Solving (2.30) we obtain 

~=A(xi +x~)-I/4F(t), 

t=B [arctan(x2/x 1) + (b/2) In(xi +xi)], 

(2.31 ) 

where A and B are some normalization constants. Substitut
ing (2.31) into ( 1. 5) with e 1, we obtain the correspond
ing ODE. For b = 0 we choose A = ( - 40) 1/4, B ! and 
obtain the ODE in row 2 of Table II. For b> 0 we choose 
A=[_a(b 2 +1)lb 2 ]-1/4, B= -b(b 2 +l) and ob
tain the equation of row 3 (the case b < 0 is equivalent to 
b>O). 

The remaining three cases are completely analogous; 
the calculations are somewhat simpler. The results are all 
presented in Table II which also includes, in row 1, the re
ductions obtained by subgroups of the Euclidean group (for 
n arbitrary). 

2. Minkowski space M(3.1) 
We proceed in the same manner as for E( 4), but the 

results are much richer. We use a basis analogous to (2.27), 
namely 

L 1 = - X2a3 + X3a2, Kl - (xtaO +xoa,), 

L 2= - X3a 1 + X1a3, K2 - (x2aO + Xoa2)' 

L3= - X1a2 + X2al , K3 - (x3aO +Xoa3)' (2.32) 

p!-,=a!-" 

D = x1al + X2a2 + X3a3 + xoao - !ifJ(a la",). 

The subalgebras of sim(3,l) are known,42 but we are 
interested in those that are not contained in the Poincare 
algebra p(3.l). We run through all such subalgebras corre
sponding to groups with generic orbits of codimension 1 in 
M (3,1) and find the two invariants (2.3) in each case. The 
result can always be written in the form (2.7) withp(x) and 
;-(x) known. Substituting into ( 1. 5) with E" = - 1 we obtain 
one of the following equations for F(t): (i) an algebraic 
equation yielding F directly, (ij) a first-order ODE that we 
can solve, or (iii) a second-order ODE in one of several 
possible forms. Whenever this equation can be transformed 
into an equation with the Painleve property 1-5 we can solve it 
in terms of elementary or elliptic functions. 

The calculations involved are all quite straightforward, 

TABLE III. Reduction of the equation D,<,6 = a<,65 (E - I) in M (3.1) to an algebraic equation or a first-order ODE; <,6 (x ) = pF(s). 

No. Algebra 

I D+K,.L,-K,. 

P"Po P, 

p 

x~ 1/2 , 

2 D + K3• L, + K3 + EP2• [x, + EX,(Xo + x,) ]-1/2 

Po-P, 

3 D+K3.L,. Po-P, 

4 L,.L,-K,.L, +K" 
PI' P" Po - P, 

5 D + K,. L,. PI' P, (xo - x,) -'/4 

6 D+K"L,+K,.P, (~+x;_xi)-l/4 

7 D+K"L"LI -K" (xi +xi +r. _X~)-1/4 
L2+KI 

8 D+K,.L,-K,+P,. [xi +xl +xi X6-X3 
L,+KI +P, +Xo 2x;/(I +xO +x3)j-'/4 

9 D-K"L,+KI,P2 (xo +x,)-'/4 

10 D - K" L" L, - K2, (xo + X3) -·1/4 

L 2 +K, 

2200 J. Math. Phys .• Vol. 28, No.9, September 1987 

xo+X, 

xo+x, 

xo+x, 

XO+X3 

xo+x, 

ODE 

F+aF' 0 

4sF + F - 4oF' = 0 

4sF + 3F - 4oF' = 0 

4(5' - I)F + (35 - I)F 

40(5 + I)F' = 0 

F+ 2asF'=O 

Solution F(sJ 

( _ 3/40) 1/4 

( _ 1/40)'/4 

o 

[40(5 - 50) ]-1/4 

[- (4also)(s-so}]-1/4 

[( 4013s~)(s3 s~)j -1/4 

[205(5+ I) -a(s+ 1)(5'-1) 

xln[(1 +5)/(1 5)] 

+c(s'-I)(s+ 1))-1/' 

[40(5' - s~) ]-1/4 

[40(5' - s~)/3) -1/4 
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TABLE IV. Reduction of the equation 0.t,6 = at,6s (E = - I) in M(3,I) to a second-order ODE; t,6(x) = pE(s), h, 8,!.!., and!2 are arbitrary functions of 

Xo + X 3, b is a constant, Ea = ± 1 (a = 0,1,2). 

No. Algebra 

I Lp L2, L3J PI' Pz, P3 
2 L., K2, K3J P2J PJ, Po 

Degenerate variable 
3a L, - K2• K, + bPI' P2• Po - P, 
3b L, -K2• L2 + K, +Po + p,. 

P2• Po-P, 
3e D + K, + Eo(Po + P,). 

P2.PO-p, 
3d D + b(L2 + K,). L, - K2• 

P2.PO-p, 
3e D + bK,. L, - K2• P2• 

Po- p,. b #1 

4 L 3, K), PI' Pz 

5 L,. K,. Po. P, 

6 Degenerate variable 
6a D + K, + Eo(Po + P,). L,. Po - P, 

7 K I• K2• L,. P, 

8 L,. L 2• L,. Po 

9 L I• L 2• L,. K,. K2• K, 

to D. K,. po. P, 

II Degenerate variable 
Ila D+ K,. L, + Eo(Po+ P,). Po - P, 
lIb D+ !K,. LI -K2 + Po+ p,. Po- P, 

12 D+ bL,. K,. po. p,. b>O 

\3 Degenerate variable 

13a D+K,+EI(Po+P,). 
L, + E2(PO + P,). Po - P, 

13b D + pK,. L, + qK,. Po - P,. 
p# I. q#O 

14 D.L,. Po 

15 D.L,.P, 

16 D.KI.P, 

17 D.L,.K, 

18 D.L I.L2.L, 

19 D.KI.K2.L, 

20 

20a D + [( 1+ q)/q]KI• L,. P2• P, 
20b D + [(1 + q)/q]KI• L, + K2• P, 
20c D+ [(1 + q)/q]KI.L I.L, -K,. 

L3+ K2 

21 

21a D-K, + bL, + E(Po - PI)' P2• P, 
21b D-K, +E(Po-P,).L, +K2.P, 
21e D-KI +bL, +E(Po-P,). 

22 D+ !K,.L I -K2 +PO+P"PI 

p 

( _a)-'/4 
(a)-1I4 

(a) -' /4h 112 

h= I 
h=1 

h = e - £"(x,, + x,}/2 

h= (xo+x,)-1I2 

h = (xo + x,) '/(.- I) 

( _a)-1/4 

(a)-1I4 

(a) - 1I4h '/2 

h = e - £"(x,, + %,)/2 

( _a)-1/4 

(a)-1/4 

( _a)-1I4 

[4a(xi + xi)j -1/4 

{4a[ (XI + f,)2 + (x2 + h)2]}-1I4 

fl =1,=0 
II = 0.1, = !(xo + X,)2 

[[a(b 2 + 1)/b 2](x; + xi l] -'/4 

{[a(b 2+ l)/b 2][(xl +fl)' 
+ (X2 + f2)2]}- (/4 

ft =1, = 0 

( -ax~/4)-'/4 

(axi/4)-1I4 

(a(x; - x~ )/4)-114 

( -ax~/4)-1/4 

(ax;/4)-1/4 

( - (2q + l)/a)1/4(xo + XI ),12. 

q# -! 

Xo 

XI 

h(x l cosO +x2 sinO +/) 
0= 0./= b In(xo + x,) 
0= 0./ = l(xo + X,)2 

0=0./=0 

0= 0./ = b(xo + x,)ln(xo + x,) 

[x~ _x;]"2 

(x; +xi)1/2 

h[(x, +ft)2+ (x2+h)2]1/2 

fl =1,=0 

(x~ -x~ _xi»J2 
(x; +xi +X;)I/2 

! aretan(x2/x l ) 

!{aretan[ (x2 + h)/(X I + fl)] - O} 
0= Eo(Xo + x,)!2 
0=0 

- [b/(b'+ 1)][aretan(x2/x l ) 

+ (b !2)ln(xi + xi)] 

ODE 

£+ F + [(b 2 + 1)/4b 2]F 

+F'=O 

- [b/(b 2 + I) ]{aretan[ (x2 + f2)/(X' + ft)] 
+ (b !2)ln[ (XI + fl)2 + (x2 + 1,)2] - O} 

b = - E,E2' 0 = - E,(Xo + x,)!2 

q = b/(b 2 + I).p = I - [b'/2(b 2 + 1)2] 

0= (l/q)ln(xo + x,) 

(xi +xi )/x; 

- (x; + xi )/x~ 
(x; -x~)/xi 

(xi + xi )/(x; - x~) 

- (x; +xi +x;)/~ 

(x; + xi - x~ )/x; 

k=1 
k=2 
k=3 

so +5)£+ (25+ I)F 
+,l,,F+F' =0 

so +s)F+ (~+ I)F 
+I!.F+F'=O 

SO+S)F+(2S+~)F 
+ r"F+ F' = 0 

F+ (3q+k)/(2q+ 1)(1f5)F 

+F'=O 

[( -E/4a)[(2k-3)2/(XO+XI)J]"4 [(2k-3)/4][tn(xo +x,) F+F+F'=O 

k=1 
k=2 
k=3 

+ E[ (x~ -x; -'" -xi)/(xo +X,)]] 

(9/4a)I/'[X2 - [(Xo + x,)2/4J]-1/2 [6(x, - Xo) + 6x2(xO +x,) - (xo + x,)'] (1 + s2)F + IsF + !F+ F' = 0 

X{8[x2 -l(xo + X,)2]'/2}-' 
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though long and cumbersome. Many of them, in particular 
the derivation of the ODE's from the PDE (1.5), oncep(x) 
and sex) are found, were performed on a computer using a 
MACSYMA program, written for this purpose. 

The first two cases are summarized in Table III. Subal
gebras Nos. 1, ... ,4 all lead to algebraic equations; the first 
three of them give nontrivial solutions. Subalgebras Nos. 
5, ... ,10 of Table III lead to first-order ODE's given in col
umn 5. The solutions are in the last column. 

The second-order ODE's that we obtain are all present
ed in Table IV. This table is organized in the same manner as 
Table II for the Euclidean case E( 4) and indeed the equa
tions corresponding to cases Nos. 1, ... ,19 coincide with equa
tions in Table II. The last three equations (reductions Nos. 
20-22) are specific for M (3,1). 

The phenomenon of degenerate symmetry variables, al
ready discussed in connection with Table I, reoccurs here in 
a richer form (because of the additional dilation invar
iance). Dropping all details and restricting ourselves to 
M(3,1) [rather than M(n,I)] the effect of degenerate sym
metry variables amounts to the following. Let t,bO(X I,x2) be a 
solution of Eq. (1.5). Then 

t,b(x) = h 1I2t,bo(SI,S2)' 

SI = h [XI cos (] +x2 sin (] + Itl, 
S2 = h [ - XI sin (] + X 2 cos (] + 12], 

(2.33 ) 

where h.JI.J2, and (] are arbitrary functions of Xo + X3, is also 
a solution. Moreover, if t,bO(X I ,x2) has the form 

t,bO(X I,x2) = P(XI,x2)Fo(S(X I,x2»)' 

where Fo satisfies an ODE, then t,b has the form 

t,b(x) = h 1/2p (SI,S2)F(5(SI,S2»)' 

where F satisfies the same ODE as Fo. 
As in the case of reductions by subgroups of the iso

metry group P(3,l), it often happens that codimension 1 
symmetry variables are special cases of degenerate ones. The 
subgroup providing the reduction then contains Po - P3 as 
an ideal (without containing Po and P3 separately). 

In Table IV we present all the codimension 1 symmetry 
variables and also the corresponding degenerate ones. Spe
cial cases of the degenerate variables are given the same 
number as the degenerate one; thus 3a-3e are all special 
cases of No.3. Reductions Nos. 1-9 all come from sub
groups ofP(3,1), Nos. 10-22 involve dilations. 

Comparing the Euclidean and Minkowski cases, we see 
the following differences. 

(1) A single reduction in E( 4) often corresponds to 
several reductions in M (3,1 ), because of the difference 
between spacelike and timelike variables. 

(2) Degenerate variables occur in M ( 3, 1) (but not in 
spaces with a definite metric). 

( 3 ) New types of reductions occur in M ( 3, 1 ), leading to 
algebraic equations, first-order ODE's and new types of sec
ond-order ODE's. 

The ODE's listed in Table IV (and Table II) will be 
analyzed in Sec. III below and solved analytically whenever 
possible. They can all be cast into one generic form, namely 
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(a l +a~+a3s2)Fss 

+ ({31 + {3~)Fs + yF + (ILl + 1L~)F5 = 0, (2.34) 

where the constants aj3;,y, and IL; can be read off from 
Table II and Table IV for E(4) and M(3,l), respectively. 

III. ANALYSIS OF THE REDUCED EQUATIONS 
A. General comments and Palnleve analysis 

The purpose of this section is to obtain explicit solutions 
of the reduced equations of Sec. II. All algebraic equations 
and first-order differential equations that occurred have al
ready been solved (the results are in Table III). We are inter
ested in solving the second-order differential equation 
(2.15) with A, and k as in Table I and the equations presented 
in Tables II and IV. All equations occurring in E( 4) (Table 
II) also occur in M(3, 1) (Table IV), so we concentrate on 
the latter case. 

We shall treat all the obtained second-order ODE's for 
the function F(s) in a uniform manner. 

(1) We subject the considered ODE for F(s) to the 
"Painleve test" 2 in order to determine whether it, or an 
equation for H(s) = [F(s)]q, where q is a positive integer, 
satisfies certain necessary conditions for having the Painleve 
property. 

(2) If the result of this test is positive and if the equation 
(for H) does actually have the Painleve property (rather 
than only satisfying the necessary conditions) then we can, 
by a transformation of the dependent and independent vari
ables, transform it into its "standard form." The standard 
form for a second-order ODE, linear in the second derivative 
H " rational in H ' and H and analytical in S, belongs to one of 
the 50 classes, established by Painleve and Gambier4 and 
listed, e.g., in Ince. I The solutions of all the standard equa
tions are known. I They are given in terms of solutions of 
linear equations, in terms of elementary transcendental 
functions, or elliptic functions, or in terms of one of the six 
Painleve transcendents. It turns out that all the ODE's ob
tained in Sec. II that pass the Painleve test can be solved in 
terms of elliptic functions or elementary ones. Equations 
that do not have the Painleve property will in general have 
moving logarithmic singularities (or worse) and we have no 
systematic method for integrating them. 

We recall here that an ODE has the Painleve property if 
its general solution has no moving critical points, i.e., no 
singularities, other than poles, the position or character of 
which depends on the initial conditions. 

The Painleve test for ODE's is quite elementary.2 The 
general solution of the considered ODE is represented as a 
series 

00 

F(s) = L fj1'j+ a, 1'=5 - So' (3.1 ) 
j=O 

where So is an arbitrary constant andfj are constants to be 
determined. The series is substituted into the equation and 
coefficients of independent powers in l' are compared. For 
the equation to have the Painleve property, the following 
conditions are necessary: (i) the number a is a negative in
teger. (ii) A recursion relation is obtained forfj that has the 
form 
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(3.2) 

where P( j) is a polynomial inj with m - 1 positive integer 
roots (m is the order of the equation; in our case m = 2). 
These values of j are called "resonance values" and jj at a 
resonance cannot be determined. (iii) At each resonance the 
"resonance condition" 

(3.3 ) 

must be satisfied for all values of 50. The solution (3.1) then 
involves n arbitrary constants, namely 50 and the n - 1 reso
nance values jj . 

If a turns out to be a negative rational number, 
a = - p/q (wherep and q are mutually prime positive inte
gers) then wesetH(5) = [F(5)]q and perform the Painleve 
test for H(5). 

The procedure is entirely algorithmic and we perform it 
using a MACSYMA program.3 In all cases the expansion for 
the function F(5) satisfying one of the second-order equa
tions of Sec. II leads to the value a = -!. Hence we always 
first make the substitution 

F(5) = [H(5)] 1/2. (3.4) 

Equation (2.15) is reduced to 

Hss = (l/2H)H~ - (k/5)Hs 

- 4A(a2H + 2a4H
2 + 3a~3). (3.5) 

Applying the Painleve test to this equation we find a = - 1 
and a resonance occurs at j = 3. The resonance condition 
(3.3) is satisfied precisely in the following cases: (i) k = 0, 
(ii) k = 2, a2 = a4 = 0, (iii) k = 3, a2 = a6 = ° (however, 
we are only interested in the case a6 # 0). 

Let us now concentrate on the equations obtained from 
subalgebras of sim( 4,0) or sim(3,1), involving dilations. 

All of these equations can be written in the form (2.34), 
where the values of the constants can be read offfrom entries 
Nos. 10-22 of Tab lei V (and also Nos. 2-6 of Table II). The 
Painleve test in all cases provides the value a = - ~ in (3.1); 
the relevant tranformation is hence (3.4). Among the con
sidered equations the only ones that pass the Painleve test 
are 

F+F+F5 = 0, (3.6) 

5(1 +5)F+ (25+VF+-hF+F5=0, (3.7) 

F+ [(3q+k)/(2q+ 1)](1/5)F+F5=0 

forq= -k/3,k-2,and4-3k, (3.8) 

(1 +52)F+~F+!F+F5 =0. (3.9) 

The transformation (3.4) takes these equations into 

iI = iI2/2H - 2(H + H 3), (3.6') 

iI=iI2 _ 1 [(25+~)iI+~H+2H3], 
2H 5(1 + 5) 2 8 

(3.7') 

iI = iI2 _ [ 3q + k 2-iI 2H3] 
2H 2q+15 + , (3.8') 

• 2 

iI = ~ - _1_ (J.... 5iI + ~ H + 2H 3) 
2H 1 + 52 3 3 ' 

(3.9') 

respectively. 
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B. Reduction of the Painleve type equations to their 
standard forms 

Let us first consider the nonlinear Klein-Gordon equa
tion (1.3) for a2' a4, and a6 arbitrary. Reductions are possi
ble by subgroups of the isometry group only. They all lead to 
Eq. (2.15) which is ofPainleve type only for k = 0. In this 
case we can integrate immediately (first multiplying by Fs) 
and obtain 

F~ = - U (ao + a2F
2 + a4F4 + aJ6), (3.10) 

where ao is an integration constant. The equation is thus 
reduced to quadratures; we shall discuss solutions in terms 
of elliptic and elementary functions below. Notice that Eq. 
(3.10) is obtained for arbitrary values ofn and both for Eu
clidean and Minkowski spaces. 

Other Painleve type equations are obtained only for 
a2 = a4 = ° (a6#0 by assumption). For arbitrary n>2 and 
both for E(n + 1) and M(n,1) we have Eq. (2.15) with 
k = 2, i.e., 

Fss + (2I5)Fs = AaF5, - 6a6=a. (3.11 ) 

The transformation (3.4) takes (3.11) into 

Hss = (l/2H)H~ - (2I5)Hs + UaH 3, (3.12) 

a special case of (3.8'). The equations that remain to be 
integrated are (3.6)-(3.9). We write them all in a unified 
manner as 

(3.13 ) 

Comparing with the Painleve list of 50 canonical equations, 
reproduced by Ince, 1 we see that (3.13) is of "canonicaltype 
III." Hence, whenever it has the Painleve property, it can, by 
a transformation of the type) 

(3.14) 

be reduced to one of the equations P XVII-P XXXV. More
over, the specific "candidates" are the Painleve equations 
P XXIX, or P XXx. Putting (3.14) into (3.13) we obtain 

W=_l_ (W)2 + T~ W 3 
2W iJ2 

+ U ~iJ2 (l2 - uX + 2RAl + 2SA 2) W 

- A~2 (liJ+ A1j-RAiJ)W, (3.15) 

where the dots denote differentiation with respect to the ar
gument. 

Comparing with the standard forms, we see that we 
must let 

T(A 2/iJ2) = ~, 

liJ + A1j - RAiJ = 0, 

(l/U 2iJ2) (l2 - uX + 2RAl + 2SA 2) =f.1J2, 

where,u(5) satisfies 

,u- {
O, for P XXIX, 

,uo#O, for P XXX 

(3.16) 

(3.17) 

(3.18 ) 

(,uo = constant). Equations (3.16) and (3.17) determine A 
and 1/, namely 
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r, = (2T 13) I/ZA, ( 3.19) 

A =AoT- 1
/4 exp( ~ f R dS) (3.20) 

and we obtain 

3 {t 91' z 
. 3 Z R1' } 

f-l = 2TA Z 2T - 16Tz - R + 4'" R - 4T + 2S . 

(3.21) 

The only freedom is the choice of the constant Ao. We use Ao 
to normalize f-l to f-l = ± 1 if f-l =1= 0 and to normalize 'YJ if 
f-l = O. 

The results of the Painleve analysis can be summarized 
as follows. While most of the ODE's obtained by the symme
try reduction of the NLKGE (1.3) do not have the Painleve 
property, quite a few special cases do. 

If (aZ,a4 ) =1= (0,0) in (1.3) then the only reduction lead
ing to an ODE with the Painleve property is due to transla
tional invariance and leads to the ODE (2.15) with k = 0, 
A = ± 1. On the other hand, for az = a4 = 0, a6 =1=O, the re
sults are much richer. In addition to (2.15) we obtain many 
other reductions to Painleve-type equations, summarized in 
Tables V and VI. We see that just three versions of essentially 
one ODE occur, namely 

W = (1!2W) WZ + ~ W 3 + (f-l12) W, f-l = 0,1, - 1. 
(3.22) 

This equation can be once integrated and its first integral for 
W =1=0 is 

(3.23) 

where C is an arbitrary, possibly complex, constant. 
Constant nonzero solutions of Eq. (3.22) are also of 

interest and are equal to 

W= ±(-f-l13)I/Z, f-l= ±1. (3.24) 

All reductions of the NLKG equation (1.5) leading to 
the equations (3.23) in Euclidean space E(4) are summar
ized in Table V. The number in brackets in column 1 indi
cates the position of the corresponding reduction in Table II. 
Similarly, the reductions of (1.5) to the same equations 
(3.23) in Minkowski space M (3,1) are summarized in Table 
VI. In column 1 the number in brackets refers to the position 
of the reduction in Table IV. 

To unify the presentation let us reduce Eq. (2.15) with 

k = 0 to a first-order ODE. Multiplying by Ft , integrating 
once, letting 

F(s) = (- 8Aa6 )-1/4[W(s)]I/Z, (3.25) 

and assuming F =1=0, we obtain the first-order ODE 

WZ = W( W 3 + aWz + (3W + y) (3.26) 

with 

a = - 8Aa4/( - 8Aa6 ) lIZ, {3 = - 8Aaz, YEC 
(3.27) 

(Y is an integration constant). 
In order to obtain explicit solutions of the NLKGE 

( 1.3) or (1.5) we must now integrate Eq. (3.26) and the 
special cases (3.23) of this equation. The solutions are, of 
course, well known. In general they can be expressed in 
terms of elliptic functions, in special cases they reduce to 
elementary functions. We proceed to discuss the solutions. 

c. Solutions of the Painleve type equations 

Let us start with the most general of the equations in
volved, namely (3.26). Various versions of this equation are 
discussed in any book on elliptic functions (see, e.g., Refs. 8 
and 46). We shall just summarize the results that we need for 
the purpose of this paper. 

We denote the polynomial on the right-hand side of 
(3.26) 

P(W) = W(W- WI)(W- Wz)(W- W3) 

with 

W_ + Wz+ W3= -a, 

WIWZ + WZW3 + W3WI ={3, 

WIWZ W3= -Y 

(the roots Wj are constants). 

(3.28 ) 

(3.29) 

Equation (3.26) can be simplified by a fractional linear 
transformation of the dependent variable 

W(s) = (PZ(s) + O")/(f-LZ(s) + v), (3.30) 

where p, 0", f-l, and v are constants. 
If all four roots of P( W) are distinct we choose p, 0", f-l, 

and v so as to transform the zeros at W = 0, WI' Wz, and W3 
into zeros at Z = ± 1 and Z = ± M, where M is some con
stant. If three zeros are distinct, we transform the double 

TABLEV. Reduction of the equation O,.p =a.p5 (E= + I) inE(4) to the ODE W2 = W 4 + CW+ItW 2; .p(x) = u[W(rlll '12, Cis a constant. 

No. Algebra u(x) 1J(x) 

PI L
" 

K2, K3 , P2, P3 , Po ( -40/3)-1/4 XI o 
(l,k=O) 

P2 
L I' L 2, L 3 , Po (4o/3)(~ +r, +X;W I/4 In(~ + r, + X~ ))1/2 

(l,k=2) 

P3 
D, L I,L2,L3 (4o/3)(x~ +x~ +X~»)-1/4 

In (X~ + x~ + x~ + x5 ) 1/2 - Xo ) 1/2 

(6) (x~ +x~ +x~ +X5)1/2+XO 

P4 D,K3,PO,P3 (4o/3)(xi +X~WI/4 arctan (x2/x I ) -1 

(2) 
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TABLEVI.ReductionoftheequationD<~ = a~5 (E = - I) inM(3,1) to the ODE "iv 2 = W 4 + CW + IlW2;~(X) = u[ W(7]) ]'I2,h,O,f,/'arefunctionsof 

Xo + x 3' Eo = ± I, b, and C are constants. 

No. 

PI 
(I) 
P2 
P3 

(20a,q= I) 

Algebra 

Degenerate 
D + 2K" L" P2, P3 

u(x) 

(_ 3/40)'/4 

( _ 3/40) '/4h ,/2 

( _l/4o)'/4(XO-X,)-'/3 

7](X) 

x, 

h(x,cosO +x2 sinO +f) 
(x~ -x~)'/6(XO+x,)'/3 

o 

o 
o 

P4 D-!K"L3+K2,P3 (l/4o)'/4(XO+X,)-'/3 (x~ +x~ _X~)'/2(XO+X,)-2/3 0 

(20b, q = -~) 
P5 D+~K"L,+K2'P, (I/4o)J/4(X~ +x~ -x~)-'/6(XO+X,)-'/' (x~ +x~ _x~)'/6(XO+X,)-2/3 0 

(20b,q= -2) 
P6 D,L"L2 -K"L,+K2 (3/4o)'/4(XO+X,)-J/2 (x~ +x~ +xi +x~)'I2(xo+x,)-' 0 

(20b,q= -2) 
P7 D+~KJ,L"L2-K" (3/4o)'/4(X~ +x~ +xi _x~)-'/6(XO+X,)-5/6 (x~ +x~ +xi -x~)'/6(xo+X,)-5/3 0 

(2Oc,q= -5) L,+KJ 
P8 D + !K" PI' L J - K2 + Po + P, (- 12/a)'/4[4x2 - (xo + X,)2)-'/2(1 + 52)-'/6 S:(I - u') -'/2 du, s = (l + 52)-'/' 0 

(22) 

5 = 6(x, - x o) + 6x2(xO + x,) - (xo + x,)' 
[4X2 - (xo + X,)2)'/2 

P9 L" L 2, L" Po 
(8) 
PIO K" K2 , L" P, In(x~ - x~ - x~) '/2 

(7) 
Pll D + eLI' P2, P, 

(20a, q = -I) 

P12 D + 2KJ + eLI' L2 - K" 
(2Oc,q=l) L3+ K , 

PI3 

(18) 
D,L"L2,L3 

PI4 

(19) 
D,K"K2,L3 

PIS D,K3,PO,P3 [-4o(xi +x~)/3]-'/4 arctan (x2/x , ) -1 

P16 Degenerate {- 4o[ (x, + f,)2 + (x2 + .t;)2]13}-'/4 arctan(x2 + .t;)/(x, + fI») - B -1 
(11) 

zero to Z -+ 00, the other two to Z = 0 and Z = 1. If two are 
distinct we transform one to Z -+ 00 , one to Z -+ O. If all four 
coincide, we integrate directly. The existence of at least one 
multiple zero of P leads to solutions of (3.26) in terms of 
elementary functions. 

Directly from (3.26) we see that W(S - So) is a solu
tion, then so is W( - S + So) and we shall not specify this 
sign ambiguity each time. The following possibilities occur. 

( 1) Constant solutions: For these we return to the origi
nal NLKGE (1.3) and obtain 

A. _ [- a4 + E2(a~ - 3a2a6 ) 1/2] 1/2 
'I'-EI , 

3a6 

E I ,E2 = ± 1 (or tP = 0). (3.31) 

(2) Quadruple root of P(W): WI = W2 = W3 = 0, 

W = lI(s - So), (3.32) 

(3) One triple root, one simple one: (a) W2 = W3 = 0, 
WI #0: 

W = WI/[l-! wi (S - SO)2]. (3.33) 
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These solutions vanish asymptotically in both directions 

lim W=O 
s- ± 00 

and have simple poles at 

S=So± 2/WI • 

(b) WI = W2 = W3#0: 

W= WI(S - SO)2/ [(S - So)2 - 4W I-
2

] • 

(3.34) 

(3.35 ) 

(3.36) 

These solutions also have two simple poles at the values 
(3.35); however, they approach a nonzero limit at infinity 

lim W= WI#O. 
s- ± 00 

( 4) Two double roots: W3 = 0, WI = W2 # 0, 

W= W1[I_eW,(s-so)]-I. 

The asymptotic behavior of W is (for Re WI > 0) 

lift W = WI' lim W = 0, 
s- - 00 s- + 00 

Winternitz. Grundland. and Tuszynski 
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and Wis singular for 5 = So' 
(5) One double root, two simple ones: (a) 

W3 =O=lW1=1W2 =10: 

W= 2WI W2 • 

(WI - W2)coSh~WIW2(S-SO) + WI + W2 
(3.40) 

The asymptotic behavior of W is (for WI W2 > 0) 

lim W=O. 
s- ± 00 

(b) 0=1 W2 = W3=1 WI =10: 

W = WI W2 tanh2
[ ~ W2( W2 - WI) 12] (5 - So) 

X{W2 tanh2[ ~ W2( W2 - WI) 12(5 - So) 

(3.41 ) 

+ WI - W2]}-I, (3.42) 

I 

lim W= W2=10. (3.43 ) 
s- ± 00 

(6) Four distinct simple roots: WI =I W2=1 W3=1 WI' 
WI W2 W3 =10. In (3.30) we put 

and transform Eq. (3.26) into the standard form 

Z2 =A(l - Z2)(M 2 _ Z2), 

where 

(3.44) 

(3.45 ) 

M={WI(W2+ W3) -2W2W3+2Eo[W2W3(WI- W3)(WI - W2)]1/2}/WI(W3 - W2), 

A =! [WI ( W2 + W3) - 2Eo[ W2W3( WI - W3)( WI - W2)]] 1/2. 

(3.46) 

( 3.47) 

The general solution of Eq. (3.45) can be written in one of 
three, a priori equivalent, forms 

Z = sn (..jAM(S - So),lIM), (3.48a) 

Z=cn(~-A(l-M2)(S-SO)' (l-M)-1/2), 
(3.48b) 

(3.48c) 

The Jacobi elliptic functions in (3.48) are particularly con
venient if their modulus m [m = 11M, (1 - M2) -1/2, or 
(1 - M2) 1/2 resp.] satisfies 

mER, 0<m2<1. (3.49) 

In this case they have one real and one purely imaginary 
period. Thus, assuming we have M 2ER, we would use 
(3.48a) for M2> 1, (3.48b) for M 2<0, and (3.48c) for 
0<M2<1. 

All of the solutions obtained above depend on one inte
gration constant So' In general So is complex, though often 
specific reality properties are imposed by the underlying 
physics. Note that if we replace 50-+50 - i1T/WI in (3.38), 
we change the sign in front of the exponential. If we replace 
so-+So-i(1T/2)(WI W2)-1/2 in (3.40) we change 
coSh(WIW2)1/2(S-SO) into isinh(WIW2 )1/2(S-SO)' 
The replacement so-+so-i1T[W2(W2- WI)]-I/2 takes 
the tanh function in (3.42) into the coth one. Note that 
(3.33) behaves like an "algebraic singular solitary wave," 
(3.36) like an "algebraic kink." For WI real, (3.38) is a 
kink. For WI W2 >0 (3.40) is a solitary wave (bump) van
ishing at infinity, for WI W2 < 0 it is a periodic solution. Simi
larly for W2 ( W2 - WI) > 0 (3.42) is a solitary wave that 
does not vanish at infinity. Again, this solution is periodic for 
W2 (W2 - WI) <0. 

The function F(s) of (3.25), directly related to tqe solu
tion of the NLKGE (1.3) has, in some cases, a dTfferent 
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I 
asymptotic behavior. Thus, for instance, (3.42) yields the 
solution 

F(s) = ( - 8A.a6 )-1/4 

X~WIW2tanh ~W2(W2- WI) (5-50) 
2 

]

-1/2 

+ W I - W2 , 

which behaves like a kink 

lim F(s) = - ( - 8A.a6 ) -1/4[W; , 
s- - 00 

lim F(s) = + ( - 8A.a6 ) -1/4[W;, 
s- + 00 

rather than a bump. 

(3.50) 

(3.51 ) 

Let us now consider the special cases occurring in the 
reductions of the NLKGE (1.5), when the above results 
simplify. 

(A) The Painleve XXIX equation and its first integral 
(3.23) with,u = O. This corresponds to the reduction PI of 
Table V and P 1-P8 of Table VI. The roots Wi (i = 1,2,3) of 
the polynomial P( W) in (3.28) in this case are 

Wk = Woexpi(Ul+ [2(k-1)/3]1T), k= 1,2,3, 

Wo,UlER, O,Wo<oo, 0'Ul<21T. (3.52) 

Among the solutions (3.31)-(3.48) the ones that occur are 
the following. 

(i) Algebraic solutions with one simple pole. These oc
cur when C = 0 in (3.23) (with,u = 0) and hence when 
Wo = 0 in (3.52). They correspond to 

W= ±lI(7J-7Jo), 7Jo=const. (3.53) 

(ii) Doubly periodic solutions: These occur for Wo=lO in 
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(3.52). In this case (3.46)-(3.48) simplify and we obtain 

M = i(2 - -13), A = - (woe
iW/2)2( 1 + 2-13). (3.54) 

In order for the modulus m to satisfy (3.49) we choose the 
solution (3.48b), i.e. "cnoidal waves." 

We have 

Z = cn {Woe
i"'[3v3 - 4] 1/2( 1] -1]0)' H2 + V3] 1/2} 

(3.55) 

and using (3.30) and (3.44), we have 

W = Woei"'{(Z - 1)/[ (-13 + I)Z + (-13 - 1) n. 
(3.56) 

Notice that W(1]) has poles at 1] = 1]c + 4nK, where 

Z(1]c) = - (-13 - 1)/(-13 + 1)- - 0.2679. (3.57) 

Moreover, ifthe argument 

'1'= Woe i"'[3v3 - 4] 1/2(1] -1]0) 

in (3.55) is real, then Z is real and oscillates between 1 
(for 'I' = 4mK), 0 [for 'I' = (2m + 1 )K], and - 1 [for 
'I' = (4m + 2 )K], where 4K is the real period of 
cn ('I', [2 + V3] 1/2/2). For 'I' pure imaginary, Z is again 
real, it has poles for 'I' = (2n + 1) iK' and we have 
Z(4niK') = 1, Z((4n + 2)iK') = - 1, where 4K' is the 
corresponding imaginary period. The solution W(,p) is regu
lar at the poles, so the only singularities of W( 1]) are due to 
the vanishing of the denominator in (3.56), i.e., they occur 
at the points 1]0 satisfying (3.57). The situation is summar
ized in Table VII (No. 1). 

(B) The Painleve XXX equation and its first integral 
(3.23) with Jl = 1. This corresponds to reductions P2 and 
P3 of Table V and P9-P14 of Table VI. In all these cases the 
variable 1](x) has the form 

1] = ln~ (3.58 ) 

and we shall express solutions in terms of ~ directly. Equa
tions (3.29) for the roots ofP( W) simplify to 

WI + W2 + W3 = 0, WI W2 + W2W3 + W3 WI = 1, 

WI W2 W3 = - C. (3.59) 

The three roots can be parametrized in terms of one complex 
constant v, 

with 

WI = - 2v, W2 = V + i(1 + 3V2)1/2, 

W3 = V - i( 1 + 3v2
) 1/2 

C= 2v(4v2 + 1). 

(3.60) 

Only some of the solutions (3.31)-(3.48) occur in this 
case. 

(i) Constant solutions: Directly from (3.22) with Jl = 1 
we have 

W= ± iff (or W= 0). (3.61) 

(ii) Solutions o/type (3.40): These occur for v = C = o. 
Permuting the roots in (3.60) we have WI = i, W2 = - i, 
W3 = 0 and (3.40) reduces to 

W= -2i[~~/(~2+~~)], ~o=const. (3.62) 

Thus the "solitary wave" solution (3.40) gives rise to the 
algebraic solution (3.62). Notice that W still satisfies (3.41) 
and could hence be interpreted as an algebraic solitary wave. 

(iii) Solutions 0/ type (3.42): From (3.60) we obtain, 
setting W2 = W3, that 

(3.63) 

The solitary wave (3.42) turns into a trigonometrically 
periodic solution, namely 

W = - 2iEI tan2B In(~ I~o)) 
-13 tan2(pn(~ I~o)) + 3 

(3.64) 

Notice that this solution is regular for In(~ I~o) real. 
(iv) Doubly periodic solutions: Substituting (3.60) into 

TABLE VII. Solutions of the equation W2 = W' + CW + jJ, W 2 in terms of Jacobi elliptic functions. 

jJ, No. r? M2 A W Z 

0 M2= - (7-4,/3)<0 - (Woe''''/2)2(1 + 2../3) (3.56) en [Woe''''~3../3 - 4(11-11o),(~2 +../3 )/2] 

2a 0<V2< ao M2<0 A<O (3.67) en [~ - A (1 - MZ)( 11- 11o)'~ 11(1 - MZ) ] 
2b - 00 <V2< -j M2<0 A<O 

3a ( -4+~)/22<r?<0 0<M2<M~ <I A<O (3.67) dn[r-A(11-11o),~] 
3b -n<v2« -4+~)/22 0<Mo<M2<1 A>O 

4a (-4-~)/22<V2< -1 I<M2<M~ A;;>O (3.67) sn[ /AM(11-11o),1IM] 
4b _j<v2< - (4-~)/22 I<M~ <M2< ao A<O 

-1 5a j<r?< ao M2<0 A<O (3.79) cnU -A(1- M2)(11-11o),~11(1- M2) ] 

-1 5b -ao<v2 <0 M2<0 A<O 

-1 6 1<v2<j 0<M2< 1 A<O (3.79) dn[r-A(11-11o),~I-MZ] 
-I 7 O<r?<n I<M2 A<O (3.79) sn[ /AM(11-11o),1IM] 
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(3.44)-(3.47), we obtain 

In (3.67) Z(1/) is a Jacobi elliptic function and 1/ = In ;asin 
(3.58). 

A priori, v is an arbitrary complex number, so that M2 
and the modulus of Z ( 1/) is complex. We restrict our consid
erations to the case when v2ElR. We then see that M2 is real 
for v2 > - n and for v2 < -!. Following the discussion be
low formulas (3.48) and (3.43), and performing some ele
mentary calculations, we arrive at the situation summarized 
in Table VII as cases Nos. 2-4. 

When the pertinent solution is given by the Jacobi cn 
function (cnoidal waves) the argument is real as long as 
1/ = In 5/50 is real. The function cn(x,m) is real and oscil
lates between Z = ± 1 for XER, 0< m 2 < 1. The function 
W( 1/) of (3.67) has poles for 1/ = 1/c satisfying 

Z( 1/c) = ( - ~ 12v2 + 1 + ~4V2 + 1 ) 

X [(~12v2 + 1 + ~4V2 + 1)] -I. (3.68) 

In the region where the pertinent solution is No.3, i.e., 

given by the function dn(x,m), we can have FA real or 
(in a different subregion) pure imaginary. The function 
dn(x,m) is real and positive [oscillating between M <,Z( 1/) 
<, 1] along the real axis, real and oscillating between - 00 

< Z < 00 for X imaginary. 

Finally JA M in the sn solution can be real or imagi
nary. If the argument X is real, we have - 1 <,sn(x) <, 1, for X 
imaginary sn(x, 11M) is itself imaginary and has poles at Xk 
= (2k + 1) iK " where 2iK' is the imaginary period. 

(C) The Painleve XXX equation and its first integral 
(3.23) with It = - 1. This corresponds to the reduction P4 
of Table V and P15, P16 of Table VI. The variable 1/ -1/0 
occurring in the solutions will have the form 

1/ -1/0 = arctan; - (), (3.69) 

where () is either an arbitrary function of Xo + X3 [in 
I 

M=i{6v2-1- [(4v2-1)(12v2-1)]1/2}/2v~3v2-1, 

A = - !(2V2 + [( 4v2 - 1) (12v2 - 1)]1/2), 

A = - {2v2 + [(4v2 + 1) (12v2 + 1) ]1/2}/2, (3.66) 

(3.67) 

I 
M (3,1) ] or a constant [in E( 4) ];; is given in the mentioned 
tables. Equations (3.29) reduce to 

WI + W2 + W3 = 0, 

WI W2 + W2W3 + W3WI = -1, 

WI W2W3 = -CO 

(3.70) 

The roots and C are expressed in terms of one complex con
stant as 

WI = - 2v, W2 = V + i(3v2 - 1)1/2, 

W3=v-i(3v2-1)1I2, C=2v(4v2-1). 
(3.71) 

Among the solutions (3.31)-(3.48) the following ones 
occur. 

(i) Constant solutions: 

W= ±..[f. (3.72) 

(ii) Solutions o/the type (3.40): Putting v = ° in (3.71) 
and permuting the roots, we have 

WI =I, W2 = -1, W3=0, C=O. (3.73) 

Equation (3.40) reduces to W= ± [cos(1/_1/0)]-I. Us
ing (3.69) we obtain a solution in terms of;, 

W= ± (1 +;2)112I(cos() +;sin(). (3.74) 

Thus a solitary wave solution gives rise to an algebraic solu
tion in;. 

(iii) Solutions o/type (3.42): We set v2 =! and have 

WI = - 2!j, W2 = W3 =..[f, C = 2..[f/3, (3.75) 

W=~ tanh2 [(1/-1/0)/2] , 
f3 3 - tanh2 

[( 1/ - 1/0)/2] 
(3.76) 

with 1/ -1/0 given in (3.69). 
(iv) Doubly periodic solutions: Substituting (3.71) into 

(3.44)-(3.48) we obtain 

W(1/) = - 2v~4v2 - 1 [Z(1/) - 1]1[ U12v2 - 1 + ~4V2 - 1 )Z(1/) + (~12v2 - 1 - ~4V2 - 1)], 

(3.77) 

(3.78 ) 

(3.79) 

with 1/ as in (3.69). In general, for v complex we have M2 
complex and there is no reason to give preference to anyone 
ofthe three types of solutions Z( 1/) of Table VII (Nos. 5-7). 
Restricting to V2ER we list all cases when M 2 is real, together 
with the appropriate choice of Jacobi elliptic function, in 
Table VII. We find A < ° in all cases. It is a standard matter 
to discuss the reality conditions, singularities, etc. of the so
lutions. 
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IV. DISCUSSION OF THE SOLUTIONS 

A. Solutions in Euclidean space 

In the general case of the NLKGE (1.3) in Euclidean 
space, when (a2,a4 ) # (0,0), the only exact solutions that we 
are able to obtain by symmetry reduction are those due to 
translational invariance. They have the form 
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cp(x) = (- 8a6 )-1/4[W(s)]I/Z, 

5 = (A,x + B), AZ = 1, 
(4.1 ) 

where A and B are constant vectors in E(n + 1). The vari
able 5 is conjugate, under translations and rotations, to 

s=x I · 

Thus, cp(x) can be constant, as in (3.31), or is given by 
(4.1), where W(s) is any of the solutions (3.32)-(3.48) of 
Eq. (3.26). All these solutions essentially "live" in one space 
dimension. 

All other solutions that we obtain in E(n + 1) pertain 
to the more special NLKGE (1.5). Thus we have 
az = a4 = o and wehaveputa= - 6a6 #0. Subgroups of the 
symmetry group having generic orbits of codimension 1 lead 
to the reductions of Table II. The obtained ODE's have the 
Painleve property only in the cases PI-P4 of Table V. The 
equations of Table V were solved in Sec. III C. In some cases 
the form of these solutions suggests generalizations that pro
vide further solutions. The results can be summed up as the 
following exact solutions of the NLKGE (1.5) (with 
E= 1): 

O<k<n, 
cp(x) = ( - 3ez/a) 1/4(x7 + x~ + x~ + eZ) -1/2, 

cp(x) = ( - 3( 1 - eZ)/4a) I 14 

X[(x~ +X7 +x~ +x~)IIZ+exo]-IIZ, 

cp(x) = [-a(x7 +x~ +X~)]-1/4 

X tan[pne(x7 +x~ +X~)IIZ] 

{3 + tanZ[pn e(x7 + x~ + x~ )I/Z]}I/Z' 

cp= [-a(x7 +x~ +X~)]-1/4 

tan[! In(; /;0)] 
X {3 + tanZ[! In(; /;0) ]}1/2' 

; = [x~ + x7 + x~ + xn I/Z - x o, 

[x~ + xi + x~ + xj] I/Z + Xo 

cp = [a(xi + x~)] -1/4 tanh [ (1] -1]0)/2] 

X [3 - tanhZ[ (1] -1]0)/2]] -lIZ, 

1] = arctan(xz/x I )· 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

In (4.2) we obtain solutions for arbitrary integer values 
of k satisfying O<k<n, even though Eq. (2.15) has the Pain
leve property only for k = 0 and k = 2. Solutions (4.3) and 
(4.5) come from P2 of Table V. Notice that fore2 > 0 (4.3) is 
a localized spherically symmetric static solution. Solutions 
(4.4) and (4.6) come from P3 of Table V. The correspond
ing variable ; is best interpreted in spherical coordinates. 
Letting 

Xo = r cos a, Xl = r sin a sin /3 sin y, 

X z = r sin a sin /3 cos y, X3 = r sin a cos /3, 
we find 

; = (r - xo)/(r + x o) )112 = tan(a/2), 

r= (x~ +xi +x~ +x~)l/z. 
(4.8) 

Notice also that 1] of (4.7) is a polar angle in the (X I,x2) 
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plane. Solution (4.7) is multivalued since it depends in a 
non periodic manner on this polar angle. 

All other exact solutions that we have obtained in E( 4) 
involve Jacobi elliptic functions. They all have the form 

cp(x) =U[W(1])]I/Z, (4.9) 

whereu(x) and 1](x) are given in Table V for the four differ
ent cases P I"",P4 that occur. For PI the solutions are sum
marized in row No. 1 of Table VII, for P2 and P3 in rows 
Nos. 2-4 of the same table, for P4 in rows Nos. 5-7. The 
reduction P4 of Table V provides multivalued solutions, un
less the constant v [see (3.70) and (3.77)-(3.79)] issocho
sen that the relevant period of the Jacobi elliptic function 
involved happens to coincide with that required to obtain 
W(1]) = W(1] + 2tr). 

B. Solutions in Minkowski space 

For (a2,a4 ) # (0,0) the only reductions, leading to Pain
leve type equations, involve translational invariance, as in 
the Euclidean case. We have 

(4.10) 

and for M (3,1), 5 takes one of two forms. 

(i) 5 = (AI,x)cos () + (Az,x)sin () + J, A = - 1, 

(Ai,Ad= -Dik' (Aj>L) =0, LZ=O, (4.11) 

where AI, A2, and L are constant vectors and () andf are 
scalar functions to the null variable (L,x). 

(ii) 5 = (A,x + B), AZ = 1, A = + 1 (4.12) 

(A and B are constant vectors). As in the Euclidean case 
cp(x) can be a constant, given by (3.31), or it is given by 
(4.10), where W(s) is any of the solutions (3.32)-(3.48) of 
(3.26). 

For the homogeneous case az = a4 = 0, we obtain many 
new exact solutions in terms of elementary functions, or Ja
cobi elliptic ones. They are obtained by making explicit the 
results of Sec. III on Painleve-type equations. In some cases 
we were able to fit the results into families of solutions, this in 
tum made it possible to "guess" some particular solutions of 
ODE's of Table IV that do not have the Painleve property. 
Here we shall just list the results; they can easily be checked 
directly. 

1. AlgebraIc solutions 

(1) cp(x) = (- (3 - 2k)/4a)1/4 

(4.13) 

For k = 0 this is solution No.1 of Table III, for k = 1, 
No.3 of Table III, and also P15 of Table VI for W = const. 
For k = 2 this solution is provided by P9 and P13 (both for 
W = const). 

In M (3,1) we have k = 0,1,2. Related degenerate vari
ables give further solutions in M(3,l) for k = 0 and 1, re
spectively. 

(2) cp(x) = ( - 3/4a) 1/4 

X (XI cos () + Xz sin () + f)-lIZ, (4.14) 
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(3) 4>(x) = ( - 1/40)1/4 

X[(X I +fl)Z+ (xz +.t;)Z]-1/4, (4.15) 

where e, J, fl' andfz are arbitrary functions of Xo + x 3. 
Solution (4.14) is provided by P2, special cases thereof 

by No.2 of Table III, PI, and the nonconstant algebraic 
solutions ofP15 and P16. Solution (4.15) is provided by P16 
for W = const. 

(4) 4>(x) = (3 - 2k)/4o)1/4 

( 4.16) 

The case k = 1 comes from Pll with W = const, k = 2 from 
No.9 of Table III and also PlO for W = const, k = 3 from 
No. 10 of Table III and also P12 and P14 for W = const. 

(5) 4>(x) = (3c/a)I/4(xi +x~ +x~ +C)-I/Z (4.17) 

[see P9 where W is the solution (3.62) ]. 

(6) 4>(x) = (3c/a)I/4(x~ -xi -x~ _C)-I/Z (4.18) 

[see PlO where W is the solution (3.62)]. 

(7) 4>(x) = ([ (3 - 2k)/4o]C)I/4 

X{(x~ -xi - ... -x~) 

X[(xO+XI )Zk-3+ C]}-1/4, l<k<n 
( 4.19) 

(see Table III, Nos. 5-7 for k = 1,2, and 3, respectively). 

(8) 4>(x) = (3 - 2k)/4o)1/4( (x~ - xi - ... - x~) I/Z 

+ c(xo + XI )k/3)-I/Z, 1 <k<n (4.20) 

(see P3, P4, and P6 for k = 1,2, and 3, respectively). 

(9) 4>(x) = (3 - 2k)/4o)1/4( (x~ - xi - ... - x~) I/Z 

+ c(x~ - xi - ... - xz ) 1/3 

X (xo + XI )(3k-4)/3)-I/Z, l<k<n 

(see P5 and P7 for k = 2 and 3, respectively). 

(10) 4>(x) = ([ (9 - 6k)/a]c)I/4 

(4.21 ) 

X(x~ - xi - ... - xD (xo + XI )k-2 

+c(XO+XI )2-k)-I12, l<k<n 
(4.22) 

[for k = 1 and 3, see Pll and P12, respectively, with W 
given by (3.62)]. 

(11) 4>(x) = (3( 1 - CZ)/4o)1/4 

X(xi +x~ +x~ _X~)I/Z+CXI)-I/Z 
(4.23) 

[seePl4with Was in (3.62)]. 

(12) 4>(x) = ( - 3( 1 - CZ)/4o)1/4 

X(x~ -xi -x~ _X~)II2+CXO)-I/Z 
(4.24) 

[seeP13 with Was in (3.62)]. 
In (4.17)-( 4.24) C is an arbitrary integration constant. 

Notice that for c > 0 (4.17) represents a real, static, nonsin
gular localized solution in M(3,l). It has recently been dis
cussed by Umezawa.47 Solution (4.18) is independent of the 
space variable x 3 (in the chosen frame of reference), is singu
lar on the hyperbolic cylinder x~ - xi - x~ = c and is real 
for x~ - xi - xi - c> 0, (3c/ a) > 0, pure imaginary other
wise. 

2. Elementary nonalgebraic solutions 

One elementary nonalgebraic (involving a logarithm) 
solution is given in No.8 of Table III, namely 

(13) 4>(x) = (xi + x~ + x~ - x~ + Xo - X3 - 2xU(1 + Xo + X3) )-1/4 

X (2a;(; + 1) -a(;+ 1)(;z-I)ln[(1 +;)/(1-;)] +c(;z_I)(;+ 1»)-1/4, ;=XO+X3. 
( 4.25) 

All other solutions of this type in M(3,1) are obtained from the results of Table VI. More specifically, the reductions P9-
P14 yield such solutions when (3.64) is substituted for W, as do P15 and P16 when Wis given by (3.76). 

A family of solutions in M(n, 1) is given by 

(14) 4>(x) = ( - (3 - 2k)/a)I/4(tan(pn c;dxo + XI)k- 2)/{;k [3 + tanZ(pn C;k (xo + XI)k - Z)]}I/Z), 

;k = (x~ -xi - ... _X~)I/Z, l<k<n. (4.26) 

The cases k = 1,2, and 3, correspond to Pll, PlO, and P12, respectively. 

(15) 4>(x) = (1/a) 1/4(xi + x~ + x~) -1/4(tan [pn c(xi + x~ + x~) I/Z]/{3 + tanZ [pn c(xi + x~ + x~ ) I/Z]}I/Z) 
(4.27) 

(see P9 of Table VI). 
(16) Reduction P13 provides the solution 

4>(x) = (1/a) 1/4(xi + x~ + x~ )tan(pn c;) 

X{3 + tanz(pn C;)}-I/Z, (4.28) 
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; = [(x~ -xi -x~ - XDI/Z - xor'z 

x[(x~ -xi -x~ -xD I/Z+xO]-1Iz. (4.29) 

The variable; of (4.29) has a simple meaning in spheri
cal coordinates. Thus, inside the forward light cone of the 
origin we let 
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Xo = r cosh a, XI = r sinh a sin () cos f/J, 

X 2 = r sinh a sin () sin f/J, X3 = r sinh a cos (). 

We then have 

~=itanh(aI2). (4.29') 

(17) (}(x) = ( - l/a) 1/4(X~ - xi - X~) -1/4 

X(tan(! In c~)/[3 + tan2q In c~)] 1/2). 

(4.30) 

~= {( -X~ +xi +x~ +XDI/2 -X3) 

X [( - x~ + xi + x~ + X~ )1/2 + X 3)] -IP/2 
(4.31 ) 

(see P14 of Table VI). 
The variable (4.31) is best understood in terms of hy

perbolic coordinates. This time, outside the light cone of the 
origin, we put 

Xo = P sinh a cosh {3, x I = P sinh a sinh {3 cos f/J, 

X 2 = P sinh a sinh {3 sin f/J, X3 = P cosh a, 

and find 

~ = i tanh(aI2). (4.31') 

(18) The degenerate variable of P16 in Table VI, in 
conjunction with (3.79), provides the solutions 

f/J(x) = {- a[ (XI +/1)2 + (X2 + h)2]}-1/4 

X tanh Harctan{(x2 + 12)/(x I + II)} - ()] 

X{3 - tanh2! [arctan{(x2 + h)/(xI + II)} 

_ () ]}-1/2, (4.32) 

where/l ,/2' and () are arbitrary functions of Xo + X 3• 

Reduction P15 provides a special case of (4.32) ob
tained by putting/l = 12 = 0, () = const. 

As in the Euclidean space case of solution (4.7), the 
Minkowski space solution (4.32) is multi valued. Indeed, it 
involves a nonperiodic function (tanh x) of the polar angle 
in the (X I ,x2) plane. 

3. Solutions In terms of Jacobi elliptic functions 

Each reduction of Table VI provides solutions of the 
NLKGE (1.5) in terms of Jacobi elliptic functions. Com
paring with Table VII, we see that PI-P8 provide solutions 
f/J(x) = u[ W( 1])] 1/2 with Wexpressed, preferably, in terms 
of the function cn(x,m). The reductions P9-PI4, and also 
P15 and P16, give solutions in terms ofcn(x,m), sn(x,m), 
or dn(x,m), depending on the values of the parameter v2 

involved. 

v. CONCLUSIONS 

A few words should be said about the "integrability" or 
"nonintegrability" of the NLKGE (1.3) and its particular 
case (1.5). These equations are not of the type that can be 
solved by inverse scattering, or other linear techniques,9,48 in 
(1 + 1) dimensions, still less in (n + 1). 

We have been able to obtain a large number of exact 
particular solutions, because the method of symmetry reduc-
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tion in many cases leads to ODE'S with the Painleve proper
ty. 

A Painleve test, very similar to the one described in Sec. 
III, can be performed directly for PDE's,49,5o without first 
performing a symmetry reduction. Equation (1.3), and also 
( 1.5), fail the test; the solutions of these PDE's are not neces
sarily single valued in the neighborhood of their singularity 
surfaces. This is reflected in the fact that generically speak
ing, the reduced ODE's of Tables II and IV do not have the 
Painleve property, only the exceptional ones, listed in Tables 
V and VI, do. 

This paper is entirely devoted to the problem of finding 
the exact solutions, summarized in Sec. IV. A sequel, in 
which we study physical applications of the solutions, as 
outlined in the Introduction, is in preparation. 
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Renormalization schemes and renormalization group functions 
in Yang-Mills theories with massive fermions 
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The connection between renormalization schemes (RS's) and the renormalization group 
(RG) functions for a massive Yang-Mills theory is investigated. The RS's are defined in a 
manner independent of the regularization procedure. The RS transformations are defined in 
such a way that it is clear that they form a group. It is shown that to a given set of RG 
functions corresponds an infinite number of RS's. The subgroup of RS transformations which 
leave invariant the (mass-shell) MS-RG functions is carefully described. Gauge invariance, 
regularity of the theory when m --> 0 and mass decoupling are imposed and the corresponding 
indeterminations of RS's are given. It is seen that a RS which fulfills simultaneously the above 
conditions does not exist. 

I. INTRODUCTION 

In massless field theories the connection between renor
malization schemes (RS's) and the renormalization group) 
(RG) functions is well known. Up to an arbitrary constant 
the RS is fixed once the RG /3 function coefficients are given. 
This property had a great impact on our way of handling 
calculations in QCD and, in particular, Stevenson relied 
upon it in his proposed optimization method.2 

Here we study the connection between RS's and the RG 
functions for a massive Yang-Mills theory. This connection 
turns out to be much more intricate than for the massless 
case. It is due not only to the fact that there are now several 
RG functions but also to the existence of a mass scale asso
ciated to the massive fermions. 

We formulate the problem in such a way that it becomes 
clear that the set of all RS transformations form a group. We 
study the structure of this group with respect to its action on 
the set of RG functions. This allows us to show that to each 
set of RG functions correspond an infinite number of RS's. 
This is true, in particular, if all RG functions are chosen 
equal to zero. We also add several additional realistic bound
ary conditions and show how the indetermination is re
duced. In particular, gauge invariance, regularity when 
m --> 0, and decoupling when m --> 00 cannot be fulfilled si
multaneously. 

In Sec. II we give a precise definition of a RS and intro
duce the RG functions. 

In Sec. III we give an appropriate formulation of a 
change of RS, we give the group of RS transformations, and 
finally we write the equations which express the change of 
RG functions. 

In Sec. IV we discuss in detail the properties of the sys
tem of equations given in Sec. III. We discover equivalence 
classes among the RS's. They contain all RS's which corre
spond to one given set of RG functions. 

a) Research assistant, National Fund for Scientific Research (Belgium). 
b) Postal address: Institut de Physique au Sart Tilman, Batiment B.5, B-

4000 Liege 1, Belgium. 

In Sec. V, we show that this degeneracy is described by 
the subgroup of RS transformations leaving this set of RG 
functions invariant. It does not depend on the particular set 
we use. For the (mass-shell) MS-RG functions, we intro
duce four sets of particular solutions. To each set corre
sponds a function which contains the degeneracy. 

In Secs. VI-VIII we add to our previous system of equa
tions boundary conditions which express the regularity in 
mass of the theory (when m -->0 and m --> 00) and the gauge 
dependence of a RS. We deduce the extent to which the de
generacy is reduced. 

II. THE BASIC INGREDIENTS 

A. Definition of an RS 

It is by now well known (see, for instance, Ref. 3) that 
renormalization consists in the subtraction of divergences 
existing in the power series expansions in the coupling con
stant of a few independent irreducible Green's functions. In 
a typical Yang-Mills theory we need to consider the gauge 
boson, fermion, and Faddeev-Popov propagators together 
with the various vertex functions. They are not all indepen
dent because of the Slavnov-Taylor identities. 

Let us denote by Sr a set of independent irreducible 
Green's functions. We define a RS independently of the reg
ularization procedure used4 in the following way. If jl is the 
renormalization scale we demand that all r in Sr 

(1) 

Here, a is the coupling, A the gauge parameter, and 7] = mljl 

with m a generic symbol for the various fermion masses. 
We can use a particular set of irreducible Green's func

tions, a unique renormalization scale jl, and a particular re
normalization point for three- or four-point functions and 
still have the most general RS because the functions 7'r are 
arbitrarily chosen. Indeed, to any RS corresponds a unique 
set of 7'r which are determined by takingp2 = - jl2 into the 
Green's functions r. The functions 7'r take care of all arbi
trariness. 

From now on we shall take QCD in the Lorentz gauge as 
our prototype. The following considerations can neverthe-
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less be applied to all theories which satisfy multiplicative 
renormalization conditions like (2) and (3) below. These 
are quite general since they involve a mass parameter and a 
gauge parameter. Of course, restrictions to theories without 
mass or gauge parameters is straightforward. 

B. The RG functions 

The renormalization constants are defined by the rela
tions4 

a B = Zaa#-E, mB = Zmm, AB = Z;.A, (2) 

and for the matter field by 

(3) 

and an analogous equation for the Faddeev-Popov field. In 
these equations, #- denotes the regularization scale and the 
index B defines the bare quantities. 

The RG functions are 

da J.L dm dA J.L dZ2 

P = J.L dJ.L ' Y = m dJ.L ' Y;. = J.L dJ.L ' Y", = Z2 dJ.L . 
(4) 

All these functions are finite, depend on a, A, 'T], and also of 
the RS. 

III. THE LINK BETWEEN RS'S AND THE RG FUNCTIONS 

A. The change of RS 

The change of RS is introduced by a change of the 'Tr 
functions defined in (1). The Z functions are consequently 
modified but the bare quantities stay the same, so that 

(5) 

Primes denote the corresponding quantities in the new RS 
while S is the residue at the pole of the Fourier transform of 
the matter propagator, 

fd4xe-iPX(0IT¢(X)tP(0)10) = S(p2). (6) 
j _ m(p2) 

Starting from the MS schemeS and deleting the primes, 
we deduce from (5) the relations between the parameters in 
the MS scheme and those of a general RS, 

a MS = aAo(a,A.,,'T]) , 'T]MS = 'T]Mo(a,A.,,'T]) , 

AMS = ALo(a,A.,,'T]) , SMS = SBo(a,A.,,'T]) , 
(7) 

when Ao, Mo, L o, and Bo are the convergent parts of the Z 
constants. 

The functions Ao, Mo, Lo' and Bo in relation (7) repre
sent a change ofRS starting from the MS scheme and define 
the final RS. However, it is straightforward to show that a 
change of RS startingfrom any scheme (RS)o gives rise to 
the same equations [with MS replaced by (RS)o and Ao"'" 
Bo replaced by some functions we call/, g, h, I]. The func
tions/, g, h, I do not depend on the starting scheme. With this 
in mind we rewrite (7) in the compact form, 

x' = f(x), s'(x') = s(x)·/(x), (8) 

where 

x = (a,A.,,'T]), x' = (a',A., ','T]') , (9) 
f= (af(a,A.,,'T]) , Ag(a,A.,,'T]), 'T]h(a,A.,,'T]»). 
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The p2-dependence of s is implicit. The functions f(x) and 
sex) so introduced generate a true group (and not merely a 
groupoid6

). Its multiplication law under composition is 

[g(x) ,k(x)] 0 [f(x),/(x)] = [g(f(x) ),k (f(x))·/(x)] (10) 

and every transformation has an inverse since in perturba
tion theory the inverse functions of/, g, h, and I always exist. 
Here f(x) = x, I(x) = 1 is of course the unit transforma
tion. 

B. The change of RG functions 

From (4) and (7) we deduce the differential equations 
relating the RG functions in the new scheme to those in the 
MS scheme. We obtain 

PMS ={f+a af)p+a af Y;. +a af r, 
\ aa aA a'T] 

Y;'MS = A ag P + (g + A a
g

) Y;. + A ag r, 
aa aA a'T] 

r MS = 'T] ah P + 'T] ah Y;. + (h + 'T]~) r, 
aa aA a'T] 

( 
al al al) Y",Ms'I=I'Y", - -P+-Y;. +-r , 
aa aA B'T] 

where 

d'T] 
r=J.L-='T](y-l) 

dJ.L 

(11 ) 

(12) 

(13) 

(14) 

(15) 

has been introduced to write the equations in the most ele
gant way. 

These equations are restricted by the fact that p, Y, Y;., 
and Y", must have the expansions 

p(a,A.,,'T]) = a 2p(2)(A,'T]) + a 3p(3)(A,'T]) + "', 
Y;. (a,A.,,'T]) = ayl1

) (A,'T]) + a 2Yl2) (A,'T]) + "', (16) 

r(a,A.,,'T]) = 'T][ - 1 + ayO)(A,'T]) + a 2y2) (A,'T]) + ... ], 
y",(a,A.,,'T]) =aY~\)(A,'T]) +a2y~2)(A,'T]) + "', 
and if t represents one of the functions /, g, h, I, it has the 
expansion 

t(a,A.,,'T]) = 1 + t1(A,'T])a + t2 (A,'T])a2 + ... . (16') 

Equations (11 )-(14), (16), and (16') allow us to study 
precisely the relationship between the/, g, h, I functions and 
the RG functionsp, y;., r, y",. 

IV. DISCUSSION OF THE RELATIONSHIP BETWEEN 
THE RS AND RENORMALIZATION GROUP FUNCTIONS 

In this section we solve the system of differential equa
tions introduced, i.e., we determine the set of solutions 
t(a,A.,,'T]) from the knowledge of the set ofrenormalization 
functions. For the coefficients of the a expansions of the MS 
scheme RG functions we use the notations b (k), elk), c (k), 

and C~k). 
The system (11 )-( 14) is solved recursively using ( 16) 

and (16'). To first order we get 
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a r
(1) c (I) 

'17 "-,, 1] _0_1 = ----
a1] A 

1] :~ = c~1) - r~l), 
(17) 

and, in general, to order k, 

1] alk = (k/3(2)-2b(2»lk_l +ril) alk_ 1 

a1] aA. 

0),) alk 1 + r 11] aA + ... , (18) 

agk [ (2) ril) ac il)] 
1] ~ = (k - 1)/3 + T - ---a;:- gk-l 

+ (I) agk _ 1 +0),1) agk _ 1 

r" aA. r 1] a1] 

Cil) 
-T1k-l + "', (19) 

1] ahk = [(k-1)/3(2)+r(1)-C(1)]hk_
1 

+ril) ahk_ 1 

~ ~ 

ah k 1 () 
+ r1)1] a; - C lYk_l + ... , (20) 

1] alk = [(k - 1)/3(2) - r~1) + C~l)]lk_l 
a1] 

+r(l) alk- 1 +0),1)1] alk_ 1 +C(I)I' 
" aA. r a1] '" J k - 1 

ac(l) 
+A.-"'-g + ... aA. k-l , (21) 

where the terms not written contain coefficients of order less 
than or equal to k - 2. 

These equations are recursively integrated and at each 
order appears an integration constant which is an arbitrary 
function of the gauge parameter A. At order k, if the arbi
trary function associated with the function t (i.e.,J, g, h, or /) 
is called Tk (A.), then 

tdA.,1],Tk (A.), ... ,T1 (A.») 

= tZ(A.,1],Tk _ 1 (A.), ... ,T1(A.») + TdA.). (22) 

Therefore there is an infinite number ofRS's corresponding 
to one set ofRG functions. This degeneracy can be described 
by the arbitrary functions Tk (A.) with k = 1,2, .... 

The discussion above is valid for any RG functions. In 
particular, we can take 

/3= r= r", = r" = o. (23) 

The corresponding schemes are ,u-independent. There are an 
infinite number of those RS's. In each of them one can define 
a coupling Ct, a gauge parameter 1, and a mass m indepen
dent of,u. Any physical quantity can be expressed in terms of 
these parameters and to any finite order of perturbations will 
depend on the other parameters which describe the RS's. If 
any optimization is attempted it must be done on these pa
rameters and not on the RG function coefficients which are 
all equal to zero. 
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V. THE ORIGIN OF THE DEGENERACY 

In this section we explain the origin of the degeneracy 
we have described: what happens is that among the RS trans
formations many do not change the RG functions. The set of 
all RS corresponding to the same set of RG functions form 
an equivalence class. All classes are in one-to-one correspon
dence with each other. 

The general transformation law of RG functions under 
a change ofRS can be written in a compact form. Taking the 
derivative of (8) with respect to,u we have 

W(f(x») =~./3(x), (24) 
dx 

dl 
rif,(f(x»)/(x) = r", (x)/(x) + - ·13(x), (24') 

dx 

where 

13 = (/3,r",r) 

and d f/ dx is the Jacobian matrix of the transformation (8). 

Transformations leaving the RG functions invariant 
(W = 13, rif, = r",) have the following properties. (1) If 
[f(x),/(x)] is a solution, [f(f(x) ),1 (f(x) )/(x)] is also a solu
tion (from the properties of the Jacobian matrix). (2) If 
[f(x),/(x)] and [g(x),k(x)] are two solutions, so is their 
composition (10); transformations ofRS leaving a set ofRG 
functions invariant therefore define a subgroup of the renor
malization group. (3) If [f( x, v) ,I (x, v) ] is a family of solu
tions parametrized by v, then it is still a solution if one makes 
the substitution 

v- vex) 
for any function vex) satisfying 

13. dv = 0 
dx 

or, equivalently, 

dv 
,u-=O. 

d,u 

(25) 

(26) 

(27) 

All invariance subgroups are in one-to-one correspon
dence. It is interesting to study more carefully the invariance 
subgroup associated with the MS-RG functions r MS (a,A.,1]). 
The most general transformation is constructed from four 
particular solutions. From Eqs. (11)-(15) with 
/3 = /3 MS , ... , r", = r ",MS and the particular properties of 
these functions, 

we extract easily the following solutions: (1) f(x) = x and 
I (x) is an 1] independent function; it has to satisfy 

dl 
,u d,u = 0; (29) 

(2) 1 = 1, g = 1, 1= 1, but hex) is a function independent 
either of 1], or of A.; it satisfies also 

dh 
,u d,u = 0; (30) 

(3)/= 1, h = 1, butg=g(a,A.) and 1=/(a,A.) (because 
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~s depends on A,) are 1]-independent solutions; ( 4 ) 
/=/(a), and thus g =g(a,A), h = heal, 1= l(a,A) (all 
RG functions depend on a); they define a solution indepen
dent of 1]. 

These solutions can be chosen to be independent. 
Thanks to property ( 1 ) and the fact that the particular solu
tions are not the identity, it is easy to generate for each of 
them an infinite number of other solutions of the same form 7 

by composing the solution with itself (iteration). These iter
ations can be interpolated to form a one-parameter family 
(Vi for solution i), such that the composition of a solution 
with v: and a solution with vi is a solution with v: + vi. Each 
family is thus an Abelian subgroup of the RG. 

Using property (3), we replace Vi by Vi (x). The forms 
of the solutions are still the same but the latter define now for 
each i a non-Abelian subgroup of the RG. Indeed, composi
tion of a solution with v: and a solution with V7 is 

(31) 

It is a solution because it verifies (27). Manifestly, these 
subgroups are non-Abelian except for i = 1 because 

fl (x,v) = x and II (x,v) = [/1 (x) ]v. (32) 

Using property (2) we generate the general solution by 
composing the four families of solutions. This general solu
tion depends on four arbitrary functions: Vi satisfying (27). 
In the Appendix, we show that the general solution of (27) 
depends on a sequence of arbitrary functions of A, (one for 
each order). The general solution obtained by composition 
is therefore the most general: we recover the same degree of 
arbitrariness as in (22). More precisely, the arbitrary func
tions of A, contained in V4 are in a one-to-one relationship 
with the sequence of the Fk (A,). We use the notation 

v4~{Fk (A,)}. (33) 

Taking into account this relation, we can show that the 
arbitrary functions of A, contained in V3 are in a one-to-one 
relationship with the Gk (A,), 

V3~{Gk (A,)}. (34) 

Taking into account Eqs. (33) and (34), there is a one-to
one relationship between 

v2~{Hk (A,)} (35) 

and finally with (33)-(35) we have 

vI~{Lk (A,)}. (36) 

In conclusion, it is possible to generate the most general 
solution starting from four very particular solutions using 
the properties of the system. It is useful to calculate the de
gree of arbitrariness in any circumstances. For instance, in a 
theory without mass and gauge parameters, solutions (2) 
and (3) disappear, solution (1) is the identity [see (29)], 
and V can only be a constant. In that theory, arbitrariness is 
reduced to a single constant v4 =; and the invariance sub
group is Abelian. 

The analysis we have done ofEqs. (11 )-( 14) is the most 
general one in the sense that the constraints imposed on 
them are the weakest ones [see (20) ]. In the following sec
tions we shall examine what becomes of the analysis of (11)
(14) under various additional boundary conditions. 

2216 J. Math. Phys., Vol. 28, No.9, September 1987 

VI. MASS BEHAVIOR 

We require that the theory, i.e., both the RG functions 
and the RS transformations, be regular when m-+O.8,9 

First, Eqs. (11 )-( 14) admit solutions only if Eqs. (17) 
are satisfied, i.e., if 

f3 (2) -+ b (2) .)1) C (1) y(l) C (I) y(l) C (I) 
,l--+, A--+..t, ",--+1/1' (37) 

when m -+ O. 10 

Second, Eqs. (18 )-( 21) still admit several solutions but 
the degeneracy is restricted by the fact that the functions Vi 

not only satisfy (27) but must satisfy the equations 

(38) 

The solution of (38) is written in the Appendix in the gen
eral case. It depends only on a sequence of arbitrary con
stants. Symbolically, the arbitrariness of the general solution 
is reduced to 

v4~{Fk}' V3~{Gk}' v2~{Hk}' vI~{Lk}' (39) 

In the case of QED it takes a very simple form because 
there we have the relations 

(40) 

i.e., alA, does not depend onfL and verify (38). Therefore, 
here V can be an arbitrary function of alA, and indeed 

Fk(A,) =FklA,k-I, Hk(A,) = HklA, \ 

Lk (A,) = LklA, k. 

In QeD one gets analogously 

Fk (A,) = Fk (A, + d Ic) - (k-I)(b/c), 

Gk (A,) = G k (A, + d Ic) - k(blc). (c + d IA,), 

Hk (A,) = Hk (A, + d Ic) - k(b/c), 

Lk(A,) =Lk(A,+dlc)-k(b/C), 

where 

VII. THE GAUGE DEPENDENCE 

(41 ) 

(42) 

(43) 

Here we study the gauge dependence of the different 
functions. Physical and bare quantities are gauge indepen
dent. This means that 

daB dmB 
-=0=-

dA, dA, , 

the derivatives being taken at fixed fL. 

(44) 

From (2) we find we can define two new RG functions II 

da 1 dm 
p= dA,' U= m dA,' 

which admit the power expansions 

p =p(2)(A,,1])a2 +p(3)(A,,1])a3 + "', 
U = o.(1)(A,,1])a + d 2)(A,,1])a2 + .... 

Notice that, as is well known, 

p=O=u 

(45) 

(46) 

(47) 

in the MS scheme. These equations express the gauge invar
iance of the scheme. 
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In general, we can choosep and u and look for the corre
sponding RS. To Eqs. (11)-(14) expressing the change of 
RS we must join the equations 

PMS = 0 = (! + a :~r + (a7] :~)u + a :{ , (48) 

ah ( ah) ah 
U MS =o=~+ h+7]- u+-. 

aa a7] a.1, 
(49) 

The discussion of Sec. IV can be redone. Beside Eqs. 
(18)-(21) we get 

alk __ k (2)1' _ dl) alk - I + ... 
a.1, - P J k - I 7] a7] , (50) 

ah k ( ) 
--= -(k-l)p 2 hk _ 1 a.1, 

(51) 

These equations will allow us to tell something about the .1,
dependence of I and h. 

However, before we discuss this point we notice that 
there exist constraints between p, u and {3, y. The reason is 
that (d / d.1,) II' and d / df-l are not independent derivatives. If 
we introduce the derivative 

dl a -a - a f-lD =f-l- =f-l-+{3-+ ym-, 
I' df-l A af-l aa am 

(52) 

where 

we have 

[f-lDI' , ~] = 0 (55) 

and thus 

D - dfj D dy-
f-l I'P - d)" f-l I' U = d)' . (56) 

Expanding each RG function in powers of a we find 
a{3 (k + \) arp(k + \) 
--'---- + 7] = ". 

a.1, a.1, ' (57) 
ay(k) au(k) 
--+7]--='" a.1, a). , 

where the terms not written contain coefficients of lower 
orders. 

Integrating Eqs. (18), (50) and (20), (51) requires the 
equality of the crossed derivatives. But the two constraints 
obtained are nothing but (57). There is no other constraint. 
So, there exist RS's corresponding to 

{3=y=YA =y", =p=u=O. (58) 

In those RS's, we have 

f-l dfL = 0 = dfL 
df-l df-l 
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(59) 

and 

f-l dm = 0 = dm . 
df-l df-l 

(60) 

Here fL and m can be physical quantities. 
The discussion of Sec. V can also be redone. We just 

have to add p and u to the other RG functions. For instance, 
to Eq. (24) we must add 

p'(f(x»)# !!.!.p(x), (61) 
dx 

where p = (p,I,7]u) and # means proportional. With this 
compact form it is obvious that the transformations of RS 
which do not change any RG function of a given set define a 
subgroup of the RG. The discussion in the MS scheme is 
modified by the two equations 

al =!!!... = 0 (62) 
a.1, a.1, 

expressing the invariance of p and u ( = 0). The particular 
solution (2) has to be independent of A and v2, v 4 must verify 

(63) 

Consequently, these v depend only on a sequence of arbi
trary constants and the total degeneracy is reduced to 

v4--{Fk}, V3--{Gk (A)}, v2--{Hk}, Vl--{Lk (A)}. 
(64) 

Thus, for instance, there are still an infinite number of gauge 
independent RS leading to the same RG functions. 

VIII. COMBINING CONSTRAINTS 

Here we examine the consequences on our previous 
equations of several constraints. 

First we require both gauge independence and regular
ity when m -+ 0 or 00 of all RG functions and all RS's. The 
constraints (37) and (56) are obtained butthere exists a new 
one. One substitutes k = 2 into (16) to get 

7] al2 = y( \) 7] all + yi \) all 
a7] a7] a.1, 

+ 2/2({3(2) - b (2» + {3(3) - b (3). (65) 

Since {3 (2) -+ b (2) and 7] (af..,2 / a7]) -+ 0 when m -+ 0 we find 

Y(\) all = b (3) _ {3(3) 

A a.1, ' 

but from (50) we also get 

all = _p(2). 
a.1, 

Therefore, when m -+0, we get 

(66) 

(67) 

{3 (3) - yi\)p(2) = b (3). (68) 

SeveralsolutionstoEqs. (11)-(14), (48), and (49) still 
exist. Indeed, one can calculate the degeneracy using the 
general decomposition. Solution (2) has to be the identity 
since it cannot be simultaneously independent of), and regu
lar if m -+0. Here v4 has to verify 

aV4 0 dV4 -0 dv4 _ 0 7]a7]-+' f-ldf-l-' d.1,-' (69) 
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Only a constant can do that; v4 = ;; V3 and VI verify the same 
equations as in Sec. VI. They do not depend on TJ and A. The 
final degeneracy is thus 

V4~;' V3~{Gk}' vI~{Fk}' (70) 

The arbitrariness above cannot be eliminated with boundary 
conditions compatible with the massless case. The reason is 
that there do not exist RG functions associated to Z2 and Z A 

to restrict further V3 and VI' 
But we can look for mass-dependent RS's satisfying 

both regularity for m -+ 0 and decoupling for m -+ 00. Here 
MOM is such a scheme. 12 With these constraints the arbi
trariness disappears. Indeed, there exist no transformations 
(regular if m -+0 and 00) other than 1 leaving (3MOM and 
r ."MOM invariant in non-Abelian theory. This can be seen 
from Eqs. (17)-(21) with all RG functions replaced by 
those of MOM. 13 

First order: TJ alI = 0 (idem for g,h,/); 
aTJ 

b (2) = lim /3 ~bM , 12 (2) = lim /3 ~bM . 
"1-0 "1- 00 

(71) 

(72) 

(73) 

(74) 

(75) 

From (73) and (74) in a non-Abelian theory, one deduces 

fl =gl = O. (76) 

Similarly one can show that II = 0 and recursively that allfk' 
gk' hk' Ik are equal to zero. 

Thus there exists only one regular and decoupling RS 
corresponding to given (3, r." functions. Its functions p and u 
are calculable, so that they cannot be chosen. Consequently, 
there exists no regular, decoupling, and gauge independent 
scheme. 

Of course, the (3, r." functions of a regular decoupling 
scheme are constrained. They have to satisfy 

/3 (2) -+ b (2), yl) -+ e(1), rii) -+ e ii), r~i) -+ e ~i), (77) 

if TJ -+0, and 

/3(2)-+12(2), yl)-+ 9 (1), ri l )-+9ii), r~i)-+9~i), (78) 

if TJ -+ 00. But they are not the only constraints: there exist to 
each order a new constraint on the integral of each function 
( (3, r." ) with respect to TJ as a function of A. The RS functions 
of MOM satisfy of course all these constraints but there are 
many other solutions, so that MOM is not the only regular 
decoupling scheme. The gauge dependence of these func
tions cannot be chosen and this is why p and u cannot be put 
equal to zero. 

IX. CONCLUSIONS 

We have given in our work a general description of the 
RS transformations. We have been able to introduce a group 
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structure which makes transparent the correspondence 
between RS's and RG transformations. 

Our main results are that (1) there are an infinite num
ber ofRS corresponding to a given set ofRG functions; each 
set ofRG functions defines a class ofRS's; the degeneracy of 
all classes is the same and is equal to the one of the subgroup of 
the RG transformations which leave the set of MS-RG func
tions invariant; (2) the degree of arbitrariness can be 
lowered by adding new RG functions or imposing boundary 
conditions; in this last case, constraints appear on the set of 
RG functions; (3) to eliminate any degeneracy one can im
pose both regularity and decoupling properties, but the RG 
functions have to satisfy an interpolation constraint at each 
order (so that we cannot parametrize them); and (4) there 
exists no regular, decoupling, gauge invariant scheme in a 
non-Abelian theory. 

APPENDIX: THE BEHAVIOR OF v UNDER VARIOUS 
BOUNDARY CONDITIONS 

We show how one can obtain the expression of V under 
the various boundary conditions discussed in the text. 

or 

We start from Eq. (29) for V, i.e., 

dv 0 ft-= 
dft 

av av av 
/3MS -+rMS -+rAMS -=0. 

aa aTJ aA 
Writing 

V = v(O) + v(1)a + "', 
we get the equations 

av(O) 
TJ aTJ = 0, 

aA(k) aA(k-l) 
TJ _v_ = b (2)(k _ 1)V(k - I) + e il) _v __ 

aTJ aA 
aA(k-l) + e(l)TJ v + .... 

aTJ 

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

The solution is constructed recursively and depends on an 
arbitrary function R k (A) to each order k. 

We introduce the various boundary conditions, (1) vis 
regular when TJ-+O, 

RdA) = Rk [exp - (J b(2) dA )]\ (A6) 
eii)(A) 

(2) avfaA = 0, Rk (A) =Rk; (A7) 

(3) the above two boundary conditions are simultaneously 
fulfilled. Equation (A2) in the limit m -+ 0 implies that v for 
TJ -+ 0 is just an arbitrary constant. The TJ-dependence is fixed 
by (A5), so v is equal for allTJ to that arbitrary constant. 
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Quantum kinematics of strings: Quantization on Coo{M3, R2)/Coo{M3,GL{2,R» 
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Global quantum kinematics is discussed on the configuration manifold 
Coo (M 3,R2 )/C 00(M 3,GL(2,R») with respect to the possible relevance to the string theory. 

I. INTRODUCTION 

The configuration space for a string (particle) theory is 

Q = Emb(~,M)/Diff(~), 

where M is a three-dimensional Riemann space and ~ is a 
one-dimensional manifold topologically equivalent to S 1 or 
R 1 dependently on whether the string is closed or open. As it 
is known, this space is an infinite-dimensional locally convex 
manifold. I Because of the complicated global structure of 
this space the correct canonical commutation relations are 
not the Heisenberg relations associated with a linear configu
ration space. 

The straightforward generalization of canonical quanti
zation for an arbitrary (nonlinear) configuration manifold 
needs a so-called canonical group G, which is a connected 
Lie group acting symplectically, transitively, and effectively. 
This group is destined to play the same role as the Weyl 
group in the standard quantization procedure on R" and the 
Lie algebra L (G) defines the basic commutation relations.2 

One can derive particular Hilbert space representations of 
the quantized system through the unitary representations of 
the canonical group. Unfortunately a correct canonical 
group for Emb(~,M)/Diff(~) has not been found yet. 

II. ENLARGED CONFIGURATION MANIFOLD 

We enlarge the configuration manifold such that it has a 
more simple structure and the quantization procedure can 
be fulfilled. 

If a function [EC 00 (M,R2
) is transversal to OER2, i.e., 

OER2is not a critical value off, then[-l (0) CMisasubman
ifold. This fact would provide a parametrization of all one
dimensional submanifolds in M. Unfortunately the space of 
smooth transversal functions is not even a manifold. 

Let us cancel the condition of transversality and sup
pose that the configuration space is the whole Coo (M,R2

). 

This enlarged space contains configurations corresponding 
to various subsets in M. One can interpret the one-dimen
sional objects as open or closed strings and the zero-dimen
sional subsets as random heaps of pointlike particles. 

Two functions [and g mean the same physical configu
ration iff[-I (0) = g-I (0), that is we can introduce a gauge 
symmetry group C 00(M,GL(2,R») as follows:[-g iff there 
exists 1]EC 00(M,GL(2,R») such that 

[(x) = 1](x) ·g(x). 

III. QUANTIZATION ON C""{M,R2) 

For quantization one needs a canonical group [§ and a 
momentum map P: L([§)~Coo (T*Q,R) which causes 

the following diagram to commute2: 

COO (T*Q,R) • Hamilton(T*Q) 

P L JFunTA

) 

L([§ ) 

One can verify that a good canonical group is 

[§ = Coo [M,L *(A(2,R») ® sA(2,R)], 

(1) 

where A (2,R) denotes the affine group over R2. The follow
ing group action is transitive and effective: 

[C{(1J,Y),(a,A) }(m,r)] (p) 

= {t~(P)'A(P») -I [m(p) + d[~7:,»'Y(P»)(p) ], 
t(a(p),A(p)J r(p) }, 

where (m,r)ET*(C 00 (M,R2»),pEm and 

[(1J,Y): rER2~ LY~rb + 1]u. 
u 

It is also symplectic since it is a composition of a diffeomor
phism on the configuration manifold and an additive trans
lation along the fibers by a closed one-form.3 The momen
tum function2

,3 is defined as follows: 

P(E,X): (m,r)~ J)€a (p) + X: (p)rb (p)mQ (P»)dp, 

p(1J,Y); (m,r)~ J!(1J(P),Y(p»)(r(p»)dP, 
(2) 

where (E',x)ET(o,l) C'''' (M,A(2,R») and (1],Y)ET(o,o) Coo (M, 
L *(A(2,R»)). 

o 

FIG. 1. The inverse image {1(0) corresponds to a collection of po inti ike 
particles, closed and open strings, and higher-dimensional heaps. 
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Let us compute the Poisson brackets to show that dia
gram (1) is commutative, 

{P(E,X) ,p(E,Yo } 

= fM [x~ (p){i)Q (p}(€(p) + X~(p)rb(p») 

(Es (p) + X~(p)rb (p»)X~ (p){i)Q (p) ]dp 

= f)(X~(p)es(p) - (X~(p)Es(p») 
+ [X,X]! (p)rb (p){i)Q (p) ]dp = P[(E,x),(,,:X) J' 

{p(lI,y),P(7i,h} = 0, 

{P(E,X) ,P(lI,Y)} 

= fJ~(Es(P) +X~(p)rb(p»)Y:(p) JdP 

= fJ~Es(P)Y:(P) + Y:(p)X~(p)rb(P) JdP 

= p[(E,x),(lI,Y) J' 

where we used the following Lie product: 

[{(1],Y), (E,x)}, {(ij,f), (€,X)}] 

= {(1],Y) (€,X) - (ij,y)(E,x), [(E,x), (€,X)]). 

IV. PARTICULAR HILBERT SPACE REPRESENTATION 

Consider the ultralocal unitary representations2.4 of ca
nonical group ff. First we study the unitary representations 
T of L *(A (2,R») ® s A (2,R) in a Hilbert space H. The ultra
local representation is given in the direct integral space 

K= f: Hp dp 

as follows: 

[T(g)'I'] (p) = T(g(p»)'I'(p), 'l'eJY', gEff. 

One can use Mackey's technique5 for semidirect prod
uct group L *(A (2,R») ® s A (2,R). The character group of 
L *(A (2,R» is 

X(E,x) (1],Y) = exp iTr{[~ ~][~ ~]}. 
The naturalA(2,R) action on char{L *(A(2,R»)} is 

((a,A) 

X (E,X) 1-+ X (E,x)( - A - 'a.A - ') • 

The orbits in char{L *(A (2,R) )} are 

{x{E + Xa,XA) }(Q.A)EA(2,R)' 

One can classify the orbits according to the rank of matrix X. 
By way of example suppose that it has maximal rank. Thus 
the orbit is R2 XGL(2,R). The affine group A(2,R) acts 
freely and the little group is trivial. 

According to the Mackey theorem the space of repre
sentation is ,2"2(R2XGL(2,R), dg), where dg denotes the 
induced Haar measure. The representation of L *(A(2,R») 
® sA(2,R) is 

[T{(E,x), (a,A) d] (1],Y) 

=exPiTr{[~ ~][~ ~]}f(1],Y)(a,A»). 
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Finally the space of ultralocal representation is 

K = f: [,2"2(R2XGL(2,R), dg)]p dp 

= ,2"2(M XR2XGL(2,R), dg®dp). 

The representation is defined as 

[T( (E,x),(a,A) )'1'] (p,( 1],Y») 

= exp iTr{[~ ~][~(P) ~(P)]} 
X 'I' [p, (1], Y)(a (p),A (p»)]. 

V. DIRAC CONSTRAINT EQUATIONS 

(3) 

Fortunately the gauge group C ""(M,GL(2,R») is a sub
group of canonical group Coo [M,L *(A (2,R») ® sA (2,R)], 
therefore we have a natural representation of the gauge 
group in the Hilbert space of states. 

Consider the Lie algebra element 

[All (x) A 12 (X)]EL [C "'(M,GL(2,R»)]. 
A 21 (x) A 22 (x) 

From (2) we have 

where 

[X,[1]I],[YII YI2]] 
1]2 Y21 Y22 

are coordinates on manifold M X R2 X G L (2,R). 
The Dirac constraint condition6 requires that 

A'I' = ° 
for any infinitesimal gauge transformation. The four inde-
pendent Dirac constraint equations are 

[ YII ~ + YZ1 ~]'I' = 0, 
aYII aY21 

[ YII ~ + YZ1 ~]'I' = 0, 
aYI2 aY22 

[ YI2~+ Y22~]qt =0, 
aYII aY21 

[ Y12 ~ + Y22 ~]'I' = o. 
aYlz aYn 

VI. OPERATORS OF GENERALIZED COORDINATES 
AND MOMENTUMS 

From the momentum map (2) we know that the follow
ing Lie algebra elements correspond to the coordinates of 
configuration manifold: 
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ZI: XEMr-+[[~].[~ ~]]ET(O'O) COO [M,L *(A(2,R»)], 

Z2: XEMr-+[[~],[~ ~]]ET(o,Q)Coo [M,L *(A(2,R»)). 

The self-adjont generators corresponding to these Lie alge
bra elements are determined by representation (3), 

YI2 ]] = Yll lI'[x,[17I],[Yll YJ2 ]], 
Y22 172 Y21 Y22 

YJ2 ]] = Y21Il'[x,[17I],[YII YJ2]]. 
Y22 172 Y21 Y22 

In the same way from (2) we know that Lie algebra elements 

WI: XEMr-+[[~],[~ ~]]} 
. [[0] [0 0]] ET(o,1) Coo (M,A(2,R») 

W2 , xEMr-+ l' ° ° 
correspond to the two generalized momentums. One can 
compute from (3) the corresponding self-adjont generators 

WIll' = - i[ Yll all' + Y21 all'], 
a171 a172 

w211' = - i[ YJ2 all' + Y22 all'], 
a171 a172 

VII. CONCLUSIONS 

We suggested describing processes of open and closed 
strings and pointlike particles togetherin an enlarged config-
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uration amphitheater, which contains other higher-dimen
sional heaps too, without any interpretation so far, We have 
taken the initial steps in quantum kinematics on this configu
ration manifold. Of course there is some arbitrariness in the 
quantization procedure as for example the choice of canoni
cal group and that of the definition of momentum map, etc. 
The main motivation of our choice was the analogy to quan
tization on manifold Coo (M,GL + (3,R»), which is the con
figuration manifold of gravity,2,4 
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In the present paper a program for a collective symplectic model in a two-dimensional space 
based on the sp ( 4,R) Lie algebra is developed in full. The problem is only of conceptual 
interest but, as it admits a complete analytic discussion, it provides insights into more realistic 
collective nuclear models such as the interacting boson approximation (lBA) associated with 
u(6) and the symplectic model based on sp(6,R). 

I. INTRODUCTION AND SUMMARY 

In the series of papers with the same general title, 1.2 as 
well as in other publications3-5 the authors and their colla
borators have analyzed the matrix representation of Hamil
tonians in the enveloping algebra of the symplectic groups 
Sp(2d,R), where d is an integer, with respect to states char
acterized by irreducible representations (irreps) in the posi
tive discrete series for these groups. The discussion required 
the matrix representation of the generators of the symplectic 
Lie algebra sp(2d,R) with respect to the states mentioned, 
where in turn these generators can be expressed as functions 
of the coordinates and momenta, or, equivalently, the cre
ation and annihilation operators of an A-body system. 

The problem of physical interest in this program corre
sponds to d = 3, i.e., sp (6,R), giving rise to what is known as 
the symplectic model of the nucleus.6--12 While a lot of work 
has been done in this model 1.3,6--1 2 we feel that a systematic 
discussion, covering the physical implications of all the sub
group chains of Sp ( 6,R ), has not been achieved, in part be
cause of the complexities associated with the sp( 6,R) Lie 
algebra. Thus the authors and their collaborators have paid 
considerable attention2,4,5 to the corresponding problem in a 
two- rather than a three-dimensional space, i.e., to sp( 4,R), 
in the hope of clarifying there the main conceptual structures 
before passing to sp (6,R ), Thus in the present paper we give 
a systematic discussion of spectra and shapes for Hamilto
nians in the enveloping algebra of sp ( 4,R ). 

Our analysis will proceed along the following lines. In 
Sec, II we indicate that there are seven maximal subalge
bras13 ofsp( 4,R) of which only five that contain the angular 
momentum Jo in a two-dimensional space are of interest to 
us. We give the generators of these five maximal subalgebras 
as well as their Casimir operators. This discussion parallels 
the one in the interacting boson approximation (lBA),14,15 
where the maximal subalgebras of u (6) containing 0 (3) are 

a) Fellow of the Deutscher Akademischer Austauschdienst. 
b) Member ofEI Colegio Nacional. 

u(5), sue 3), and o( 6), 
In Sec. III we discuss the basis states classified by irreps 

of the maximal subalgebras, and show that the ones associat
ed with the direct sum of two-dimensional symplectic alge
bras, i.e., sp'(2,R) EDsp"(2,R), do not contain multiplicity 
indices, and thus can provide the orthonormal basis which 
we derive explicitly, We determine the matrix elements of 
the generators of sp ( 4,R) in this basis and use them in all of 
the following discussion. A different derivation of these ma
trix elements was given previously by Hecht and Peterson. 16 

In Sec. IV we discuss collective Hamiltonians in the en
veloping algebra of sp ( 4,R) for the A -body system in a two
dimensional space. We introduce the Jacobi relative coordi
nates Xis and momenta Pis' i = 1,2, s = 1,2, ... ,n = A-I, 
suppressing, as usual, 1 those associated with the center of 
mass motion. We then consider the corresponding creation 
and annihilation operators and express the generators of 
sp( 4,R) in terms of them, discussing the behavior of these 
generators under Hermitian conjugation, rotation, and time 
reflection. The Hamiltonians we shall consider will be Her
mitian polynomials of up to second order in the generators of 
sp( 4,R) that are invariant under rotation (i.e., commute 
with Jo) and time reflection. We show that these Hamilto
nians can be expressed in terms of Casimir operators of max
imal subalgebras of sp ( 4,R) as well as powers of the genera
tors of their Abelian subalgebras. Thus we have 
Hamiltonians associated with specific chains of subalgebras 
whose spectra can be given in closed form, as well as others, 
which we could call transitional, that involve more than one 
chain and whose spectra has to be calculated numerically. 
We shaH give some examples of the latter spectra in Sec. VI, 
using the basis characterized by the irreps of sp' (2,R) 
ED sp" (2,R) as indicated in Sec. III. This program parallels 
the one of the IBA, 14.15 where the specific chains ofsubalge
bras were u(5), su(3), and 0(6). 

In Sec. V we turn our attention to the problem of shape 
of a many-body system in two-dimensional space. We define, 
in terms of the coordinates Xis' the quadrupole tensor, which 
gives us a measure for the deformation of an A -body system. 
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By passing from Xis to the Dzublik '7-Zickendrahtl8 system 
that gives us the coordiantes associated with the intrinsic 
quadrupole moment, we can define shape operators l9 and 
obtain their matrix elements with respect to the basis states 
discussed in Sec. III. In turn from these matrix elements we 
can obtain the shape parameter f3 or eccentricity £ for eigen
states of definite Hamiltonians. 

In Sec. VI we carry out some calculations of conceptual 
interest. First we discuss the shape of states associated with 
specific chains of subalgebras both when, from the stand
point of the oscillator shell model, we have closed or half
open shells, as well as for different number of quanta of exci
tation. We then analyze "transitional nuclei," i.e., those with 
Hamiltonians in which we have linear combinations of Casi
mir operators and powers of weight generators of different 
chains of subalgebras. 

Again this is discussed for closed and half-open shells 
and, when relevant, for different number of quanta of excita
tion. We also consider the spectra and shape of a Hamilto
nian not discussed in Sec. III in which the quadrupole opera
tor components go up to fourth order [which is thus also of 
the same order in the generators of sp ( 4,R ) ]. This Hamilto
nian is associated with the strongly deformed potentials dis
cussed by a number of authors.9

•
2o 

Finally, in the concluding section we review critically all 
of the previous results and consider their implications for the 
different collective models such as Bohr-Mottelson, IBA, 
symplectic, etc. 

II. MAXIMAL SUBALGEBRAS OF sp(4,R), THEIR 
GENERATORS AND CASIMIR OPERATORS 

The ten generators of sp ( 4,R), when written in vector 
form with spherical components,S can be denoted by 

ff,B!,Jq,Bq, q = 1,0, - 1, (2.1) 

where the raising ofthe index in Bq is given by the standard 
rule 

(2.2) 

and similarly for B! ,Jq • 

The commutation relations for these generators are 

[ff,B:] =B:, (2.3a) 

[ff,Bq] = - Bq, (2.3b) 

[ff,Jq ] = 0, (2.3c) 

[Jq, ,Bq, ] = cq'q'qB q, 

[Jq, ,Jq, ] = Cq'q'qJq, [Jq" ,B:, ] = cq"q'q (B t)q, 

[ B q ,B q' ] = 0, [ B : ,B:, ] = 0, 

[Bq",B:,] = - 2cq"q'qr + ( - )q"2ff8q'.~q" 

where repeated indices q are summed over the values 
1,0, - 1 while cq"q'q is the antisymmetric tensor in the in
dices indicated. 

Following the type of analysis usual in IBA 14.15 we want 
now to determine maximal subalgebras (i.e., those that do 
not admit any other subalgebra between them and the full 
algebra) of sp ( 4,R) that contain in turn the 0 (2) subalge
bra, i.e., the generator Jo, associated with the angular mo
mentum in this two-dimensional problem, The maximal su-
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balgebras have been discussed in other pUblications13 where 
it was shown that there were seven of them. Five of these 
contain Jo and we proceed to give their generators, the com
mutation relation for them that follow from (2.3), and the 
Casimir operators. 

A. The sp'(2,R) e sp"(2,R) subalgebra 

The six generators are I ~, I;, q = 1,0, - 1, given by 

l' IBt 
I = '2 " 

(2.4a) 

I b = ! (ff + Jo), (2.4b) 

I'~, = !B-1' (2.4c) 

I;'=!Bt~" (2.4d) 

I;; = !(ff -Jo), (2.4e) 

I" !B ~I =- I' (2.4f) 

w here from (2.3) their commutation relations are given by 

[ I if ,I;" ] = 0, 

[ I '~ I ,I; ] = - I b, 

[ I b,I '± I ] = ± I '± I , 

[I " I"] - -I" ~I' I - 0' 

[I;;,l'~d = ±l'~I' 
The Casimir operators are clearly 

l' 2 = I b (l b - 1) + 2I; I '~ I 

= 1(ff + Jo)(ff + Jo - 2) + !BIB-I, 

I"2=I;;(l;;-I)+2I;'I"~1 

(2.5a) 

(2.5b) 

(2.5c) 

(2.5d) 

(2.5e) 

(2.6a) 

= 1(ff -Jo)(ff -Jo - 2) + !B~,B" (2.6b) 

as from (2.3) they commute with all generators of the subal
gebra. 

The states in this chain can be characterized by the com
muting Hermitian operators 

(2.7) 

which implies from (2.4b) and (2.4f) that they are also 
characterized by eigenvalues of the angular momentum op
erator Jo and the number operator ff which, as will be 
shown in Sec, IV, is associated with the number of quanta in 
a harmonic oscillator Hamiltonian for the A-body system. 

B. The su(2)eu(1) subalgebra 

The three generators of su(2) are the Jq , q = 1,0, - 1, 
while the single generator of u (1) is the ff, all ofthem ap
pearing in (2.1). From (2.3) the commutation rules are then 

[Jq" ,Jq, ] = Cq"q'qJq, (2.8a) 

[ff,Jq ] = 0, (2.8b) 

while the Casimir operator of su(2) is 

J 2 =Jo(Jo+ 1) -2J~IJI' (2.9) 

The states in this chain can be characterized by the com
muting operators 

(2.10) 

and thus comparing it with (2.7) for the sp'(2,R) 
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$ sp" (2,R) chain we see that we are missing one label. As a 
result these states, discussed in the two papers of Ref. 4, are 
non orthonormal and a complex procedure is required to de
termine their overlap. 

c. The sp(2,R) e o(2) subalgebra 

The three generators of sp(2,R) are lq, q = 1,0, - 1, 
given by 

II = - (l/~)Bb, 

10 =5, 

LI = (l/~)Bo, 
with the commutation rules 

[I-I,!d = - 10, 

[ 10'! ± I ] = ± I ± I , 

(2.11a) 

(2.11b) 

(2.11c) 

(2.12a) 

(2.12b) 

which follow from (2.3). The generator of 0(2) is the angu
lar momentum operator Jo that commutes with the l q • 

The Casimir operator of sp (2,R) is given by 

1 2 =10(10-1) +2IILI =5(5 -1) -BbBo. 
(2.13) 

The states in this chain can be characterized by the commut
ing operators 

(2.14 ) 

and again we see that we are missing one label, giving the 
nonorthonormal states discussed in Ref. 2. 

D. The cm(2) subalgebra 

This subalgebra is the equivalent in two dimensions of 
the collective motion Lie algebra cm(3) originally intro
duced by Biedenharn et al. 8 and Rowe and Rosensteel. 9 We 
will discuss its physical significance in more detail in Secs. V 
and VI, but here we want only to give its six generators (to be 
denoted by Qq, R q, q = 1,0, - 1), their commutation rules 
and Casimir operators. We have then 

QI =!(Bi -BI)-h 

Qo = !(B b + Bo) + 5, 

Q_I =!(Bt_ 1 -B_1) +J_ I , 

RI = !(Bi +B I ), 

Ro =Jo, 

R_I =!(Bt_ 1 +B_ I ), 

where the commutation rules are 

2225 

[Qq"Qq" ] = 0, q',q" = 1,0, - 1, 

[Jo,Qo] = 0, 

[RI,R_ I] = Ro, 

[ Ro,R ± \ ] = ± R ± \ , 

[ Ro,Q ± d = ± Q ± I> 

[R±I,Qo] = -Q±l> 

[ R ± I>Q ± I ] = 0, 

[R ± I>Q:p] = - Qo, 
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(2.15a) 

(2.15b) 

(2.15c) 

(2.15d) 

(2.15e) 

(2.150 

(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 

(2.16e) 

(2.160 

(2.16g) 

(2.16h) 

and in the last two we take either the upper or the lower 
signs. 

From (2.16) we immediately see that the operators 

Q2 = Q~ _ 2QIQ_I' (2.17) 

W= QIR_I - Q_IRI + QoRo (2.18) 

commute with all the generators (2.15) ofcm(2) and thus 
are the Casimir operators of this Lie algebra. 

We note that the operator 5 is not contained in the 
cm (2) subalgebra and thus does not commute with the Casi
mir operators (2.17) and (2.18). As 5 will be relevant for 
introducing either the oscillator Hamiltonian or the kinetic 
energy in the A -body problem, we will not be interested in 
characterizing our states by irreps of cm(2) despite the fact 
that 

(2.19) 

give a set of four commuting operators that provide a suffi
cient number of labels for these states. 

Note that the cm(2) subalgebra defined by (2.15) is not 
maximal as we can add to it R -=B b - Bo and the generators 
will still close under commutation. Despite this fact we will 
keep the definitions (2.15), to be consistent with the pre
vious literature on this subject. 8

,9 

E. The 0(3,1) subalgebra 

As sp( 4,R) is isomorphic to 0(3,2), where the latter has 
an 0(3,1) maximal subalgebra, we expect also this type of 
subalgebra in the former. Ifwe define 

Kq -= (i12) (B: - Bq ), q = 1,0, - 1, (2.20) 

we immediately check from (2.3) that Jq, Kq close under 
commutation and that in fact we have 

[Jq" ,Jq, ] = £q"q'qJq, 

[Jq" ,Kq, ] = £q"q'qK q, 

[KI,K_ I] =Jo, 

[ Ko.K ± I ] = + J ± I , 

(2.21a) 

(2.21b) 

(2.21c) 

(2.21d) 

so that they are the generators of an 0 (3,1) subalgebra. 21 

The Casimir operators are then clearly21 

J2-K 2-=I( - )qJqJ_ q - I( - )qKqK_ q, (2.22) 
q q 

(2.23 ) 
q 

which is corroborated by the fact that from (2.21) they com
mute with all the generators Jq , Kq , q = 1,0, - 1 of 0 (3,1 ). 

Again5is not contained in 0(3, I) and, as follows from 
the discussion at the end of the previous subsection, we will 
not be interested in characterizing our states by irreps of 
o (3,1) despite the fact that 

J 2 -K2,J'K,Jo,Ko (2.24) 

give a set of four commuting operators that provide a suffi
cient number of labels for these states. 
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III. STATES ASSOCIATED WITH THE MAXIMAL 
SUBALGEBRAS, AND MATRIX REPRESENTATION OF 
THE GENERATORS OF sp(4,R) 

For the discussion of spectra of Hamiltonians in the en
veloping algebra of sp ( 4,R) and the shapes of their eigen
functions, we require a complete set of states characterized 
by a definite irrep in the positive discrete series of this Lie 
algebra. Furthermore we also need the matrix elements of 
the generators of sp( 4,R) with respect to this set of states. 

As usual in problems of this type,2,4.15 it is convenient in 
turn to characterize the complete set of states by irreps of the 
maximal subalgebras ofsp(4,R) that contain 0(2), i.e., the 
angular momentum operator Jo. We showed in the previous 
section five of these, but only three, 

sp'(2,R) E!)sp"(2,R), 

su(2) E!)u(1), 

sp(2,R) E!) 0(2), 

( 3.1a) 

(3.1b) 

(3.1c) 

also contain u( 1), i.e., the operator ff. As this operator will 
appear in the Hamiltonians we shall consider, either in the 
form of an A-body oscillator or in relation with the kinetic 
energy of the system, we will only be interested in the charac
terization of the complete set of states by the subalgebras in 
(3.1 ). 
A. States associated with lrreps of maximal 
subalgebras 

To get these states we start by dividing the set of ten 
generators (2.1) of sp( 4,R) into three subsets of raising, 
weight, and lowering type, which are separated by semico
lons4

•5 

B~, J I ; ff, Jo; Bq, J_ I • (3.2) 

The lowest weight state, which we designate by Iws), will 
now satisfy the equations 

Bq Iws) = 0, q = 1,0, - 1, 

J_llws) = 0, 

fflws) = wlws), 

Jolws) = - slws), 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

where w,s are integer of half-integer numbers.4
•
5 The irrep of 

sp( 4,R) in the positive discrete series is then characterized 
I 

by 
(w,s). (3.4 ) 

A complete set of states for the irrep (w,s) of sp ( 4,R ) 
can then be built4

•
5 by applying powers of the raising genera

torsB 1,B 6,B t_ I ,JI to Iws) and, in their simplest form, they 
can be written as 

1 (ws)O'1"NM) = (BT )(I/2)(N+M- T- a)(B 6)T 

X (Bt_1 )(1/2)(N-M-T+a)J~+alws), 

(3.5 ) 
where the choice of exponents guarantees, from the commu
tation rules (2.3), that the ket (3.5) is an eigenstate of the 
weight generators ff, Jo, i.e., 

ffl(ws)O'1"NM) = (N + w)l(ws)O'1"NM), 

Jol (ws)O'1"NM) = M I (ws)O'1"NM). 

(3.6a) 

(3.6b) 

The kets (3.5) are not states characterized by definite 
irreps of the maximal subalgebras in (3.1), but if we wanted 
to obtain the latter we would only have to consider linear 
combinations of (3.5) over the indices 0', 1". The N, M would 
remain fixed as they are related to the commuting operators 
ff, Jo present in all three maximal subalgebras of (3.1). 

We start by considering the maximal subalgebra 
sp' (2,R) E!) sp" (2,R) of (3.1a) whose Casimir operators are 
the I' 2, I" 2 of (2.6) with eigenvalues2 

I' 2-+A. '(A.' - 1), 

I" 2-+A. II (A. II - 1). 

(3.7a) 

(3.7b) 
It is convenient to express A. " A. II in terms of the quantum 
numbers v, f-l by the relations 

A.'=!(w+V+f-l), 

A."=~(W+V-f-l)' 

( 3.8a) 

(3.8b) 

where w is one of the numbers related to the irrep of sp ( 4,R ) 
as indicated in (3. 3c) and (3.4). We then show in Appendix 
A that the complete set of orthonormal states characterized 
by the irreps (3.7) off' 2,1 II 2,as well as by the eigenvalues of 
the operators/ 0, I ~ of (2.4b) and (2.4f) or, equivalently, of 
ff, Jo, can be written as 

1 (ws)vf-lNM ) = IAa.T 1 (ws)O'1"NM), (3.9) 
a.T 

where 

A = [ (s+,u)!(s-,u)!v!(2w-3)!r(w-s+v-1)r(w-s-1)r(w+s)(w+,u+v-l)(w+v-,u-l) ]112 

UT (2s)!(2w + v - 3)!r(w +,u - 1)nw -,u -l)r(w + s + v)r(w + (N + M + v + ,u)!2)r(w + (N - M + v - ,u)!2) 

X (s - O')!r(w - 1 + [(v +,u + 0' + r)/2])r(w - 1 + [(v -,u - 0' + r)!2l) ( _ 1)(1/2)(v+l'-a-T)2(l!2)(s+v+u+ T) _ N 

r![([ (N + M - v - ,u)!2])!([ (N - M - v + ,u)!2])!j1/2 

( _ 1)' 

X~ r!(s +,u - r)!(s + 0'- r)!([(v-,u - 0'- r)!2]-s + r)!(r-,u - O')!r(w -1 + [(v+,u + 0' + r)!2] - r) 

As indicated in the discussion of the previous section, 
for sp'(2,R) E!)sp"(2,R) the states can be characterized by 
the eigenvalues of the four commuting Hermitian operators 
in (2.7). Thus we have a sufficient number of labels and can 
obtain the orthonormal states (3.9). We shall use these 
states in the present paper in preference to those of the two 
other subalgebras in (3.1) which only have three commut
ing operators as indicated in (2.10) and (2.13). Neverthe-
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(3.10) 

I 
less, for the sake of completeness, we shall also discuss brief-
ly the states associated with the other two maximal sub
algebras in (3.1). 

Forsu(2) E!) u( 1) of(3.1b) the Casimir operatorsJ 2, ff 
of (2.9) have eigenvalues 

J 2 -+j(j+1), ./Y'-+N+w. (3.11) 

The states characterized by the irreps (3.11 ) of J 2, ff as well 
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as by the eigenvalue M of Jo can be denoted by 

IwN(ls)jM} (3.12) 

and are given explicitly in Eq. (3.14) of the first paper of Ref. 
4. The I, is a multiplicity index and, as indicated in Eq. 
(3.15) of the same reference, is restricted by 

Ij-sl..;;l..;;j+s, 

1= N,N - 2, ... ,1 or O. 

(3.13a) 

(3.13b) 

It is easy to write the states (3.12) in terms of the kets (3.5) 
as we did in (3.9) for the subalgebra sp'(2,R) $ sp" (2,R). 
We shall not do this explicitly because, as we indicated in the 
previous paragraph, the presence of a multiplicity index4 

gives a nonorthonormal basis whose overlaps are cumber
some to determine, and thus the states (3.12) are not as 
useful as (3.9). 

For sp(2,R) $ 0(2) of (3.1c) the Casimir operators/ 2
, 

Jo of (2.12) have eigenvalues 

/2-+ A(A - 1), Jo-+M, (3.14) 

where following Ref. 2 we write 

A=w+A. (3.15 ) 

The states characterized by the eigenvalues of /2,JO as well as 
by theN related to the eigenvalues ofIo = ff of (2.11b), can 
be written as 

I (ws)qANM], (3.16 ) 

where q is a mUltiplicity index. These states were given expli, 
«ws)v'/L'N'M'IBt± I I (ws)v/LNM) 

citly in Eqs. (4.42) and (4.52) of Ref. 2 and they can be 
expressed as linear combinations ofthe kets (3.5), if we use 
the relation between the generators of sp( 4,R) and the cre
ation and annihilation operators for the A-body system.4 

Again we shall not do this explicitly for the same reasons 
given in the previous paragraph for the subalgebra (3.1b). 

B. Matrix representation of the generators of sp(4,R) 

As we indicated in the previous subsection we shall only 
be interested in the matrix elements of the ten generators 
(2.1) ofsp( 4,R) with respect to the states (3.9), character
ized in turn by the irrep (A 'A ") or, equivalently, (v/L) of the 
sp'(2,R) $ sp" (2,R) maximal subalgebra. From (3.6) and 
(3.9) we immediately get that the matrix elements of the 
weight generators ff, Jo are 

«ws)v'/L'N'M'lffl (ws)v/LNM) 

= (N + w)8Y'y81"1'8N'N8M'M' 

«ws)v'/L'N'M'lJol (ws)v/LNM) 

= M8,1y8I"1'8N'N8M'M' 

(3.17a) 

(3.17b) 

Furthermore, we note from (2.4) that B r. B -I and 
B t_ I' Blare, respectively, elements of the Lie algebras 
sp' (2,R ) and sp" (2,R ). Thus we can use the Wigner-Eckart 
theorem for the sp ( 2,R) algebra to determine their matrix 
elements. As sp (2,R) is isomorphic to su ( 1,1 ), we can make 
use of the corresponding analysis ofUi22 to obtain 

= - [~(N ±M + v±/L + 2w)(N ±M - v+/L + 2)] 1I28,1y8I"1'8N'N+ 18M'M± I' 

«ws)v'/L'N'M'IB ± II (ws)v/LNM) 

(3.17c) 

= [~(N +M-v±/L)(N +M +/L+v+2w-2)]1128y'y8I"1'8N'N_18M'M±I' (3.17d) 

There remain four generators which we designate by 

T (1I2)(1I2) - M2J 
(112) - (1/2) = - 'J'" I' T (1I2)(1I2) - M2J 

- (112)(112) ='J'" -I' (3.18 ) 

As shown in Appendix B this notation is introduced to indicate that the four remaining generators belong to an irreducible 
tensor T(l/2)(1I2) of rank (H) with respect to the Lie algebra sp'(2,R) $ spit (2,R). Again using the results ofUi22 we see that 
we only need to obtain the reduced matrix element 

«ws)v'/L'IIT(l/2)(l/2) II (ws)V/L), (3.19) 

which was achieved in Appendix B with the help of the states (3.9) for special values of the quantum numbers. Thus we obtain 
the matrix elements 

«ws)v'p,'N'M'IB b I (ws)vp,NM) 

- 1 [V(w-s+v-2)(w+s+v-l)(2W+V-3)(N+M-p,-v+2)(N-M+P,-V+2)]'/2
6 

6 6 6 
-2 (w+p,+v-2)(w-p,+v-2)(w+p,+v-l)(w-p,+v-1) vv-I "',, N'N+I M'M 

1 [(v+I)(W-S+V-l)(W+S+v)(2w+v-2)(2W+N+M+V+P,)(2W+N-M+v-p,)]'/2., ~ ~ ., 
+- uv'v+luJ,l'J,luN'N+luM'M 2 (w +p, + v)(w -p, + v)(w+ v+p, - l)(w+ v-p,-I) 

1 [(P,+S+I)(S-P,)(w+p,-I)(W-P,-2)(N+M+v+p,+2W)(N-M+P,-V+2)]'/2~ ~ ~ ~ + - 0vvup'p + 1 0N'N + t UM'M 
2 (w +p, + v)(w-p, + v- 2)(w + v+p, -l)(w + v-p,-I) 

+ 1 [(P, +s)(s-p, + l)(w+p, -2)(w-p, -I)(N +M -p, - v+2)(N -M+ v-p, + 2w) ]1126 6 6 6 
2 (w+p,+v-2)(w-p,+v)(w+v+p,-I)(w+v-p,-1) VV ,,',,-I N'N+I M'M' 

(3.20a) 
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«ws)v'/1-'N'M'!J,!(ws)v/1-NM) 

= _~[V(W-S+V-2)(W+S+V-l)(2W+V-3)(N+M-/1--V+2)(N-M+v-/1-+2W)]I120 0,0,0, 
2 2(w+/1-+v-2)(w-/1-+v-2)(w+/1-+v-l)(w+v-/1--I) v'v-I "" NN MM+I 

+ ~ [ (v+ l)(w -s + v- I)(w+s+ v)(2w + v- 2)(2w +M + N + v+/1-)(N - M +/1- - v) ]1120 
2 2(w +/1- + v)(w -/1- + v)(w + v +/1- -I)(w + v-/1- _ I) v'V+ ,O"',,ON'NOM'M + I 

1 [(/1- +s+ l)(s-/1-)(w+/1- -1)(w-/1- - 2)(N +M +v+/1- + 2w)(N -M + V-/1- + 2w - 2) ]1/2 
--2 O,O'+ION'NOM'M I 

2(w+/1-+v)(w-/1-+v-2)(w+v+/1--I)(w+v-/1--l) vv"" + 

_~ [(/1- +s)(s-/1- + l)(w+/1- - 2)(w-/1- -I)(N +M -/1- - V+ 2)(N -M +/1- - v) ]1120 0 
2 2(w+/1-+v-2)(w-/1-+v)(w+v+/1--1)(w+v-/1--I) v'v",,,_,ON'NOM'M+I' (3.20b) 

while those of Bo, J -I can be determined from (3.20a) and 
(3.20b) by Hermitian conjugation. 

We have thus obtained the matrix representation of the 
generators of sp ( 4,R) in a basis characterized by irreps of 
sp' (2,R) !B spIt (2,R) and their Abelian subalgebras u(1), 
0(2) whose generators areff, Jo. 

These matrix elements were derived previously by Pe
terson and Hecht23 for applications to a different problem, 
and without the explicit use of the state (3.9). They differ 
though from those given in (3.17) and (3.20) by phases, as 
Peterson and Hecht do not use those ofUi for sp(2,R). 

We can now turn our attention to the collective Hamil
tonians in the enveloping algebra of sp ( 4,R), to their spectra 
and to the shape of their eigenfunctions. 

IV. COLLECTIVE HAMILTONIANS IN THE ENVELOPING 
ALGEBRA OF sp{4,R) 

For anA-body system in two-dimensional space collec
tive Hamiltonians are associated with functions of the co
ordinates and momenta that involve sums over the particle 
index. If we eliminate the center of mass motion, designating 
by Xis' Pis' i = 1,2, s = 1,2, ... ,n = A-I, the Jacobi relative 
coordinates and momenta, this implies I that the collective 
degrees of freedom are functions of Xis' Pis involving sums 
over s in the range s = 1,2, ... ,n = A-I. In previous discus
sions2

•
4 we showed though that the generators of sp ( 4,R) 

can be written as functions of Xis' Pis involving this type of 
summation. Thus we can express collective Hamiltonians as 
functions of the generators of sp ( 4,R) so long as they are 
Hermitian and remain invariant under rotation (i.e., com
mute with Jo) and time reflection. 

To write the generators (2.1) of sp( 4,R) explicitly in 
terms of Xis ,Pis we first give these variables in terms ofcircu
lar components, i.e., 

Xs == (1IJj.) (Xis + ix2s )' 

xs == (1IJj.) (Xis - ix2s )' 

Ps == (lIJj.)(Pls + ip2s)' 

Ps == (1IJj.) (Pis - iP2s)' 

with s taking the values 

s = 1,2, ... ,n, n =A - 1. 

( 4.1a) 

(4.lb) 

( 4.1c) 

( 4.1d) 

( 4.1e) 

We introduce the corresponding creation and annihilation 
operators by the definition 

2228 

1Js = (lIJj.)(xs - ips)' 

7is = (1/Jj.)(xs - iPs), 
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( 4.2a) 

(4.2b) 

5s = (lIJj.)(xs + ips), 

ts = (lIJj.)(xs - iPs), 

(4.2c) 

(4.2d) 

where we have taken units in which fI, the mass of the parti
cles, and an appropriate frequency are taken as 1. These op
erators satisfy the commutation relation 

[5s,1J,] = 0, 

[ts,7i,] = 0, 

[ts.1J,] = oso 
[5s,7i,] = os,, 

and have the Hermitian property 

( 4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

(4.4 ) 

We furthermore need to know the behavior of these cre
ation and annihilation observables under the operation of 
time inversion which we shall denote by T. Clearly the real 
observables XiSl P,'s' i = 1,2, s = 1,2, ... ,n, behave under time 
inversion as 

Tpis = -Pis' 

(4.5a) 

(4.5b) 

and thus from (4.1), (4.2), and taking into account that the 
operation of time inversion implies also a conjugation,23 we 
get 

T1Js = 7is' T tis = 1JSI TSs = tSl Tts = 5s· (4.6) 

We now define 

BT = (lIJj.)1Js1Js' 

B'6 = 1Js7iSl 

Bt_l = (1/Jj.)7is7is' 

J I = - (1IJj.)1Js5s' 

Jo = ~(1Jsts - 7is5s), 

J_ I = (lIJj.)7ists' 

BI = - (lIJj.)SsSs' 

Bo = Ssts' 

B_1 = - (1/Jj.)tsts' 

ff = !(1Jsts + 7isSs + n), 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

( 4.7e) 

(4.70 

(4.7g) 

(4.7h) 

( 4.7i) 

( 4.7j) 

where repeated indices s are summed from 1 to n. We easily 
check, using (4.3), thatff,B!,Jq,Bq,q = 1,0, - lof(4.7) 
satisfy the commutation rules (2.3), and thus we have ob
tained a realization of the generators of sp ( 4,R) in terms of 
the translationally invariant creation and annihilation oper-
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ators (4.2) of theA-body system. Incidentally, we note from 
(4.7j), (4.2), and (4.1) that 2.A"'is the Hamiltonian ofa 2n
dimensional oscillator, as was mentioned several times in the 
previous sections. 

We wish now to derive the properties ofthe generators 
of sp ( 4,R) under Hermitian conjugation, rotation (i.e., 
commutation with Jo), and time reflection. From (4.4) and 
(4.7) we have 

(B!)t= (-I)QB_ q, 

(Bq)t= (-1)qBt_ q, 

(Jq)t= (-1)qJ_ q, 

JVt=JV, 

while from the commutation rules (2.3) we get 

[Jo,B!] =qB!, 

[Jo,Bq] = qBq' 

[Jo,Jq ] = qJq, 

[Jo,..A"'] = O. 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 

Finally, from (4.6) we see that under time reflection we get 

TBt =Bt q -q' 

TBq =B_ q, 

TJq = -J _q' 

TJV=JV. 

(4.1Oa) 

(4.1Ob) 

(4.1Oc) 

( 4.1Od) 

With the help of these properties of the generators we can 
now discuss collective Hamiltonians, functions of them, that 
are Hermitian and invariant under rotation and time reflec
tion. 

We start with Hamiltonians that are of first degree in the 
generators and obviously only 

JV, 

Qo=!(B!; +Bo) +JV, 

(4.11a) 

(4.11b) 

satisfy the requirements mentioned at the end of the previous 
paragraph. We note that JV is present in the three maximal 
subalgebras of (3.1) while Qo is an element ofcm(2). 

Turning now our attention to Hamiltonians of second 
degree in the generators we obviously have that 

(JVQo + QoJV), 

Q~, 

also satisfy all the requirements as does 

J~. 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 

We can then go systematically through all possible bilinear 
combinations and, with the help of (4.8)-( 4.10), find [up to 
the terms (4.11) of first order that can come from commuta
tions] that there are only six more Hamiltonians that satisfy 
the requirements of Hermiticity and invariance under rota
tion and time reflection, given by 

BTB_I +Bt_IBI' 

J1J_ 1 +J_1J1, 

Bi;Bo' 
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(4.13a) 

(4.13b) 

(4.13c) 

(BlJ_1 +J1B_ 1) - (Bt_1J1 +J_1B1), 

BtBt_1 +BIB_I' 

B!;B!; +BoBo. 

( 4.13d) 

( 4.13e) 

(4.13f) 

We wish now to show that all the bilinear Hamiltonians 
( 4.13) can be given in terms of appropriate Casimir opera
tors of the maximal subalgebras combined with the terms 
(4.12). For this purpose we first need to see which of the 
Casimir operators discussed in Sec. II are invariant under 
time reflection, as obviously all are Hermitian and, by defini
tion, commute with Jo. 

From (4.10) we note that Casimir operators of 
sp'(2,R) ~ sp" (2,R), i.e.,!' 2,!" 20 f(2.6), are not invariant 
under time reflection, and that in fact 

T/,2=/"2, T/"2=/,2. (4.14 ) 

Thus only the combination /' 2 + /" 2 would fulfill all re
quirements. On the other hand, and again using (4.10), we 
see that Casimir operatorsJ2 ofsu(2) and /2 ofsp(2,R) are 
invariant under time reflection. For the Casimir operators of 
cm(2) we have 

TQ2=Q2, TW= - W, (4.15) 

and so we can only retain Q 2, while both Casimir operators 
of 0 (3,1) are invariant under time reflection. 

We see then that following six Casimir operators, or 
combination of them, of the maximal subalgebras satisfy all 
the requirements of collective Hamiltonians 

/'2+/"2, 

J2, 

/2, 

Q2, 

J 2_K2, 

JoK. 

It can be easily seen that 

BTB_I +Bt_IBI 

= 2(1' 2 +/" 2) _ (JV2 +J~) + 2JV, 

J1J_ 1 +J_1J1 =J~ _J 2, 

B!;Bo=JV(JV -1) _/2, 

( 4.16a) 

( 4.16b) 

(4.16c) 

( 4.16d) 

(4.16e) 

( 4.16f) 

(4.17a) 

(4.17b) 

(4.17c) 

while the Hamiltonians (4.13d )-( 4.13f) can be expressed as 
linear combinations of the Casimir operators Q 2, J 2 _ K 2, 
JoK and the operators (4.12). 

We have thus Hamiltonians associated with specific 
subalgebras whose eigenvalues can be given in closed form. 
We consider first sp' (2,R) ~ sp" (2,R) for which the most 
general Hamiltonian is 

( 4.18) 

where a, /3, r, D are arbitrary constants and for which, from 
(3.6)-(3.8), the eigenvalues are 

E= (a/2){[(w+v)2+p2] -2(w+v)} 

+ /3(N + W)2 + rM2 + D(N + w). 

For su(2) ~ u( 1) the Hamiltonian is 

H = aP + {3JY' 2 + rJ~ + DJV 
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( 4.19) 

(4.20) 
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with eigenvalues 

E= aj(j + 1) +P(N + W)2 + rM2 + t5(N + w), 
(4.21) 

while for sp (2,R) Ell 0 (2) we just have to replace J 2 by 12 in 
the Hamiltonian (4.20) and J(J + 1) by A. (A. - 1) in the 
eigenvalues (4.21). 

A similar discussion could be carried out for cm (2) and 
o ( 3, 1 ), but as we indicated in previous sections their Casimir 
operators Q 2, J 2 - K 2, J·K would have to be supplemented 
with the operator ff that belongs to the other maximal su
balgebras. Thus the Hamiltonian would be of the transition
al type, i.e., more than one chain of subalgebras is involved 
and thus the calculations have to be carried out numerically, 
as we shall proceed to do in Sec. VI using the matrix repre
sentations (3.17) and (3.20) of the generators ofsp(4,R). 

v. SHAPES ASSOCIATED WITH THE EIGENSTATES OF 
OUR HAMILTONIANS 

While our Hamiltonians are defined in the enveloping 
algebra of sp( 4,R) they correspond to a microscopic de
scription as, through (4.7), (4.2), these generators in tum 
depend on the coordinates and momenta of the A -body sys
tem. We can take advantage of this microscopic picture to 
determine the shape of the eigenstates of the Hamiltonian, 
through the discussion of the mass quadrupole tensor for the 
A-body system. 

Using the circular and translationally invariant coordi
nates xs' xs, s=I,2, ... ,n=A-l defined in (4.1a) and 
( 4.1 b) the mass quadrupole tensor in the frame of reference 
fixed in space is given by2 

QI = (lIv12)xsxs, Qo = xsxs' Q-I = (1/v12)xsxs, 
(S.1 ) 

where the repeated indices s are summed over the values 
s = 1, ... ,n. We see from the relations 

Xs = (lIv12)(rJ, +5s), x, = (lIv12)(iis +ts) (S.2) 

that follow from (4.2), and the explicit expression of the 
generators ofsp( 4,R) given in (4.7), that the operators Qq, 
q = 1,0, - 1, are exactly the generators of cm(2) given in 
(2.14a)-(2.14c). Thus we have a physical understanding of 
the Qq which in (2.14) were introduced in an abstract fash
ion. 

We would like though to have the quadrupole tensor in 
the frame of reference fixed in the body and this requires that 
the 2n coordinates x" xs' s = 1,2, ... ,n, are transformed by 
the procedure originally introduced by Dzublick et al. 17 and 
by Zickendraht. 18 The new coordinates arepI,P2' which give 
the length of the principal axis for the A-body system in a 
two-dimensional space, the angle {}, which relates the frame 
of reference fixed in space with that fixed in the body, and the 
remaining 2n - 3 variables, which we denote generically by 
</J (Refs. 2 and 3). As was discussed originally in the groups 
led by Filippov6 and Vanagas,7 the variables </J are angles that 
characterize the elements of the defining representation 

(S.3 ) 

of the n-dimensional orthogonal group 0 (n) associated with 
the particle indices t,s = 1,2, ... ,n = A-I. For the particular 
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case of the two-dimensional space it was shown2 that xs' Xs 
are then given by 

Xs = (1Iv12 )ei
.? [PID ~ _ I.s (</J) + ip2D ~s (</J)], 

Xs = (1/v12)e - W [PID ~ _ 1.s (</J) - ip2D ~s (</J)]. 

(S.4a) 

(S.4b) 

In the frame of reference fixed in the body the compo
nents Qq, q = 1,0, - 1 for the mass quadrupole take then the 
form 

Q±I = (lIv12)e±iu'!(pi -p~), 

Qo = ! (pi + p~ ), 
(S.Sa) 

(S.Sb) 

where we made use of the orthogonality property of the de
fining representation ofO(n), i.e., 

(S.6) 

where repeated indices are summed from 1 to n. 
The expressions (S.S) corroborate the interpretation2 of 

PI,P2 as the principal semiaxis of the ellipse of inertia. One 
measure of the deformation is then the eccentricity 

(S.7) 

while another is given by a parameter P, which corresponds, 
in this two-dimensional problem, to the P variable of the 
Bohr-Mottelson model,24 and can be defined by 

P= (pi -p~)/(pi +p~). (S.8) 

Introducing the change of variables 

and 

PI =P cosr, 

P2 =P sin r 

0= 2r + (-/T/2), 

q; = 2{}, 

we see that the eccentricity takes the form 

€ = [2 sin 01(1 + sin 0)] 1/2, 

while the P becomes 

P = sin O. 

( S.9a) 

(S.9b) 

(S.9c) 

(S.9d) 

(S.ge) 

( S.lOa) 

(S.lOb) 

ASPI>P2>0 (Refs. 2 and 3) we have that r,O of (S.9) are, 
respectively, in the interval 

(S.l1 ) 

implying that both € and P take values in the range from ° to 
1. The first value corresponds to a circular shape, i.e., no 
deformation as PI = P2' while the second is associated with 
extreme deformation, i.e., PI = p, P2 = 0. 

In the coordinates (S.9) the components of the mass 
quadrupole take the values 

Q ± I = (1/v12)r sin 0 e ± i'P, 

Qo=r, 

from which we have that 

sin2 0 = 2QIQ_IIQ~. 

(S.12a) 

(S.12b) 

(S.13 ) 

It would be difficult to calculate the expectation value of 
sin2 0 with respect to the eigenkets IA) of Hamiltonians of 
the type discussed in the previous section, because of the Q ~ 
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0,1 

L-~-L __ L-~-L __ L-~-L __ L-__ sin 2e 
0,1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0,9 1.0 

FIG. I. The deformation,8 and eccentricity E ofEq. (5.10) as a function of 
sin2 e. 

appearing in the denominator. Thus we prefer to estimate 
the expectation value of sin2 (J through that of the ratio 

(5.14) 

The values of E and fJ can then be evaluated through the 
functional relations (5.10), and in Fig. 1 we draw both E and 
fJ as functions of sin2 (J. 

The operators Q I' Qo, Q _ I are given as linear combina
tions of generators of sp ( 4,R) in (2.14a) -( 2.14c) and their 
matrix elements with respect to the states (3.9) can then be 
obtained from (3.17) and (3.20). On the other hand, using 
again the kets I (ws)v,uNM) of (3.9) the eigenstates of defi
nite Hamiltonians can be written as 

IA) = I C [(ws)v,uNM,A] I (ws)v,uNM), (5.15 ) 
vftNM 

where the C's are numerical coefficients. Therefore again the 
evaluation of the ratio of expectation (5.14) requries only 
the matrix elements (3.17) and (3.20) of the generators of 
sp(4,R) with respect to the states (3.9). 

We are thus in position to determine both the eigenval
ues and eigenfunctions of the Hamiltonians discussed in the 
previous section and also analyze the shape associated with 
these eigenfunctions. We shall proceed to give some illustra
tive examples of all the relevant aspects of this problem in the 
next section. 

VI. SPECTRA OF COLLECTIVE HAMILTONIANS IN THE 
ENVELOPING ALGEBRA OF sp(4,R) AND SHAPE OF 
THEIR EIGENSTATES 

In Eq. (3.17) of Sec. III we gave the matrix elements of 
the generators of sp( 4,R) with respect to a complete and 
orthonormal set of states (3.9) that were characterized by 
the irreps of the chain of subalgebras 
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(ws) ,,'=(w+v+ft)/2 ""=(w+v-ft)/2 

sp(4,R)::) sp'(2,R) €a sp"(2,R) 

U 

0'(2) 
(N+w+M)/2 

U 

0"(2) 
(N+w-M)/2 
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(6.1 ) 

where above or below each Lie algebra we indicate the quan
tum numbers determining the irrep. We then showed in Sec. 
IV how to use these matrix elements to obtain the eigenval
ues of collective Hamiltonians in the enveloping algebra of 
sp( 4,R), and indicated in Sec. V how to determine the shape 
of the corresponding eigenfunctions. 

In this section we proceed to apply the previous analysis 
to specific cases so as to sharpen our intuition on the type of 
spectra and shape we can expect for Hamiltonians associated 
with generators in different subalgebras or with linear com
binations of these Hamiltonians. As our space is two dimen
sional, the present problem is purely conceptual, but we ex
pect that many of the results carry on to the physical 
situation in three dimensions, and thus would be of interest 
in the symplectic model of the nucleus. 

We start our discussion by introducing an "oscillator 
shell model" in our two-dimensional space to obtain the val
ues (w,s) characterizing the irrep of sp ( 4,R) that we can 
associate with our A-body system. 

A. The oscillator shell model and the Irreps of sp(4,R) 

We give in Fig. 2 the levels of a two-dimensional har
monic oscillator as function of the number quanta that we 
put in the ordinate and designate by a, and the angular mo
mentum in the plane which we put in the abscissa and desig
nate by b. Clearly 

Ib I = a,a - 2, ... ,1 or 0, (6.2) 

and for b #0 each level is doubly degenerate, i.e., we have the 
values ± b is indicated in Fig. 2. If we assume that we fill 
each level with four particles, associated with the two possi
bilities of spin and isospin, then with each value of a we have 

4(a + 1) (6.3 ) 

particles. If we fill these levels compactly up to a number of 
quantae, i.e., we close the shells uptoe, and at thee + 1 level 
denote by V the number of valence particles, our total num-

a 

6 

5 

4 

3 

2 

O~--L---L-~L-~--~--~--~--~b 
o ±1 :!:2 :!:3 :!:4 :!:5 :!:6 

FIG. 2. Levels of the two-dimensional harmonic oscillator as a function of 
the number of quanta a, and where b is the angular momentum in two di
mensions, which can have positive and negative values. 
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ber of particles is 
c 

A =4 L (0+ 1) + V=2(c+ l)(c+2) + V. (6.4) 
0=0 

TheA-body state of the previous paragraph3 can then be 
interpreted as the lowest weight state Iws) of (3.3). When we 
apply the operator ff to I ws) we get the eigenvalue w but, as 
indicated at the end of the paragraph following Eq. (4. 7j), 
2 ff is the translational invariant 1.2 Hamiltonian for A par
ticles in the two-dimensional oscillator and thus, applying 
ff to the state discussed in the previous paragraph, we ob
tain 

W=+{4atoO(0+ 1) + (c+ I)V+n} 

=2c(c+ l)(c+2) +...!..(c+ I)V+...!..(A -1). 
3 2 2 

(6.5 ) 

To determine s we need to apply the operator Jo of 
( 4. 7 e), which corresponds to half the angular momentum of 
a system of A particles in the two-dimensional oscillator. 
Clearly only the valence particles contribute and we could 
get many values of s depending on how we arrange them in 
the level of c + 1 quanta. We note from (3.3) that Iws) is 
also characterized by a definite irrep of the su(2) subalgebra 
as 

J 2 lws) =s(s+ 1)lws). (6.6) 

We will be interested in the highest possible irrep s of su (2) 
consistent with the given number of valence particles V, re
flecting the corresponding situation for sue 3) in the sym
plectic model of the nucleus. 1,3.9 To get this highest value of s 
we shall assume for simplicity that V is a multiple of 4, and 
we fill then with four particles (spin up or down, isospin up 
or down) all the levels with positive angular momentum 
starting with b = c + 1 and going down by groups of 2 until 
we exhaust the valence particles. We then have 

2s=4{(c+ 1) + (c-l) + ... 
+ [(c+ 1) -2(VI4) +2]} 

= V(c+ 1) - V[(VI4) -1]. (6.7) 

An example we shall discuss in all of the following appli
cations will correspond to filled shells up to an including 
c = 5, and taking valence particles in the shell of six quanta, 
with V going from 0 (closed shell) to 12 (half-filled shell) by 
jumps of 4. From (6.5) and (6.7) we get then the following 
values: 

V 0 4 8 12 

w 181.5 195.5 209.5 223.5 (6.8) 

s 0 12 20 24 

Having obtained the irreps (ws) of sp ( 4,R) from the 
two-dimensional oscillator shell model, we proceed now to 
discuss the spectra of different Hamiltonians and the shape 
of their corresponding eigenfunctions. We start first with the 
Hamiltonians associated with the maximal subalgebras of 
sp(4,R) that were mentioned in (3.1). 
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B. Spectra and shapes for the sp'(2,R).sp"(2,R) 
subalgebra 

The Hamiltonian in this case is given by (4.18) and we 
will concentrate in particular on its term 

/,2+1"2, (6.9) 

whose eigenvalue is, from (4.19), given by 

Ev/-< =!{w2 +w(2v-2) +v(v-2) +,u2}. (6.10) 

To discuss the spectra given by (6.10) we need to have 
also the range of values for v,,u when we fix the irrep (ws) of 
sp( 4,R) and the number of collective excitation quanta N 
and angular momentum M. To obtain this range we note 
that the eigenstate I (ws) v,uNM ) of our Hamiltonian is given 
by (3.9) in which appear the coefficients AUT of (3.10), 
where the latter have a number of factorials involving 
w,s, v,,u,N,M. 

For the AUT to make sense the arguments of the factor
ials must be non-negative, from which we derive immediate
ly that 

!(N +M - v -,u);;;.0, 

!(N -M - v +,u);;;'0, 

O<v<N, 

-s<,u<s, 

( 6.11a) 

(6.11b) 

(6.11c) 

(6.11d) 

where the right-hand side of (6.11c) comes from summing 
(6.11 a) and (6.11 b). The inequalities (6.11) indicate that if 
N, M are small numbers, for example in the range between 0 
and 10, the same holds for v,,u and therefore they are small 
compared with the w's in (6.8). Thus the spectrum is ap
proximately given by 

( 6.12) 

and, as w is fixed, this means that we have a vibrational 
spectrum with respect to the quantum number v. 

The shape of the states I (ws)v,uNM) can be obtained by 
determining the expectation values of the operators 2Q 1 Q _ 1 

and Q ~ with respect to them and taking their ratios. These 
expectation values follow immediately from (3.17) and are 
given explicitly in Appendix C. We shall discuss first the 
state of 0 collective excitation, i.e., N = 0 for which v = 0 
and,u = M. In this case, as can be seen immediately from the 
results in Appendix C, we have 

{P = (2QIQ_I) = w + s(s + 1) - M2 (6.13) 
(Q~) w(w+!) 

In Fig. 3 we make use of (6.13) to graph the deforma
tion parameter f3 as function of the number V of valence 
particles for the state M = 0, considering the shells below six 
quanta as filled, so we can use (6.8) for the values ofw,s. We 
also give the value of the eccentricity E which is related to f3 
through (5.10). 

We note that both f3 and E increase as we go from closed 
shells to the middle of the next shell, but this does not neces
sarily imply a deformation in the classical sense as we see 
that if we go to higher and higher shells, i.e., C-+ 00 we have 
from (6.5) and (6.7) that the ratio (s/w) -+ 0 and thus also 
the f3 of ( 6. 13) vanishes. 

In Table I we give the deformation parameter f3 for the 
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E f3 

0.511 0.5 

0.426 

0.336 0.06 
'----'-----'--'----'------'----'--v 

4 8 12 

FIG. 3. Deformation fJ and eccentricity E as a function of the number of 
valence nucleons V for the M = 0 state of zero excitation quanta N = O. 
Note the increase with increasing number of V. 

states I (ws ) NONO ), as obtained from the expectation val
ues of 2Q I Q _ I and Q ~ in Appendix C, for values of N in the 
rangeN = 0,1, ... ,5 and of the number Vofvalence particles 
for V = 0,4,8,12. The deformation/3 decreases slightly with 
N but increases with V, in a similar way as for the case 
N = M = 0 discussed in the previous paragraph. 

C. Spectra and shapes for the su(2)eu(1) subalgebra 

The most interesting of the Hamiltonians (4.20) asso
ciated with su(2) €a u( 1) subalgebra is the one correspond
ing to the Elliott type25 quadrupole-quadrupole interaction 

TABLE I. The deformation parameter fJ as a function of N in the range 
N = 0.1 ..... 5 and of V = 0.4.8.12. The parameter fJ is given for the limits 
sp'(2.R) $sp"(2.R). su(2) $u(1). and sp(2.R) $0(2). For sp'(2.R) 
$ sp" (2.R) we took the state I (ws)NONO). for su(2) $ u( 1) the M = 0 
state of the lowest rotational band. and for sp(2) $ 0(2) the M = 0 state 
with A = O. The parameter fJ decreases slightly for sp' (2.R) $ sp" (2.R ). 
increases for su(2) $ u(1). and keeps constant for sp(2.R) $ 0(2). 

V N=O N=1 N=2 N=3 N=4 N=5 
sp'(2.R) $sp"(2.R) 0 0.074 0.074 0.074 0.074 0.074 0.074 
su(2) $u(l) 0 0.074 0.074 0.096 0.110 0.122 0.133 
sp(2.R) $ 0(2) 0 0.074 0.074 0.074 0.074 0.074 0.074 

sp'(2.R) $sp"(2.R) 4 0.096 0.095 0.095 0.094 0.094 0.093 
su(2) $ u( 1) 4 0.096 0.111 0.124 0.136 0.148 0.158 
sp(2.R) $0(2) 4 0.096 0.096 0.096 0.096 0.096 0.096 

sp'(2.R) $sp"(2.R) 8 0.120 0.119 0.118 0.117 0.116 0.115 
su(2) $ u( 1) 8 0.120 0.133 0.145 0.156 0.166 0.175 
sp(2.R) $0(2) 8 0.120 0.120 0.120 0.120 0.120 0.120 

sp'(2.R) $sp"(2.R) 12 0.128 0.127 0.126 0.125 0.124 0.123 
su(2) $u(1) 12 0.128 0.140 0.150 0.161 0.171 0.180 
sp(2.R) $ 0(2) 12 0.128 0.128 0.128 0.128 0.128 0.128 
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in the three-dimensional case, which is related to the Casimir 
operators of the su ( 3) and 0 ( 3) Lie algebras. In the two
dimensional case it will be associated with the Casimir oper
ators ofsu(2) and 0(2) and given by 

J1J_ 1 +J_1J1 =J~ _J2, 

whose spectrum is 

M2_j(j+ 1). 

(6.14 ) 

( 6.15) 

Clearly we have rotational bands characterized by j with the 
energy of the levels increasing with the squares of the angu
lar momentum M, where the latter is in the interval 
- j<.M <J Note that the number N of excitation quanta is 

also an integral of motion, and Nand j are related through 
(3.13). 

To get the shape we first must calculate with the help of 
(3.17) the elements of the finite matrix 

II «ws)v'Jl'NM IJ 21 (ws)vJlNM )11, (6.16) 

where (ws),N,M are fixed and V,jl are limited by the inequal
ities (6.11 ). By diagonalizing this matrix we obtain its eigen
values, which of course must be of the typej(j + 1) withj 
integer or half-integer depending on s, but also get the or
thogonal matrix whose elements give the coefficients with 
which to express the eigenstates of (6.14) as linear combina
tions of the I ( ws) vJlN M ) of the type (5.15). The calculation 
of the shape follows then the steps indicated in Sec. V. 

In Table I we give the deformation /3 of the state M = 0 
of the lowest rotational band, i.e., the maximum eigenvaluej 
of the matrix (6.16), as function of N in the range 
N = 0,1, ... ,5 of V = 0,4,8,12. We see that/3increases both as 
function of N and V, and that its values in the case of this 
rotational spectrum are consistently larger than those for the 
vibrational one associated with the Hamiltonian I' 2 + I" 2 

of the previous subsection. 
In Table II we give also the deformation for closed shells 

and in the middle of the shell, for N = 3, M = 0, but for 
higher bands, i.e., for j 's lower than the maximum value. 

D. Spectra and shapes for the sp(2,R) eo(2) subalgebra 

The Hamiltonian associated with the Casimir operator 
12 of sp (2,R) given by (2.12) has the eigenvalue 

A(A - 1) = w2 + w(2A - 1) + A(A - 1), (6.17) 

TABLE II. Deformation parameter fJ for the first band heads which are 
states with M = O. The number of excited quanta is N = 3. Values of fJ are 
given for closed (V = 0) and half-filled shell (V = 12) as well for the two 
limiting cases sp(2.R) $0(2) and su(2) $u(1). The states of 
sp(2.R) $0(2) are abbreviated by IqA) and thoseofsu(2) $u(1) by W)· 

V=O 
W) su(2) $ u(1) IqA) sp(2.R) $0(2) 

I. Band 13.3) 0.110 10.0) 0.074 
2. Band 11.1) 0.098 11.2) 0.127 

V= 12 
W) su(2) $ u(1) IqA) sp(2.R) $0(2) 

I. Band 13.27) 0.161 10.0) 0.128 
2. Band 13.26) 0.164 10.1) 0.144 
3. Band 13.25) 0.162 11.1) 0.144 
4. Band 11.25) 0.159 10.2) 0.157 
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where we made use of the relation (3.1S). From the discus
sion in Ref. 2 the A [which corresponds to the (L /2) ap
pearing there] takes the values A = N, N - 1, ... ,1,0, and 
thus for a small number of excitation quanta, e.g., for N 
between 0 and 10, the w of (6.8) is much larger than A and 
the eigenvalue of [2 will be given approximately by 

w2 + w(2A - 1). (6.18) 

As w is fixed we have a vibrational spectra similar to the one 
appearing for the case sp' (2,R) Ell sp" (2,R). 

For the shape we have to calculate the matrix elements 
of! 2 with respect to the states I (ws) vJ-lNM > which we can do 
with the help of (3.17) and (3.20). For fixed (ws),N,Mwe 
have again a finite matrix and the calculation of the deforma
tion parameter /3 proceeds in analogous fashion to what was 
discussed in the previous subsection for J 2. 

In Table I we give the deformation /3 of the eigenstates 
of [2 with eigenvalue A = 0 and angUlar momentum M = 0 
for N = 0,1, ... ,S and V = 0,4,8,12. The/3's increase with V 
but remain unchanged with N, and for this vibrational spec
tra these are consistently lower than for the rotational one of 
the su(2) Ell u( 1) subalgebra. In Table II we give the defor
mations for states with N = 3 and some A's that are larger 
than O. 

E. Transitional Hamiltonians Involving the subalgebras 
su(2)eu(1) and sp(2,R)eo(2) 

We shall now consider the Hamiltonian 

(6.19) 

where x is a real parameter in the interval O,.:;x,.:; 1, whileJo is 
the angular momentum andJ 2,[2 are given by (2.9), (2.12). 
In (6.19) we multiplied the operator [2 by (S/w) to elimi
nate the factor w in its eigenvalue (6.18) and have the A 
appearing there multiplied by a factor of 10, which makes it 
easier to draw the energy levels as functions of x. 

For x in the open interval 0 <x < 1, the spectrum of the 
Hamiltonian (6.19) cannot be given in closed form as it in
volves the Casimir operators of the two different subalgebras 
sp(2,R) Ell 0(2) and su(2) Ell u(1). To obtain its eigenvalues 
we need to calculate and diagonalize a matrix of the type 
(6.16) in which we replaceJ 2 by theH of (6.19). The shape 
of the corresponding eigenfunctions can the be determined 
by the same procedure outlined in Sec. VI C. 

In Figs. 4(a) and 4(b) we give, respectively, the energy 
levels of H as function of x in the case of closed shells V = 0 
and half-open ones V = 12, in both taking N = 3. In the for
mer case s = 0 and from (3.13) we see thatj = 1,3 while in 
the latter s = 24 and thusj = 27,26,2S2,242,232,22,21, where 
the exponent indicates the multiplicity with which the angu
lar momentum appears when it is larger than 1. Atx = 0 and 
x = 1, we give, respectively, the irreps A and j associated 
with sp(2,R) and su(2). The lowest levels correspond to the 
smallest values of A and largest ofj, which in the latter case 
imply j = 3 for V = 0 andj = 27 for V = 12. We also indi
cate at the right-hand side of Figs. 4 the angular momentum 
M associated with the energy levels. The lowest level has 
been normalized to zero energy and its value has been sub
tracted from all the others. 
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0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 

FIG. 4. The spectrum of the transitional Hamiltonian (6.19) as a function 
of the parameter x for (a) the closed and (b) the half-filled shell. The open 
shell is the sixth oscillator shell. On the left and right of each curve appear 
the quantum numbers A andjwhich are irreps ofsp(2,R) and su(2) in the 
limiting cases x = 0 and 1. The number of excitation quanta is 3. 

In Fig. 5 we give the deformation parameter /3 and ec
centricity € for the lowest energy level of H, when N = 3 and 
M = 0, as functions of the number of valence particles V in 
the two limiting cases x = 0 and x = 1. For x in the open 
interval 0 < x < 1, the corresponding curve will be between 
the two drawn. 

Finally we consider a Hamiltonian of the type (6.19) in 
which we eliminate the angular momentum term J~. For 

E f3 

0.511 

0.426 0.10 

0,336 0.06 

FIG. 5. The deformationp and eccentricity € as a function of the number of 
valence nucleons V for the lowest M = 0 state. The number of excited quan
ta is N = 3. The calculation is done with the transitional Hamiltonian 
( 6.19) . The x = 0 and x = 1 values correspond, respectively, to the "vibra
tional" and "rotational" limit. There is an increase in P(€) going from 
closed shell (V = 0) to the half-filled shell (V = 12). The open shell is the 
sixth oscillator shell. 
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E V=12 
M 

0.50 

0.40 

0.30 

0.20 

0.10 

A=O,o j=27 

0.2 0.4 0.6 0,8 1,0 

FIG. 6. Spectrum of the transitional Hamiltonian (6.19) without the J~ 
term. The number of excited quanta is N = 3 and the number of valence 
nucleons is V = 12. The open shell is the sixth oscillator shell. The energy of 
the ground state M = ° is normalized to zero. There is a breaking of degen
eracy in the transitional region ° < x < 1 due to the interaction of 12 and J 2. 

The absolute value of the energy E, however, is notably smaller by two or
ders of magnitude as compared with the Hamiltonian that includes the com
plete quadrupole-quadrupole interaction, i.e., the J~ term. 

x = 1 the rotational band at the right-hand side of Fig. 4(b) 
that is associated withj = 27, collapses to a single level, but 
in the open interval 0 < x < 1 the interaction between 12 and 
J2 breaks the degeneracy in the angular momenta. In Fig. 6 
we illustrate this breaking for the first six angular momenta 
values M = 0,1, ... ,5 when the number of valence particles is 
V= 12. 

Again we normalize our ground state energy to zero, 
and as the scale of energies in Fig. 6 is one hundreth of that of 
Fig. 4(b), we see that this breaking is much smaller than the 
one obtained by the action of the angular momentum term. 

F. Transitional Hamiltonians involving the subalgebras 
cm(2) and u(1) 

The subalgebra cm (2) of Sec. II D contains the interest
ing term 

2QIQ_I = Q~ _ Q2, (6.20) 

which from (5.1) corresponds to the full physical quadru
pole interaction, that contrasts with the one of the Elliott25 

type for the two-dimensional case, i.e., JIJ -I + J _IJI' 
which is restricted to a single shell of the harmonic oscilla
tor. The term (6.20) cannot be considered as a Hamiltonian 
by itself, as we must add to it the kinetic energy which, from 
(4.7j) and (5.1), is given by 

2ff - Qo. (6.21) 

The appearance of ff, which is a generator of a u( 1) 
subalgebra, together with powers and products of the gener
ators of cm (2), indicates that our Hamiltonians are of the 
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FIG. 7. Spectra as a function of the number of valence nucleons for the 
transitional Hamiltonian (6.22) with a quadratic (vibrational) cm(2) po
tential r v' The classical potential is indicated in the upper half of the fig
ure. Here Eo gives the ground state energy which increases for increasing 
number of valence nucleons. A special characteristic is the "computa
tional" degeneracy of the levels, i.e., in numerical calculations no significant 
breaking of degeneracy was found. Each level, except for V = 0, has more 
than one angular momentum state. For example the ground level contains 
the states M = ° up to the maximum value of M = s given by (6.8). For 
V = ° we expect a spectrum similar to the two-dimensional harmonic oscil
lator, i.e., for zero oscillator quanta M = 0, for one M = 0,1 for two 
M = 02,1,2, etc. Becausethecm(2) interaction in (6.22) does not commute 
with JV' we expect a breaking of degeneracy of the oscillator shells. The 
spectrum for V = ° indeed can be correlated to the two-dimensional har
monic oscillator of Fig. 2 with steps of 2 in the excited quanta a (note that 
N = a/2). Here M is related to b of Fig. 2 by M = b /2. The ground state is 
not degenerate for V = ° and has angular momentum M = 0. The next two 
are M = ° and 1 corresponding to the one excitation quanta N = 1. The 
next states are M = 0,1 and M = 0,2, where the latter are not plotted in the 
figure. It gets, however, more difficult to associate a state to a given number 
of excited quanta due to the cm(2) interaction which mixes them. Above 
each state the deformation /3 is indicated. Note that for all states /3 is small. 

transitional type and we shall discuss only two of them 

Hv =ff + y(2QIQ_I), (6.22) 

(6.23) 

wherey,y',y" are some real numbers and the indices V,R for 
the Hamiltonians indicate that they are of the vibrational or 
rotational type, as will be shown later when discussing Figs. 
7 and 8. 

To obtain the eigenvalues and eigenfunctions of the 
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FIG. 8. Spectra as a function of the number of valence nucleons for the 
transitional Hamiltonian (6.23) with a rotational cm(2) potential r 
which is indicated in the upper half of the figure. The minimum of the classi
cal potential is chosen to be at/3 = 0.3 and at - 25 in energy. The ground 
state is normalized to zero. The ground state energy is denoted by Eo. Note 
that Eo increases with decreasing number of valence nucleons V. We give 
only the lowest band which is rotational for all values of V. The spacing 
between states is decreasing with increasing V. Above each state, whose 
angular momentum is indicated at its right-hand side, we give the deforma
tion/3. Note that the deformation is big and near to the position of the mini
mum of the classical potential. 

Hamiltonian (6,22), (6.23) we can again make use of the 
complete set of states I (ws) vpNM ), with respect to which 
we need to evaluate the elements of the matrix 

II «ws)v'p'N'M I (2QIQ_I)ml (ws)vpNM) II, (6,24) 

where m = 1 or 2. Note that as 2QIQ_I does not commute 
with.#' we have different indices N,N' in bra and ket and our 
matrix is now infinite. For calculations we have to consider 
N's up to some maximum value No that assures convergence 
for the lowest lying eigenvalues and eigenfunctions, where 
the former are obtained by diagonalizing the now finite ma
trix and the latter can be expressed in the form (5.15) with 
the coefficients coming from the orthogonal matrix required 
for the diagonalization of (6.24). From the explicit expres
sion of the eigenfunctions the shape can be calculated by the 
procedures outlined in See. V, 

In the lower part of Fig. 7 we have the energy levels of 
H v when y = 10-2 as function of the number of valence 
particles V = 0,4,8,12. The angular momentum M of these 
levels is degenerate as discussed in the figure caption and on 
top of each level we give the value of the deformation param
eter. Below the number of valence particles we give the ener
gy of the lowest level which in the figure were normalized to 
O. The almost equidistant position of the levels and their low 
deformation parameter sugget that H v is a vibrational Ham
iltonian. 
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In the lower part of Fig, 8 we have the energy levels of 
HR wheny' = - 1O- 2,y" = 10-6 as function of the num
ber of valence particles V = 4,8,12, We exclude the closed 
shell case V = 0 because the high separation of the levels 
would not fit in the figure. The angular momentum of the 
levels is indicated on their right and the deformation param
eter {3 appears above them. Below the number of valence 
particles we give the energy ofthe lowest level which in the 
figure were normalized to O. The levels follow closely the M 2 
rule and that, together with their large deformation param
eter {3, suggest that H R is a bona fide rotational Hamilto
nian. 

The interpretation of H v and H R as vibrational and ro
tational Hamiltonians, that follows from their spectra and 
shape in the quantum picture, is corroborated by a classical 
analysis. We notefrom (5.8)-(5.12) that 

(6.25 ) 

where p2 can be correlated with the mean square radius for 
the two-dimensional A-body system and (3 is the deforma
tion parameter. The value ofp2 can be estimated by an analy
sis, discussed in Appendix D, that extends to two-dimen
sional space the well-known arguments for determining the 
mean square radius in three dimensions with the help of the 
nuclear shell model. 20.26 From this analysis one obtains 

p2=!A 3/2, (6.26) 

and thus the classical estimate for the potential energy in 
H v, H R with the above values of y, y', y" , is then given by 

r v = 553{3 2 (6.27a) 

r R = - 553{32 + 3058{34, (6.27b) 

where in both cases we used theA associated with 12 valence 
particles, i.e., A = 96. 

The potentials (6.27) are of the type used in the Frank
fure? collective model, but for tw028 instead of three dimen
sions, and they are drawn in the upper part of Figs. 7 and 8 
for the r v and r R' respectively. We see that the vibration
al potential r v has a minimum for {3 = 0, i.e., there is no 
deformation, while the minimum of the rotational potential 
r R occurs at{3 = 0.3 which indicates a strong deformation, 
and agrees in order of magnitude with the values of (3 pre
dicted in the quantum picture and given above the energy 
levels in Fig. 8. 

We note that the Hamiltonian H R of (6.23) is no longer 
of the type of those discussed in Sec. IV, as it is not limited to 
terms up to second degree in the generators of sp ( 4,R) but 
contains a fourth-order term (2Q\Q_\ )2. This type of term 
is the two-dimensional equivalent of those used in the nu
clear symplectic model to produce strong deformations.29 

Having analyzed the spectra of Hamiltonians associated 
with Casimir operators of different maximal subalgebras, as 
well as of relevant transitional Hamiltonians involving more 
than one subalgebra, and determined also the shape of their 
eigenfunctions, we proceed to discuss the conclusions that 
follow from all our analyses. 

VII. CONCLUSIONS 

We first want to note that the discussion in Sees .. II and 
III of this paper parallels closely the analysis followed in 

ChacOn, Hess, and Moshinsky 2236 



                                                                                                                                    

collective algebraic models of the nucleus and, in particular, 
in the IBA. One first introduces a basic algebra, in our case 
sp ( 4,R) and in IBA I it is u (6) . We then consider the maxi
mal subalgebras that include among their generators the op
erators of angular momentum. In our case these were the five 
discussed in Sec. II and for the IBA they are 14.15 u ( 5), su (3), 
0(6). One then chooses one of the subalgebras to character
ize by its irreps a complete set of states to be used in the 
calculations. In our case the most convenient one proved to 
be sp' (2,R) a1 sp" (2,R), while in the IBA some authors use 
sue 3) (Ref. 14) and others u( 5) (Ref. 15). Once one has the 
complete set of states one can calculate the matrix elements 
with respect to them of the generators of our basic algebras 
and of the Casimir operators of their subalgebras, as was 
done here in (3.17) and for the IBA in Refs. 14 and 15 
among many others. 

The next step is to study the spectra of Hamiltonians in 
the enveloping algebras of our problems. There are, both in 
our present analysis and in the IBA, what we could call pure 
Hamiltonians, i.e., those associated with a single chain of 
subalgebras whose spectra is given by a closed formula, and 
transitional ones which involve several subalgebras, whose 
spectra has to be calculated numerically using the matrix 
elements of the Casimir operators of the subalgebras men
tioned above. 

In our case the subalgebras sp' (2,R) a1 sp" (2,R ), 
su(2) a1u(1), and sp(2,R) a1u(1) are the only ones that 
contain the generator v,y ofu( 1) which, from (6.21), can be 
associated with the kinetic energy. We shall restrict our
selves to them when comparing our analysis to that of the 
IBA, and, as shown in Sec. VI B-VI D they give rise to one 
rotational and two vibrational types of spectra. We also dis
cussed numerically the transitional Hamiltonian that in
cludes the subalgebras sp (2,R) a1 0 (2) and su (2) a1 u ( 1 ), in 
which we pass continuously from vibrational to rotational 
spectra. 

In the IBA case the subalgebras u(5), su(3), 0(6) give 
rise, respectively, to vibrational, rotational, and y-unstable 
types of spectra, 14,15 which have actually been identified in 
some nuclei, as well as transitional spectra associated with 
mixtures of the Casimir operators of the above subalgebras. 

So far we have been speaking only of spectra, but the 
appearance of vibrational or rotational types suggests, both 
in this analysis and in the IBA, that we are dealing, respec
tively, with systems of small or large deformations. 

In the present problem we have though an actual micro
scopic theory of collective motions, as illustrated in (4.7) by 
the realization of the generators of sp ( 4,R) in terms of the 
creation and annihilation operators of the A-body system. 
We can then define the components (5.1) of the quadrupole 
tensor and with its help actually discuss the shape, i.e., the 
deformation parameter {3 of the eigenfunctions of our Ham
iltonians. We find that the states associated with the rota
tionallevels are more deformed than those of the vibrational 
ones, but if we go to higher and higher shells, where we ap
proach the classical interpretation, in both the vibrational 
and rotational pictures the deformation goes to zero. 

Clearly the presence of rotational spectra in an algebraic 
model is not sufficient to guarantee a strong deformation of 
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the system. Thus in the IBA, and in other collective models 
based on group theory, analyses have30 or should be made to 
show, independently of the rotational characteristics of the 
spectra, that a strong deformation is present in the eigen
states of the Hamiltonian. 

In the analysis of Sec. VI F of this paper we saw that, to 
get strong deformations, it was essential to have higher pow
ers of the 2Q 1Q _ 1 term associated with the Casimir operator 
of cm(2). These powers are the equivalent, in our dimen
sionalA-body system, of the generalized type of Bohr-Mot
telson potential that was introduced by Greiner and colla
borators. 27 

We want now to tum our attention to the real symplec
tic model, i.e., the one in which A nucleons move in the three
dimensional physical space. Much work has been done in 
this model and its successes and drawbacks have been dis
cussed in other publications. 1.3,6-12,29 

We, in collaboration with other researchers, intend to 
review this model following step by step the procedure out
lined in the present paper for the two-dimensional case. If we 
succeed in this endeavor, we would consider as finished our 
program on collectivity and geometry. 
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APPENDIX A: THE COMPLETE ORTHONORMAL BASIS 

The purpose of this appendix is to give an outline of the 
derivationofthestates (3.9) and (3.10), which are an ortho
normal basis for the irrep (w,s) of sp ( 4,R) classified by the 
chain of subalgebras 

sp(4,R) :Jsp'(2,R) Xsp" (2,R) :Jo'(2) xo"(2). (AI) 

As discussed in the text, these basis states have a general 
form 

I (ws)vj.lNM) = IA ur l(wS)CT7NM), (A2) 
UT 

with the ket on the right-hand side given in (3.5). 
As a first step in our construction we find the member of 

the basis which has the lowest weight in the irrep (v,j.l) of 
sp'(2,R) a1 sp" (2,R). Such state, denoted for shortness as 
ILW) obeys the equations 

I~ILW) =!(w+v+j.l)ILW), 

I:JILW) = !(w + v -Il) ILW), 

I'_IILW) = 0, 

l'~ IILW) = o. 

(A3a) 

(A3b) 

(A3c) 

(A3d) 

From (3.6a), (3.6b), and the fact that 2I ~ = ff + Jo, 
2I;; = ff - Jo, it follows that a state of the form (A2) will 
satisfy Eqs. (A3a) and (A3b) provided we set N = v and 
M = j.l. Therefore ILW) has a realization ofthis type: 
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a,T 

XA ~T (B T) (l/2)(v+1l - a- T) (B 6)T 

X (Bt_1 )(l/2)(v- ll +a- T)(J\)s+al ws ), (A4) 

where the constant factors standing on the left of A ~ were 
introduced for the sake of later convenience. 

Then Eqs. (A3c) and (A3d) give us two recursion rela
tions for the determination of the unknown coefficients A ~T 

I 

in (A4). Explicitly, the recursion formulas are 

(v+,u - U-7+ 2)(2w + v +,u + U + 7- 4)A ~-I.T-I 

+27(S+u)A~T +7(7+ I)A~_I,T+I =0, (AS) 

(v -,u + U - 7 + 2)(2w + v -,u - U + 7 - 4)A ~+ I,T-I 

+ 27(S - u)A ~T + 7( 7 + l)A ~+ 1.r+ I = 0, (A6) 

and by direct substitution on them we can check that their 
solution is 

A~T =C( _1)(l/2)(v- ll +a-T)r(w_l + v+,u;U+7)r(W_l + V-,u~U+7)r-V(7!)-1 

X ~ ( - l)r [r !(s +,u - r)!(s + U - r)!(r -,u _ u)! (v -,u ~ U - 7 - S + r} 

xr(w-l+ V+,u;U+7 -r)r l

. (A7) 

In (A7) Cis a normalization coefficient which must be given a value such that (LWILW) = 1. We have found that, with an 
arbitrary phase factor set equal to 1, 

C=[ (s+,u)!(s-,u)!v!(2w-3)!r(w-s+v-l)r(w-s-l)r(w+s) ]112. (A8) 
(2s)!(2w + v - 3)!r(w +,u - l)r(w -,u - l)r(w +,u + v - l)r(w -,u + v - l)r(w +s + v) 

We have thus determined the state ILW) == I (ws)v,u, N = v, M =,u) with lowest weight in the algebra sp'(2,R) 
Ell sp" (2,R). The general state of the basis can be obtained by application of powers of the raising operators I ; , I;', of each 
sp( 2,R) algebra on I L W). Recalling that I; =! B T, I;' = ! B t_ I' and supplying the appropriate normalization factors, we 
have 

I (ws)v,uNM) 

[ 
r(w+v+,u)r(w+v-,u) ]112 

= r(w + (N + M + v + ,u)/2)r(w + (N - M + v - ,u)/2)(N + M - v - ,u)/2)!(N - M - v + ,u)/2)! 

X 2 - (N - v) (B r ) (1I2)(N + M - v-Il) (B t_ I) (1/2)(N - M - V+ Il) I (ws)v,u,N = v, M = ,u). (A9) 

Introducing here (A4), (A7), and (A8) and merging factors we deduce the detailed expression for the sp( 4,R) basis states 
given in (3.9) and (3.10). 

APPENDIX B: MATRIX REPRESENTATION OF 
GENERATORS OF sp (4,R) 

In this appendix we indicate the procedure that we have 
followed to obtain the matrix elements of the four generators 
ofsp(4,R) given in (3.18) with respect to the basis states 
(3.9). 

To begin with, in the notation of (3.18) we have that 

[I' T(I/2)(l/2)] = (r'+1)T(1/2)(I/Z) 
± I , r'r" 2 r' ± l,r" , 

(BI) 
[I ' T(1I2)(112)] - r' T(1I2)(1I2) 

0, r'r" - r'r" , 

[I" T(\I2)(II2)] = (r" + l)T(II2)(\/2) 
± 1 , r'r" 2 r',r" ± 1 , 

[I;, T;,Y2)(1I2)] = r"T;,y2)(1I2>, 
(B2) 

where r',r" can take any of the two values~, -!. Formulas 
(Bl) and (B2) make the four operators {T;,~:2)(I/2)} qualify 
as components of an irreducible tensor associated to the non
unitary irrep q,p ofsp'(2,R) Ell sp" (2,R). This allows the 
application of a generalized Wigner-Eckart theorem to ob
tain the matrix elements of the tensorT( 1/2)( 1/2) with respect 
to the states (3.9), namely 

(ws,A' + !,A" + !IIT(1I2)(\/2)llwSA'A") 

I 
«ws)A'A "p'p"IT~Y2)(1/2)I(wS)A'A "p'p") 

= (wsA 'A "IIT(\/2)(l/2) IlwSA 'A ") 

X (A p';~r'IA ',0') (A "p";!r"IA ",0"), (B3) 

where on the right-hand side appear a reduced matrix ele
ment of the tensor and two Clebsch-Gordan coefficients of 
the group Sp(2,R), in that order. 

We have used in (B3) a notation which seems the most 
natural for that particular purpose, the connection of A ',A " 
with w, v,,u was already given in (3. 8a) and (3. 8b) and the 
p',p" are related to the labels w, N, M of the states (3.9) by 

p'=!(w+N+M), p"=!(w+N-M), (B4) 

The Clebsch-Gordan coefficients of Sp(2,R) needed in 
(B3) are precisely those studied by Vi in Ref. 22. 

There are four distinct reduced matrix elements on the 
tensor T( 1/2)( 112). Their values are deduced, as usual, by di
rect evaluation of (B3) with particular values of p',p". Still 
with the notation of A ',A " the reduced matrix elements were 
obtained as 

= [ (A' + A" - w + I)(A' + A" - s - I)(A' + A" + S)(A' + A" + w - 2) ] 112, 
(U ')(U") 

(BS) 
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(WS,A' -~,A " - !IIT (1I2)(1I2)llwSA'A ") 

= [ (A ' + A " - W)(A ' + A " - S - 2)(A ' + A " + S - I)(A ' + A " + W - 3) ] 112 

(U' - 2)(U " - 2) , 

(ws,A' +!,A " - !IIT(\/2)(1I2)lI wsA 'A") 

= _ [(A' - A " + S + l)(s - A ' + A ")(A ' - A " + W - 1)( - A ' + A " + W - 2) ] 112 

(U')(U"-2) , 

(WS,A' -!,A " + !IIT(\/2)(1I2)llwSA'A ") 

= _ [(A' - A" + s) (s - A' + A" + 1) (A' - A" + W - 2) ( - A' + A" + W - 1)] 112. 

(U'-2)(U") 

(B6) 

(B7) 

(B8) 

Once we have available the relations (B5 )-( B8), the matrix elements of any component of the tensor with respect to 
arbitrary sp ( 4,R) states can be obtained from (B3) with the help of the Clebsch-Gordan coefficients tabulated by Vi. 22 By 
this procedure were obtained (3.20a) and (3.20b). 

APPENDIX C: EXPECTATION VALUES OF TWO OPERATORS 
The expectation values of the two operators discussed in Sec. VI are 

«ws)vf.LNM 12Q1Q-11 (ws)vf.LNM ) 

=!(N+ W)2+!M(M+2) -!(v+w)(v+w-2) -!f.L2 

+ v(w -s + v- 2)(w +s + v-l)(2w + v- 3)(N +M -f.L - v+ 2)(N -M + v-f.L + 2w) 

4(w +f.L + v- 2)(w+f.L + v- l)(w -f.L + v- 2)(w -f.L +v-l) 

+ (v+ l)(w -S+ v-l)(w +s+ v)(2w + v- 2)(N +M +f.L + v+ 2w)(N -M +f.L - v) 

4(w +f.L + v)(w +f.L + v - l)(w -f.L + v)(w -f.L + v- 1} 

+ (f.L + S + 1) (s - f.L) (w + f.L - 1) (w - f.L - 2) (N + M + f.L + v + 2w) (N - M - f.L + v + 2w - 2) 

4(w + f.L + v)(w + f.L + v-l)(w - f.L + v - 2)(w - f.L + v - 1) 

+ (f.L +s)(s -f.L + l)(w +f.L - 2)(w -f.L - I)(N +M -f.L - v+ 2)(N -M +f.L - v) (Cl) 
4(w+f.L + v- 2)(w +f.L + v- l)(w -f.L + v)(w -f.L + v- 1) 

and 

«ws)vf.LNM IQ ~ 1 (ws)vf.LNM ) 

= !(2N + 2w)(2N + 2w - 1) 

+ v(w-s+ v- 2)(w +s+ v-l)(2w+ v- 3)(N +M -f.L - v+ 2)(N -M +f.L - v+ 2) 

8(w +f.L + v- 2)(w+f.L + v- l)(w -f.L + v- 2)(w -f.L + v-1} 

+ (v + 1)( w - s + v-l)( w + s + v)( 2w + v - 2)(N + M + f.L + v + 2w)(N - M - f.L + v + 2w) 

8(w +f.L + v)(w +f.L + v - l)(w -f.L + v)(w -f.L + v - 1} 

+ (f.L +s + l)(s -f.L)(w +f.L - l)(w -f.L - 2)(N +M +f.L + v + 2w)(N -M +f.L - v + 2) 

8(w + f.L + v)(w + f.L + v - 1} (w - f.L + v - 2)(w - f.L + v-I) 

+ (f.L + s)(s - f.L + l)(w + f.L - 2)(w - f.L - I)(N + M - f.L - v + 2)(N - M - f.L + v + 2w) . (C2) 
8(w + f.L + v - 2)(w + f.L + v-l)(w - f.L + v)(w - f.L + v-I) 

APPENDIX D: ESTIMATED VALUE OF p2 

The purpose of this Appendix is to outline arguments 
that allows us to estimate the value of p2 in (6.26). The p2 is 
correlated to the mean square radius via20 

( , 2) 2 ~ ,-, r =- L.. xs x s, 
A s= 1 

(Dl) 

where A is the number of nucleons and A ~ 1. The prime 
indicates that the coordinates carry dimensions. The dimen
sionless coordinates xs' Xs used here are related to x;, x; via 

x; =-i(fzlmw) x s ' x; =-i(fzlmw) xs' (D2) 
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We are confronted with the difficulty of which values have to 
be used in two dimensions for m (mass of the nucleon) and w 
(frequency of the oscillator). Though we are in two dimen
sions, we will use the same values as in three dimensions, i.e., 

mc2= 1000 MeV, 

w=40A -112. 

(D3a) 

(D3b) 

The value for w we obtained in a similar way as was done in 
three dimensions in p. 200 of Ref. 20. The result for the 
factor in (D3b) turns out to be nearly the same. The only 
difference lies in the A dependence, which is A -1/3 in the 
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three-dimensional space; p2 is defined via 

" 
p2 = 2 L xsxs' (04) 

s= 1 

where the dimensionless coordinates appear. With (01) 
and (02) we get 

(r,2) = (-li/mw) (1/ A) p2. (05) 

Using the values given in (03) we get 

(06) 

For (r,2) we use 

f 21T dm' fR' r' dr' r'2 1 
(r'2) _ 0 T 0 = -R '2. (07) 

- f~1T drp' fr r' dr' 2 

We integrated over a spherical nucleus. Here R 'is the radius 
of that nucleus. Assuming in two dimensions a similar de
pendence for R ' on A as in the case of three dimensions, 
namely 

R' =roA 1/2 

we finally get for p2, 

P2_1':;' A 3/2 
-2 0 • 

(08) 

(09) 

That R is given by (08) means that the number of particles 
is proportional to the two-dimensional volume. We put the 
proportionality factor r 0 in (08) equal to one fermi as it is 
similar to the value 1.2-1.4 fermi in the three-dimensional 
case. Thus we get the formula (6.26). 
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The phenomenological Maxwell equations and the constitutive relations are derived in 
curvilinear coordinates endowed with a time-independent, time-orthogonal metric, when there 
is a uniform, isotropic, and homogeneous medium present. The way of formulating the 
electromagnetic theory chosen here is basically in agreement with the formulations given by 
von Laue and Arzelies. The theory is thereafter applied to the case when the medium is at rest 
in Rindler space. The fundamental electromagnetic modes (the TE, TM, and TEM modes) are 
worked out in terms of modified Bessel functions, and the electromagnetic energy-momentum 
tensor is worked out in the Minkowski picture and shown to possess an interesting analogy 
with the case when an inhomogeneous medium is at rest in an inertial frame. 

I. INTRODUCTION 

Whereas the phenomenological electrodynamic theory 
of dielectric media in uniform motion has been subject to 
extensive studies, far less attention has so far been given to 
the case when the medium is in a state of uniform accelera
tion. The main purpose of the present work is to study the 
electrodynamic theory of a medium when it is in uniform 
linear acceleration, that is, when it is at rest in one of the 
wedges in Rindler space. 1 We assume a medium of the sim
plest kind: it is taken to possess a constant, (i.e., spatially 
nonvarying and nondispersive) permittivity € and a constant 
permeability ft. 

Some reasons for undertaking this kind of study are the 
following. 

( 1 ) The electrodynamics of continuous media is a natu
ral generalization of the electrodynamics in vacuum. The 
theory, if properly constructed, has to be consistent and 
moreover to be testable experimentally. This point can be 
more complicated than it looks at first sight. Already within 
special relativity the phenomenological theory leads to con
sequences which, although consistent, may appear surpris
ing, for instance the occurrence of negative field energies for 
a radiation field in a class of inertial systems due to the space
like radiation four-momentum. 2 When developing the phe
nomenological theory to the extended case of accelerated 
media we subject it to another consistency test. 

(2) Another motivation has its root in quantum field 
theory. Almost all works published so far on quantum the
ory in Rindler space (cf., for instance, Refs. 3-16) deal with 
the simple case of scalar fields, although a few of them, like 
the work of Candelas and Deutsch,7b deal with the electro
magnetic field also. The extension of quantum field theory to 
the case of phenomenological electrodynamics would be an 
interesting development. However, we will not proceed so 
far as to present an electromagnetic quantum theory here. 
Some remarks, based upon the simplification of replacing 
the electromagnetic field by a "phenomenological" scalar 
field, will be made at the end of this paper. 

(3) An interesting application of this kind of electro
magnetism, having been put forward in particular by Lee, 17 

is to use it within the context of quantum chromodynamics 
(QCD). Complicated QCD processes of higher order may 
be effectively described by a theory that is formally quite 
similar to electrodynamics; thus it contains color permeabil
ity and color permittivity as input parameters. Cross rela
tionships of this kind, linking classical theories to modem 
ones, make it desirable also to develop the classical theories 
further. 

In the first part of this paper (Secs. II-IV) we give a 
general formulation of the electromagnetic theory in curvi
linear space, when there is a medium present and the metric 
is time independent and time orthogonal. We thus consider a 
class of coordinate systems somewhat broader than strictly 
necessary as regards the specific application to Rindler 
space. We find it desirable to proceed in this way, because the 
generalization of the theory is moderate and achieved at low 
costs and makes the formalism applicable to different spaces, 
and also because there are different versions of electrody
namic theory in the literature tending to confuse the casual 
reader unless the foundation ofthe theory is laid properly. 

The second part of the paper deals with the special case 
when there is a medium at rest in Rindler space. Section V 
summarizes some of the basic features of that space, and also 
discusses briefly our idealized assumption about complete 
filling of the Rindler wedge by the medium in relation to the 
macroscopic strength of real materials. Section VI derives 
and solves the Maxwell equations for the three types offun
damental modes: the TE, TM, and TEM modes. Mathemat
ically, modified Bessel functions of imaginary order are the 
key functions for the TE and TM modes. Solutions are also 
given for the electromagnetic potentials. 

Section VII elaborates upon, and calculates explicitly, 
the electromagnetic energy-momentum tensor according to 
the Minkowski picture. It turns out that for the TE and TM 
modes there is a transport of electromagnetic energy trans
versely to the direction of acceleration, whereas for the TEM 
mode there is a transport in the acceleration direction. Sim
plified expressions for the velocity of propagation of energy 
(ray velocity) are obtained at great distances from the hori
zon. There exists actually a very helpful analogy between the 
physical system that we study here and the electromagnetic 
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field within an inhomogeneous medium at rest in an inertial 
frame. As far as we know, this analogy has not been noted 
before, and its importance ought therefore to be stressed. 

II. MAXWELL'S EQUATIONS 

Our treatment rests upon the following assumptions. 
( 1) The metric tensor g 1'1' (f.L, v running from 0 to 3) is 

independent of time, agl'J at = O. In particular, the spatial 
distance between two reference points, as measured by stan
dard measuring rods at rest, is independent of time. In the 
language of MeJller, a reference system of this kind is said to 
be rigid (Ref. 18, p. 287). 

(2) The metric is time orthogonal, i.e., 

gOi = 0, i = 1,2,3, (2.1 ) 

implying that the vector potential Yi vanishes (Ref. 18, p. 
280). Thus our metric may be written in the form 

(2.2) 

where gik, because of vanishing Yi' determines directly the 
spatial geometry in the reference system. Note that gOO = 1/ 
goo' The Minkowski metric is according to our conventions 

TJI'1' = diag( - 1,1,1,1). (2.3 ) 

A. Four-dimensional formulation 

It is convenient to use the Cartan formalism. We choose 
an arbitrary coordinate basis, i.e., in the language of Misner 
et a/. 19 CJi' = dxl' . The fundamental Faraday two-form is 

(2.4) 

The first half of Maxwell's set of equations is obtained by 
requiring the exterior derivative of F to be zero, 

dF=O. (2.5) 

Since 

(2.6) 

(comma denoting ordinary partial derivative), we can write 
(2.5) as 

F[I'1',p J = 0, 

with 

(2.7) 

F[I'1',p J = ! (Fl'v,p + Fvp,l' + Fpl"v ) (2.8) 

denoting the antisymmetrized part of Fl'v,p . 
Proceeding to the second half of Maxwell's equations we 

first introduce a new two-form describing the response of the 
dielectric medium to the applied electromagnetic field: 

G = !GI'V dxl'l\dxv. (2.9) 

Its dual *G, which may be called the Maxwell two-form, is 

*G = 1 *G dxl' I\dxv = - IE GafJ dxl' I\dxv 
2 ltv 4 ItvafJ . 

(2.10) 

Here El'vafJ is the completely antisymmetric pseudotensor of 
rank 4: 

(2.11 ) 

and /) I'vafJ is the completely antisymmetric Levi-Civita sym
bol, with 
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/)0123 = 1. 

The contravariant pseudotensor e<vafJ is 

e<vafJ = _ (_g)-1/2/)l'vafJ' 

(2.12) 

(2.13 ) 

Weare now in a position to write down the second half of 
Maxwell's equations, assuming for completeness that there 
may be also free charges and currents in the medium. Intro
ducing the charge-current one-form 

J =JI' dxl', (2.14 ) 

whose dual is the three-form 

*J = - (l/3!)JI'El'afJr dxa 1\ dxPl\ dxr, (2.15 ) 

we can express the remaining Maxwell's equations compact
ly as 

d*G=*J 

(c = 1). In component form, (2.16) means 

(_g)-I/2[( _g)I/2Gl'v1,v =JI'. 

(2.16 ) 

(2.17) 

In this four-dimensional formulation of the theory, all 
information about the medium's influence upon the fields is 
hidden in the induction tensor Gl'v' To make the influence 
from the medium explicit, we now turn to the three-dimen
sional formulation. 

B. Three-dimensional formulation 

We aim at a construction of the theory in (1 + 3) space. 
This means that, for a given value of the coordinate time t, 
we have to introduce three-dimensional vectors, tensors, and 
differential forms. 

First, introduce the electric field one-form 

E=Ei dx i (2.18 ) 

and the magnetic flux density two-form 
i k B = !Bik dx I\dx , (2.19) 

whereby the four-dimensional two-form F introduced in 
(2.4) may be decomposed as 

F = El\dxo + B. (2.20) 

In three-space, the form *B dual to B is a one-form; its com
ponents are 

*Bi = !EiklBkl, (2.21) 

where Eikl is the completely antisymmetric pseudotensor of 
rank 3: 

Eikl = yl/2/)ikl' Y = det(gik)' (2.22) 

and /)ikl is the completely antisymmetric Levi-Civita symbol, 
with /)123 = 1. Since there are no gravitational potentials, 
spatial indices are raised and lowered by means of gik direct
ly. 

The contravariant components corresponding to the 
*Bi are, when the star in front of the symbol (the Hodge 
operator) is omitted, 

B i - l-iklB -ikl_ y- 1I2 £ (2.23) 
- 2«:: kl' «:: - Uikl' 

The B i are the components of a three-dimensional axial vec

tor, B = B ieo where the basis vectors eo in a coordinate 
basis as assumed here, are ei = a I axi. The axial vector prop-
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erty ofB follows from the appearance of the pseudotensor ~kl 
in (2.23). 

We can now express the two-form F in terms of three
dimensional quantities 

(2.24) 

Now introduce the three-dimensional field components D i, 
Hi in the two-form G in a similar way. Expression (2.17) 
makes it natural to start from the tensor density (of 
weight 1) 

~J-LV= (_g)I/2GJlV, (2.25) 

the zeroth row of which is associated with the components 
D i of the displacement vector D: 

~Oi = yl/2Di, (2.26) 

whereas the spatial components are expressed as 

~ik = yl/2Hik, (2.27) 

so that the Hik constitute a three-dimensional tensor (not 
tensor density). The lowered components Hik constitute a 
two-form 

i k H = ¥Iik dx /\dx , (2.28) 

whose dual is a one-form, *H. The components of the latter 
are, when we again omit the Hodge operator, 

Hi = !EikIHkl. (2.29) 

For reference purposes it is useful also to write the following 
equations: 

~ik = DiklHI' 

*GOi = - Hi' *Gik = - EiklD I. 

(2.30) 

(2.31 ) 

Care has been exerted here to choose the definitions such 
that *GJlv follows from FJlv if one makes the following re
placements: 

(2.32) 

For the case of an electromagnetic field in vacuum in an 
inertial system, the duality transformations are usually writ
ten as E-H, B- - D. These transformations are thus 
strictly analogous to (2.32). 

Let us now write down Maxwell's equations in three
dimensional form. Defining curl and divergence operators 
by 

(curl E)i = ~kl akE1, 

div B = y-1I2 ai (yl/2B i), 

we can write (2.7) as 

(curl E)i = - aoB i, div B = O. 

(2.33 ) 

(2.34) 

The remaining Maxwell equations, (2.17), are treated simi
larly. Decomposing the four-current density JJl as 

JJl = ( _gOO)-1/2(p,j), (2.35) 

we get 

(curl H)i = / + aon i, div D = p. (2.36) 

It ought to be noted that the present theory assigns "me
diumlike" properties to the vacuum. Assuming no material 
medium to be present (G J-LV = FJlv ) we get 
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Di =(-gOO)-1/2Ei, Bi=(-goo)-I12Hi> (2.37) 

showing that the vacuum behaves as if it were a medium 
endowed with a permittivity ( - goo) - 112 and an equally 
large permeability. 

Our theory above is in agreement with the classical 
works of von Laue,20 Arzelies,21 and others, although there 
are differences in notation. Compare also the more recent 
work of Van Bladel. 22 For the case of a field in vacuum, we 
are in agreement with M0ller (Ref. 18, Sec. 10.9) and Lan
dau and Lifshitz.23 There is essentially agreement also with 
Post. 24 

The formulation ofSchmutzer5 is, however, different, a 
characteristic feature of his theory being that the medium
like properties of vacuum, as expressed in (2.37) above, are 
no longer present. At first sight this may appear to be an 
attractive feature. However, the price one has to pay for for
mulating the theory in this way is that the four-dimensional 
Maxwell equations, (2.7) and (2.17), can no longer be ex
pressed in three-dimensional form such as in (2.34) and 
(2.36) under maintenance of the curl and divergence opera
tors as they are naturally defined in (2.33). This appears to us 
to be a drawback of the theory. 

Another way of formulating the three-dimensional the
ory is also worth mentioning: it consists in expressing the 
four-dimensional quantities F/-Lv, ~ /-LV in terms of three-di
mensional fields exactly as if Minkowskian coordinates were 
used. In the special case of no matter being present, the gravi
tational field acts itself as some kind of "medium" having in 
general nondiagonal permittivity and permeability. This 
way of formulation has been advocated by Skrotskif6 and 
Plebanski27 (assuming no medium), and by Volkov and Ki
selev,28 who introduced a medium. Further references along 
these lines are Refs. 29-31. 

In conclusion, the various ways of formulating the 
three-dimensional theory appear to be internally consistent, 
although in our opinion the most natural alternative is the 
von Laue-Arzelies version presented above. 

III. CONSTITUTIVE RELATIONS 

We shall make use of the same method introduced in an 
earlier work32 dealing with inertial frames. The method 
makes use of projection operators, which are able to map the 
electromagnetic theory in a medium onto the electromagnet
ic theory in a vacuum. In the present problem, it is sufficient 
to introduce the following operator: 

(3.1) 

Here uJl is the four-velocity of the medium, and n = (Ep) 1/2 
is the refractive index. 

Using (3.1) we can write the constitutive relations com
pactlyas 

G/-LV = p-10JUZO vfiF a{J' 

Alternatively, we can write them out as 

G/-LV = p-I [FJlV _ K(FJluV _ FVuJl)], 

(3.2) 

(3.3 ) 

with F /-L = F /-LV Uv ' The derivatives of u/-L are thus not per
mitted to occur; cf. also the discussion by Anderson and 
Ryon33 on this point. 
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In the rest system of matter, where 

ui = 0, UO = ( - goo) - 112, Uo = - ( - goo) 1/2, 

(3.4 ) 

Eqs. (3.3) imply, in view of (2.24)-(2.30), 

Di = E( - goo) - 1I2E i , Bi = j.l( - goo) -1I2Hi> (3.5) 

which are in agreement with (2.37) if there is no material 
medium present. 

It ought to be stressed that the particular way offormu
lating the constitutive relations shown in (3.2) or (3.3) is 
quite useful, since it solves for the induction tensor G I'V ex
plicitly. Often one will find in the literature these relations 
given in a way that determines G I'V only implicitly. Accord
ing to our knowledge the formulation (3.3) was first given 
by Jauch and Watson.34 Its significance for a Lagrangian 
theory ofthe electromagnetic field in media was immediate
ly recognized by NovoMtzky,35 and it became in the follow
ing years extensively employed by the Hungarian group.36-39 
Other authors also made use of it, in various contexts, in
cluding the generalization to the case of anisotropic me
dia.25.32.33.40.41 

IV. ELECTROMAGNETIC POTENTIALS 

We can introduce the constitutive relations (3.2) into 
the second half of Maxwell's equations (2.17) and thereafter 
introduce the electromagnetic four-potential AI' by the 
equation 

Fl'v = Av;1' - AI';v (4.1) 

(semicolon denoting covariant derivative), to obtain equa
tions for AI" 

What form does the subsidiary condition take under the 
present circumstances? The most natural expression for it, in 
Lorentz gauge, seems to be 

OI'VAI';v = 0, (4.2) 

since this is a covariant equation reducing to the convention
al Lorentz condition in an inertial frame. We accordingly 
adopt (4.2); this is in accordance also with MO.41 

Let us hereafter make the simplifying assumption that 
the curvature tensor is equal to zero. Covariant derivatives 
accordingly commute. Some calculation then yields the fol
lowing wave equations for the potential components: 

(oaP AI';/3 );a = - j.l(0 -I )I'VJv + ° 'jfAa;1' 

- 0'tAp;a + (0 -1)l'a0':!orvFpv' 
(4.3) 

where it is understood that Fpv means (Av;p - Ap;v). These 
complicated equations are, in general, coupled. Equations 
(4.3) together with (4.2) are equivalent to Maxwell's equa
tions. 

In the special case of vanishing covariant derivatives, ui! 
= 0, (4.3) become simplified considerably since they d:

couple. We then have 

(OatJAI';/3);a = _j.l(O-I)l'vJV. (4.4) 

The potential equations derived by Mo [Ref. 41, Eq. 
(4. lOa) ] presuppose that u~ = O. This is actually a delicate 
point: in a reference frame where the matter is at rest one 
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might perhaps expect that u~v would be zero. In general, this 
does not hold true, not even in the simple Rindler space, as 
we shall show below. Therefore, if one wishes to describe the 
electromagnetic field in Rindler space by the potential wave 
equations, one has to return to the full set of equations (4.3). 

V. GENERAL PROPERTIES OF THE RINDLER SPACE 

From now on we shall specialize to the case of uniform 
linear acceleration. Assume that the frame K (the Rindler 
frame) is uniformly accelerated along the x axis with respect 
to the inertial background space, called I. We first observe 
that, as regards the relative motion between observer and 
medium, there is actually a variety of possibilities to choose 
from here: case I, the observer can be inertial, and the medi
um accelerated; case II, the observer can be accelerated, and 
the medium inertial; and case III, the observer and the medi
um can be coaccelerated. 

In this paper we will consider only case III. This implies 
the simplifying feature that all spatial velocity components 
of the medium vanish in the comoving Rindler frame. On the 
other hand, it is a complicating factor in the analysis that the 
medium, even if assumed to fill the entire Rindler wedge, fills 
only a part of the global Minkowski space. There exists ac
cordingly no simple homogeneous medium filling the iner
tial background space I. 

Before embarking upon the specific electromagnetic 
theory, it is convenient to summarize some basic properties 
of the Rindler space. In the frame I we represent the Min
kowski coordinates by capital letters, XI' = (cT ,x,Y,Z). 
(For physical reasons it is desirable in this section to keep c 
as a dimensional quantity.) The Rindler coordinates in the 
frame K will be donoted by xl' = (ct,x,y,z), where t is the 
"global" coordinate time within the Rindler wedge. The re
lations between XI' and xl' are 

cT = ax sinh(at Ic), X = ax cosh (at Ic), 
(5.1 ) 

Y=y, Z=z, 

implying X 2 
- c2T2 = X2. We have introduced a constant a 

having the dimension of an acceleration, and also a param
eter a to distinguish between the two wedges: (J = + 1 refers 
to the right wedge (R) and (J = - 1 refers to the left (L). 
The situation is shown in Fig. 1. SincecT IX = tanh (at Ic),a 
straight line through the origin of slope less than unity in 
magnitude singles out a spacelike surface corresponding to 
constant coordinate time tE( - 00,00). With the conven
tions adopted in (5.1), this holds true for both regions Rand 
L. Our conventions are in accordance with those of Birrell 
and Davies, 14 Sciama et al., 8 and Takagi. 13 As seen from Fig. 
1 there are two other regions of Minkowski space also, viz., 
the future region F and the past region P. These regions are 
not described by the formulas (5.1). In the following we will 
consider the right region R only, thus (J = + 1. Its past hori
zon is the line cT = - X, X> 0, corresponding to t = - 00, 
whereas the future region is cT = X, X> 0, corresponding to 
t = 00. If, as will be assumed here, the material medium oc
cupies the whole Rindler wedge, then the left end of it is 
travelling with the velocity of light: it moves towards the 
origin for T < 0 and outwards from the origin for T> O. At 
T = 0 the left end experiences an infinite acceleration (in 
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FIG. 1. Rindler coordinates in Minkowski space. 

pictorial terms, there is an exchange of "light platforms"). 
An arbitrary fixed point x = const in the medium tra

vels with velocity 

(5.2) 

As seen from the Minkowski frame the medium is thus not 
rigid: for a given T the magnitude of the velocity of a material 
point is greater the closer the point is located to the origin. 
From (5.2) we find that the nonvanishing component of the 
four-velocity U JJ of the medium in the frame I are 

UO=ccosh(at/c), Ul=csinh(atlc). (5.3) 

At the instant T = t = 0, all points in the medium are at rest 
in I, as well as in K. 

From (5.1) we construct the line element 

d!? = - (a2x 2/c2)dt 2 + dx2 + dy2 + dz2, (5.4) 

from which it follows that 

goo = - a2x 2lc4, gOi = 0, gik = ~ik' (5.5) 

The spatial metric is thus Cartesian. All deviations from 
Minkowski space are described by the metric component goo. 
From (5.4) it follows that the proper time r for a material 
point at rest in K is 

(5.6) 

The four-acceleration of such a point, as viewed from I, is 

dU JJ 
C
2
( at at) A JJ = -- = - sinh -,cosh -,0,0 , (5.7) 

dr x c c 

leading to the invariant, proper acceleration 

A=(AJJAJJ)I/2=c2Ix. (5.8) 

Note that this is independent of which value is assigned to 
the acceleration parameter a. 

As mentioned, we will assume that the medium occupies 
the whole Rindler wedge, i.e., extends down to x = 0. Con
ceptually, there is nothing against making such an assump
tion. For a physical material, however, strong stresses will be 
produced near the horizon, and the material breaks. It is of 
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interest to estimate the position of the breaking point. Let us 
consider maraging steel, one of the strongest construction 
materials, as an example. Its yield strength is42 

2 GPa = 2 X 1010 dyn/cm2. If a stress of this magnitude acts 
across one end (the base area) of a coin-shaped sample, of 
thickness I mm we obtain, since the density is about 8 gI cm3

, 

the acceleration of the sample to be about 3 X 1010 cm/sec2. 
Assume next that the left end of the medium is located at 
x = Xo (not to be confused with the covariant time coordi
nate), and require the acceleration of this end, which ac
cording to (5.8) is c2lxO' to be equal to 3xlOIO cm/sec2. 
This yields Xo ~ 3 X 1010 cm. If the medium approaches es
sentially closer to the origin than this, it will be tom apart. 
Thus the strength of real macroscopic materials puts severe 
limits on how close we can approach the horizon. If we in
stead consider microscopic systems, the conditions can be 
more extreme. For instance, in the SLAC linacwa one ob
tains an electric field of 7 MV 1m; for an electron this yields 
an acceleration of about 1020 cm/sec2

• Ifsome kind of "me
dium" were able to withstand such an acceleration, then the 
left end would come as close as Xo = 9 cm to the horizon, 
before breaking. 

We put henceforth a = 1, c = 1. The following rela
tions, in the frame K, are useful: 

r60 = x, 
(5.9) 

U
O = l/x, ui = 0, u:o = 1. 

All other Christoffel components, and covariant derivatives 
of the velocity, are equal to zero in this rest frame of the 
medium. The non vanishing u;~, in particular, implies that 
the simplified version (4.4) of the potential wave equation 
cannot be used; we have to resort to the full wave equation 
(4.3 ). 

VI. THE FUNDAMENTAL ELECTROMAGNETIC MODES 
A. Maxwell's equations 

We consider in this section a pure radiation field in K. 
Our purpose is to derive the expressions for the fundamental 
electromagnetic modes. Rather than dealing with potentials, 
we choose to start directly from the Maxwell equations. We 
let the modes vary with time as e - ieut. Since the spatial geom
etry in K is Cartesian, we do not have to distinguish between 
covariant and contravariant components of the vector fields. 
The Maxwell equations become 

curl E = iliJB, div B = 0, (6.la) 

curl H = - iliJD, div D = 0, (6.1b) 

where the operators curl and div have their usual Cartesian 
meaning. The constitutive relations are, in accordance with 
(3.5), 

D = (dx)E, B = (,ulx)H. (6.2) 

These equations in fact are exactly of the same form as for an 
electromagnetic field in an inhomogeneous medium at rest in 
an inertial frame, with the following effective permittivity 
and permeability: 

Eeff=dx, ,ueff=,ulx. (6.3) 

This analogy is most helpful, when interpreting the theory in 
K. 
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Eliminating D and B from (6.1 ) and ( 6.2) we obtain the 
wave equations for E and H. The wave equation for E can be 
written as 

curl(x curl E) = (€,uw2/x)E, (6.4a) 

which is equivalent to 

V2E - grad div E - (l/x)ex X curl E + (€,uW2/X2)E = 0, 
(6.4b) 

where ex is the unit vector in the x direction. The equation 
for H is identical. 

We consider a wave propagating in the xz plane. All 
quantities are independent of y, and the uniformity of the 
distribution of fields in the z direction means that the fields 
vary with z through a factor eikz, where k is a constant.43 If 
k = 0, the fields depend only on x, and (borrowing terminol
ogy from the theory of ordinary inhomogeneous media43

) 

we call the wave a normal wave. If k =/:. 0, we call it an oblique 
wave. In the latter case two independent cases of polariza
tion must be distinguished. We shall now introduce the con
cepts of TE and TM modes. 

B. TEmode 

Assume that E is directed along the y axis, i.e., trans
verse to the plane of polarization. Writing for simplicity E 
instead of Ey , we obtain from (6.4b) 

d
2
E +~ dE + (€,uw

2 
_k2)E=0, (6.5) 

dx2 x dx x 2 

which is the governing equation for the TE mode. In the 
derivation of (6.5), we first took into account the z depen
dence mentioned above, and thereafter omitted irrelevant 
factors, so that E in (6.5) depends on x only. 

Independent solutions of (6.5) are44 (when k =/:.0) the 
modified Bessel functions of imaginary order, I ± ia (kx) and 
Kia (kx), where we have introduced 

a = (€,u)1/2W = nw. (6.6) 

We take w to be positive, so that a becomes positive as well. 
Since I ± ia (kx-+ (0) -+ 00, we reject these functions as solu
tions. Introducing the symbol 

u =kx, (6.7) 

we can then write the TE mode as follows, including again 
the z and t factors, 

( 6.8) 

where Eo is a constant. Recall that this expression holds in 
the region 

XE[O,oo), y,zE( - 00,(0), (6.9) 

assumed that k =/:.0, w > 0. 
It is useful to observe that Kia (u) is a real quantity. This 

follows from formula 9.6.24 in Ref. 44: 

Ky(u) = iooe-UCOShICOSh(vt)dt. ( 6.10) 

This expression shows thatKy is real when vis real or purely 
imaginary, thus including v = ia with a real. 

The magnetic field is most easily determined by calcu
lating the components ofB from the first equation in (6.la): 
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Bx = - (k/w)E, By = 0, 

B z = (kEo/iw)KFa(u)ei(-"'I+kz), (6.11) 

where prime means differentiation with respect to the argu
ment. The remaining fields D and H now follow from (6.2). 

There are two limiting cases of interest here. First, near 
the horizon, x-+O, all (the nonvanishing) components ofE 
and B diverge; the fields "pile up" near the horizon. In this 
region also the effective permittivity and permeability go to 
infinity. 

Next, the case oflarge u is of interest, since the fields can 
then be expressed in terms of elementary functions. Namely, 
in this limit we have, when we include terms of order l/u, 

Kia(u) = (1T/2u)I/2e- U [1- (4a2 + l)/8u], (6.l2a) 

K Fa (u) = - (1T12U)I/2e - U[ 1 - (4a2 - 3)/8u], 

( 6.l2b) 

see Ref. 44, formulas 9.7.2 and 9.7.4. Therefore, if we omit 
the O( l/u) terms we find thatBJBx -+iwhen U-+ 00, which 
implies that Bz lies ~1T ahead of Bx in phase. 

We have based this analysis upon Maxwell's equations. 
Alternatively we might have started from the potential wave 
equations (4.3). The following relations are useful here: 

(6.13 ) 

Some calculation shows that the wave equation for the com
ponent A =Ay is identical to (6.5) above. It is consistent to 
put all other potential components equal to zero, and so from 
E = - JoA we have 

A =E/iw, (6.14) 

where E is given by (6.8). The subsidiary condition (4.2), 
and all remaining potential equations, are satisfied automati
cally. 

C. TM mode 
Assume now that H is transverse and directed along the 

y axis. The equation for H=Hy is the same as (6.5), and so 
we obtain immediately for the TM mode 

(6.15 ) 

in analogy to (6.8), Ho being a constant. 
The natural pair of field variables is now Hand D. From 

the first equation in (6.1 b) we determine the components of 
D, 

Dx = (k/w)H, Dy = 0, ( 6.16) 
Dz = (ikHoIw)K Fa (u)e i ( -",1+ kz). 

The remaining fields follow from (6.2). 
Near the horizon, all field components in (6.15) and 

(6.16) diverge. Again, for large u the approximation (6.12) 
is useful. 

It is possible to introduce the electromagnetic potential 
in full analogy to (6.14): the ansatz 

AI-' = (Ao,A) = (O,Ax,O,Az)' (6.l7a) 

with 

Ax = Ex/iw, A z = Ez/iw, (6.l7b) 

leads to correct expressions for the fields E and B. The ansatz 
is thereby justified. 
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The TM case is more complicated than the TE case as 
far as the electromagnetic potential equations are concerned. 
The reason is that the expressions for A 1" as given by (6.17), 
do not satisfy the subsidiary condition and the potential 
wave equations separately, with the particular choice (4.2) 
for the subsidiary condition. The general lesson to be drawn 
from this is that when dealing with the electromagnetic field 
in curvilinear coordinates, the best method is to start from 
the Maxwell equations directly. There is no natural, simpli
fying choice for the subsidiary condition, and the use of elec
tromagnetic potentials may in fact easily make the math
ematical analysis more complicated. 

D. TEM mode 

An interesting special case occurs when the wave is a 
normal one, propagating along the x axis. Then all fields are 
transverse, i.e, they are lying in the yz plane. The constant k 
is in this case equal to zero, so that the variable u = kx can no 
longer be used. Instead, we return to the basic equation 
(6.5), which becomes 

d 2E 1 dE a 2 

-+--+-E=O. (6.18) 
dx2 x dx x 2 

The independent solutions are simply x ± ;a. It is convenient 
to express the solutions in terms of a new variable 5, defined 
by x = eS , 5E( - 00,(0). Choosing the right-moving solu
tion, we can write the fundamental TEM mode as 

E=Eoe;<-w,+asl, H= (€/fJ) 1/2ex XE. (6.19) 

It means in (t,5) coordinates aplane wave; the amplitudes of 
E and H do not change with position at all. In this respect the 
TEM mode contrasts the TE and TM modes. 

VII. THE ELECTROMAGNETIC ENERGY-MOMENTUM 
TENSOR 

The situation under study in this paper is very suitable 
for making an explicit test of the electromagnetic energy
momentum conservation equations in curvilinear coordi
nates. In general relativity, it is known that the construction 
of the energy-momentum complex for a gravitational system 
is by no means trivial; the problem being essentially the 
transfer of the covariant divergence of the energy-momen
tum tensor into an ordinary divergence of a (not unique) 
energy-momentum complex. These matters have in particu
lar been discussed by M011er; 18 cf. also the recent paper by 
Kovacs.45 

Since the electromagnetic field in matter is a nonclosed 
system, we cannot expect beforehand that the electromag
netic four-force density f,. is zero, not even for a pure radi
ation field. Let us for completeness assume that there are 
extraneous charges and currents present, described by a 
four-current density J 1'. If S I' v is the electromagnetic energy
momentum tensor, the differential conservation equations 
are 

-SI';~ =/1" (7.1) 

It is known that electromagnetic phenomena in a medium in 
inertial space, at least for high frequencies, are best described 
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in terms of Minkowski's energy-momentum tensor (there is 
no relationship to Minkowski coordinates here!). See, for 
instance, Refs. 18,40, and 46. In fact, we are not aware of any 
experiment in optics that cannot be explained by means of 
this tensor in a straightforward way. It is natural, therefore, 
to base the analysis upon the Minkowski tensor also in the 
case of curvilinear coordinates. Consequently, Sl'v is given 
by 

S v = F G va _ !VV F G a/3 
I' I'a 40 I' a/3 ' 

(7.2) 

which corresponds to 

f,. =Fl'vr +!(Fa/3G't- Fa/3;I'Ga/3). (7.3) 

Here the first term gives the force on the extraneous charges 
and currents, whereas the second term gives the force on the 
medium. 

Now specialize to Rindler space. Introduce the electro
magnetic energy density h, the Poynting vector S, the mo
mentum density g, and the Maxwell stress tensor t; k. Expli
citly 

Soo= -h/x, So;= -S;/x, 

S; 0 = g;lx, S; k = - t; k lx, 

and so (7.2) leads to 

h = !(E'D + H'B), S; = (EXH);, 

g; = (DXB);. 

t;k = E;Dk +H;Bk - !87(E'D + H·B). 

(7.4) 

(7.5) 

These expressions, in fact, are formally identical to those one 
obtains for an electromagnetic field in an ordinary dielectric 
medium. 

The four-force density /1' in terms of the three-fields can 
be found from (7.3). We shall not write down the expres
sions for its components here. It is, however, of great interest 
to recognize that the differential conservation equations can 
be written in the form 

aoh + div S = - E· j, 

- a~; + t;.Z =pE; + (jXB); 

- !E2 a;€eff -!H 2 
a;fJeff' (7.6) 

cf. (6.3). These are/ormally identical to those holding/or an 
inhomogeneous medium at rest with permittivity €eff and per
meability fJeff in an inertial system, when the Minkowski 
tensor is being used. In fact, this is exactly what we would 
expect, on basis of the correspondence (7.5) with the Min
kowski theory. This analogy ought in our opinion to be of 
value also in related problems, such as in the examination of 
the subtle emission and absorption phenomena that take 
place when a detector is at rest in an accelerated system. 

Before closing this section let us define also the propaga
tion velocity of electromagnetic energy: 

u* = S/h. (7.7) 

Using (7.5) we can calculate u* explicitly for the various 
modes. For the TE mode we obtain 

u* = (O,O,u'Z
), (7.8a) 

(7.8b) 
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The expression for the TM mode is identical. For these 
modes there is thus an electromagnetic energy transport par
allel to the horizon. Making use of the large u expansion 
(6.12) the expression (7.8b) can be simplified. If u ..... 00, the 
velocity of the energy becomes simply UJ/k. This is the same 
expression as for a plane wave of wavenumber k propagating 
in the z direction. 

Considering finally the TEM mode, we find that there is 
an energy transport in the x direction. We obtain 

n* = (l/neff)ex , 

with 

(7.9a) 

neff = nix = (€f.l) 1/2/X, (7.9b) 

in analogy to (6.3). The physical system behaves as an inho
mogeneous medium of refractive index neff' 

VIII. CONCLUSIONS AND FINAL REMARKS 

( 1) It ought to be stressed that we have based the calcu
lation upon a model where the medium is isotropic, homo
geneous, and nondispersive, filling the Rindler wedge com
pletely. Recall also that only case III from the listing in Sec. 
V has been discussed. With these underlying assumptions, 
the formalism, as we have seen, becomes quite tractable. Per
haps the most noteworthy result is the circumstance that 
there exists a direct analogy between the electromagnetic 
theory in the frame K and the theory in an ordinary inhomo
geneous dielectric medium at rest. 

(2) We have discussed the classical theory only. As far 
as we know, no quantum treatment of the phenomenological 
electromagnetic field has so far been given. It is worthwhile 
to point out in this context, without going into great detail, 
that it is quite straightforward to construct the quantum 
field theory for the following related simplified situation: 
The electromagnetic field is replaced by a fictitious scalar 
field, which is assumed to respond to the presence of the 
medium in terms of a refractive index, in essentially the same 
way as an electromagnetic field does. We find it very reason
able to expect that a scalar theory of this kind is able to 
reflect many of the essential features of a complete electro
magnetic theory. 

Let us therefore outline the main properties of this sca
lar theory. The basic field equation for the scalar field <I> 
must be the following expression: 

V2 <1> + (l/x)Jx<l> + (a2/x2 )<I> = 0, (8.1) 

with a 2 = €f.lUJ
2 as before, and V2 = J; + J; + J;. [The 

reason for adopting (8.1) as governing equation becomes 
clear from analogy, if we recall (6.4b) or (6.5).] Assuming 
uniform distribution of the scalar field in the transverse y 
and z directions, we see that the fundamental modes will 
have to vary in these directions through the factor eik 'Y, the 
transverse vectors y and k being defined as 

y=(y,z), k=(k2,k3 ), k=(k~+ki)112, (8.2) 

with y,ze( - 00,00), k2,k3e( - 00,00), ke[O,oo). Requir
ing the boundary condition at infinity to be <I> -+ 0, and intro
ducing again the variable u = kx in analogy to (6.7), we can 
write the expression for the fundamental mode 4>wk of (8.1) 
as 
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The modes are orthonormalized, 

(4)wk,ifJw'k') = 8(UJ - UJ')8(k - k/), (8.4 ) 

in accordance with the following general expression for the 
inner product: 

(4)1,4>2) = - iL OI'V[ 4>fVvifJ2]d3l:1" (8.5) 

in standard notation. An expansion of <I> into fundamental 
modes, 

<I> = l"" dUJ J: 00 d 2k (awk 4>wk + a~kifJ!k]' (8.6) 

leads to the following non vanishing commutation rules: 

[a"'k,a~'k' ] = 8(UJ - UJ')8(k - k/). (8.7) 
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For the Dicke maser model the approach to equilibrium for a quantum version of a detailed 
balance evolution is studied rigorously. The exponential decay with a relaxation time of the 
order 1 T - Tc 1- 1 for T <, Tc is proved. A complete spectral resolution of the evolution is 
obtained. 

I. INTRODUCTION 

In 1963, Glauber proposed a stochastic Ising model in 
which the spins change their state randomly with time ac
cording to a continuous Markov process. 1 The model turned 
out to be successful in various ways. In particular, it turned 
out to be an efficient tool to investigate some dynamical 
aspects of the Ising model near the critical point. 2,3 

Recently a generalization to quantum systems of 
Glauber-type dynamics was proposed.4

•
5 In a rigorous math

ematical scheme a quantum mechanical Markov process sat
isfying the detailed balance condition is defined. These de
tailed balance evolutions have been used already to 
investigate the critical behavior of the free boson gas.6 A 
result about the critical slowing down was obtained, which 
coincides with the result obtained from a nonlinear treat
ment, based on the weak coupling limit.7 

In this paper we investigate the critical behavior of the 
Dicke maser model. 8-10 As in Ref. lOwe consider the model 
described by the Hamiltonian 

N 

HN = I, (atak + ECh+ ak- ) 
k= -N 

A +---
2N+ 1 

N 

I, (atal- + aka/ ), 
k.l= -N 

(1) 

where the ak*) are the boson creation and annihilation oper
ators and the at the Pauli matrices. 

We also make the restriction 0 < €<'A 2, yielding the exis
tence of a phase transition. Our main result is an exact calcu
lation of the critical exponent governing the approach to 
equilibrium in this genuinely quantum mechanical model, It 
is shown that the relaxation time diverges as 1 T - Tc 1- 1 

below the critical temperature. We do not obtain a polyno
mial behavior like for the free Bose gas.6 Above the critical 
temperature we have always an energy gap. Our work must 
be compared with the work of Hepp and Lieb. 11 In both 
cases one studies an irreversible behavior of the Dicke maser 
model. Technically however, our master equation is derived 
from the condition of detailed balance, whereas they obtain a 
Markovian evolution by using the so-called "singular reser
voirs." They obtain a bifurcation phenomenon. We have a 
linear evolution equation. 

In Sec. II we take this occasion to give a mathematically 
rigorous and detailed description of the equilibrium states of 
the Dicke maser model, with a particular emphasis on the 

a) Onderzoeker I.I.K.W .• Belgium. 

explicit construction of the condensed phase below the criti
cal temperature. In Sec. III we define our Markovian dy
namics and give a complete spectral resolution of the gener
ator of the process, showing the above mentioned 
phenomenon of critical slowing down. 

II. MATHEMATICAL DESCRIPTION OF THE MODEL AND 
ITS EQUILIBRIUM STATES 

A. Algebra of observables 

ConsidertheC *-tensorproduct <G' = g{J ®.xi', where g{J 

is the boson algebra and .xi' the atomic algebra; .xi' is the 
usual quasilocal spino! lattice algebra 

where (M2) i is a copy of the complex 2 X 2 matrices M2 at 
the site iEZ; M2 is generated by the Pauli matrices a± satisfy
ing a+2 = 0, a+a- + a-a+ = 1. 

For the boson algebra g{J we take the CCR-C *-algebra 

I1(H,a) constructed on a symplectic space (H,a). It is gen
erated by the set ofWeyl operators {W(I,6) II,6EH} satisfying 

W(I,6) Wet/!) = W(1,6 + t/!)e- (i/2)U(4>.tP), 

W(I,6) * = W( - 1,6). 

Now we discuss the sympletic space (H,a), which is relevant 
for our purposes. 

Denote 

L2(,/-) = {fl/: '/--.C; ~ If(nW< oo} 
and Y the subspace of L 2(,/-) defined by 

Y = {fEL 2(,/-) 1 lim InlP fen) = 0, 't/ peN}, 
Inl- 00 

L 2(,/-) is a Hilbert space with scalar product 

(f,g)2 = I,l(n)g(n), f,gEL 2(,/-). 
neZ 

Define the Fourier transform.7: Y -.L 2( [O,21T]) by 

f-.(.7f)(k) =f(k) = I,e-iknf(n). 
neZ 

Define the Hilbert space H as the completion of Y with 
respect to the scalar product 

(f,g) = (j,g)2 + f(O)g(O); j,geY. 

Note that H is isomorphic to L 2(,/-) E9 C. 
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The imbedding of Y into H =.L 2(Z) al C is given by 

feY -+~ = ([,f(O»)eH 

and as an orthonormal basis of H we consider 

{(e",O),(O,l) IneZ}, 

where e"eY is the function defined by en (m) = 8nm • Re
mark that en (0) = 1 and that in the L 2 sense of H, 

(0,1) = lim 1 
N_", 2N+l 

(2) 

The symplectic form U on H is now defined: for 
~ = ([,81), ,p = (g,82 ), 

u(~,,p) = Im(/,g)2' 

It is clear that U is degenerated, hence the C *-algebra 
f!Jj = A,(H,u) (Ref. 12) has a nontrivial center generated 
by the set 

{W(O,r»)lyeC}. 

Let llJ be a regular state13 of f!Jj, then there exists in the GNS 
representation of llJ creation and annihilation operators 
a ± (~ ); ~, satisfying the following commutation rela
tions: for (['r),(g,8)eH, 

W([,r») = exp(il.,fi) (a+([,r») + a-([,y»)) 

and 

Denote 

a±(e",1)) = af; neZ, 

a ±(O,l)) = a ±, 

where r is the order parameter, determined by the gap equa
tion 

2u = th/3A 2u;60; 

One checks that 

llJc,6 '1'", = llJc,(6+ ",)mod21T 

and we denote 
1 121T 

llJ = - dO llJ 6 
c 217' 0 c, 

(5) 

the unique gauge invariant equilibrium state. One computes 

llJc,8(W([,r») =exp[ -!coth ({3/2) ([,/)2 

- (il.,fi) ( yre - i8 + h.c.)], 

llJc.8(a+ ([,YI)a(g,Y2») = [l/(eP - 1)] (g,f)2 + r2r,r, 
(6) 

C. Time evolution 

All equilibrium states are symmetric for arbitrary Z-lat
tice point permutations and as the model is of the mean field 
type (see Refs. 14 and 15) one has an effective evolution 

2251 J. Math. Phys., Vol. 28, No.9, September 1987 

then (2) implies that 

1 N 
s-lim r an = a. (3) 
N_", 2N + 1 ,,=-N 

Finally we need the one-parameter group of gauge transfor
mations {1'610e[0,21T)}: 

1'6a±(~) =e±i6a±(~), 1'6Uk± =e±i6ul. 

B. The equilibrium states 

The model shows a phase transition, i.e, there exists a 
critical temperature Tc determined by 

{3c = (2/E)th -I(E/A 2) 

such that for {3 < {3c one has the normal phase state given by a 
product state llJn with a density matrix per lattice site keZ 
(Ref. 10), 

II exp[ -{3(ak+ ak + €Uk+ Uk-)] 
Pk = . 

tr exp[ - {3( at ak + €Uk+ Uk-)] 

One computes 

llJII (W( [,y») = exp[ - !coth({3 12)([,/)2]' 

llJ II (a+([,YI)a(g'Y2») = [l/(eP - 1)] (g,fh, (4) 

llJII (a) = 0. 

For {3 > {3 c one has also the condensed phase described by a 
convex set Kf3 of eqUilibrium states with extremal elements 
{llJc,610e[0,21T)}, where llJc,6 is a product state with a density 
matrix per lattice site keZ (Ref. 10), 

I 
{at IteR} on the von Neumann algebra C(J" induced by each 
of the equilibrium states yielding 

at(a±([,y») =a±(eit[,y»). 

III. DETAILED BALANCE EVOLUTIONS AND 
APPROACH TO EQUILIBRIUM 

Return to equilibrium has recently been studied in some 
models by means of quantum stochastic evolutions satisfy
ing the condition of detailed balance.5

,6 

Here we consider another model and in this section we 
introduce the evolutions on the level of the von Neumann 
algebra 'tf" induced by an equilibrium state of the model. 
Hence let llJ be any equilibrium state, a linear map y with a 
dense domain ~ of 'tf" into itself satisfies the detailed bal
ance condition if, for all x,ye~ , 

llJ(xy(y») = llJ(y(x )y). 

Following Refs. 4 and 5 we consider the following linear 
dissipative maps satisfying this condition: 

L ~ (.) = f dt F(t)..ff.(a t (x) [. ,at + s (x)] 

(7) 
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where J/ s stands for the mean over s, 

1 fa J/s = lim - 'ds, 
a-oo 2a -a 

and where F is any complex analytic function satisfying 

(i) FEL I (lR,dt) , 

(ii) F>O, 

(iii) F( - t + ifJ) = F(t), 

and x = x* a self-adjoint operator, at is the effective time 
evolution in the state cu. 

Now there are many possible choices for the function F 
as well as for the observable x. Here we consider two types of 
states; a normal state CUn and a condensed phase state cuc ' 

For each of them we make a particular choice for the 
observable x, given by 

Xn =a+(t/J) +a(t/J), 

Xc =aa+(t/J) +a+a(t/J), 

where t/J = (g,O)Ell; and gEY, such that g(O) = O. 
This choice of x implies that the maps L ~ are so-called 

quasifree maps, i.e., their dual action on the state space maps 
generalized free states into generalized free states. The 
choice of Xc can also be motivated on physical grounds. In
deed, it is the minimal gauge-invariant observable coupling 
the condensed mode with an excited one. 

In the following we denote shortly L ~ (resp. L~) for 
L~" (resp. L ~c ). A tedious but straightforward computation 
yields the following lemma. 

Lemma 3.1: For any ¢Ell, then 

L ~c(W(¢») = [(i/~)(a(T~,c¢) + a+ (T~,c¢») 

+ X~,c(¢)] W(¢), 

where the T~,c are linear operators on H, 

T~,c(¢) = - (e;.,J(t/J,t/J»(t/J,¢)t/J, ¢Ell, 

and 

e;. = F( 1) (1 - e -(3) (g,g) 2' e;. > 0, 
A -f3 _2 

~ = F(1) (1 - e ) (g,g)r, ~>O, 

Lemma 3.2: For ¢EllI and m, m'ENo, 

L ~c(a+ (¢ )ma(¢ )m') 

= - e;.,c (m + m')a+ (¢ )ma(¢ )m' 

+ 2e;.,c mm'cun,c(a+ (¢ )a(¢» )a+ (¢)m - la(¢> )m' - I, 

L ~c(a(¢)ma+ (¢ )m') 

= - e;.,c (m + m')a(¢)ma+(¢)m' 

+ 2e;.,c mm'cun,c(a(¢> )a+ (¢) )a(¢)m - la+ (¢> )m' - I. 

If m or m' equals zero, the second term is absent. • 
Now we consider the action of the operators L ~c on the 

representation space induced by the equilibrium states cun,c. 
Actually, we consider the operators £ ~c defined by 

-F F 
L n,c (xD.n,c) = L n,c (x)D.n,c' (8) 

where the D. n,C are the cyclic vectors of the states cu n.c and X 

runs through a dense set of operators on the representation 
spaces. The detailed balance condition yields that the opera
tor £ ~c can be defined as a self-adjoint, negative operator. 
We have the following result about u(l ~c) = spectrum of 
-F 
L n,c' 

Theorem 3.3: 

u(£ ~c) = { - pe;.,c I pEN}. 

Proof: From Lemma 3.1 it is clear that all vectors of the 

type x2D.n, c, X2E ll.(H2,u) belong to the zero eigenvalue of 
£ ~,c. Therefore it remains to consider vectors generated by 
{xlD.n,c IXIEll.(H,u)}. Denote by Jlr~c the subspace genera
ted by this set. It is also generated by the vectors of the type 

a+ (¢> )ma(¢ )m'D.n,c' 

a(¢ )ma+ (¢ )m'D.n,c' 

¢EllI' m,m'EN. In turn Jlr~c is generated by the vectors 

A m,m'D.n,c and Bm,m'D.n,c> 

m,m'EN, where 
p 

A m,m' = L ck(m,m')a+(¢)m-ka(¢)m'-k, 
k=O 

p 

Bm,m' = L dk(m,m')a(¢)m-ka+(¢)m'-k, 
k=O m(¢) = -V(1)I(¢,t/J)1 2 (1 +e- (3

), 

x~(¢) = -!F(1)I(¢,t/JW(1 +e- (3 )r. • withp = min(m,m'), and 

It is clear from the definition ofthe operators T~,c that 
they are rank-1 operators projecting on the vector t/J. Let 
H = HI EB H2, with HI being the subspace generated by t/J. 

By identification 

W(¢I EB¢2) = W(¢I) ® W(¢2)' ¢IEllI , ¢>2Ell2' 

and 

ll.(H,u) = ll.(HI,u) ® ll.(H2,u). 

From formulas (4) and (6) one has 

CUn,c (XI ® x2) = CUn,c (XI )cun,c (x2) 

for XIE ll.(HI,u) , X2E ll.(H2,u) , i.e., the CUn,c are product 
states with respect to this decomposition, and 

L ~,cX2 = 0 for all X 2E ll.(H2,u). 

Another computation yields the following lemma. 
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, (- l)k [cun,c(a+(¢)a(¢»)]km!m'! 
ck(m,m) = , 

k !(m - k)!(m' - k)! 

, (-l)k[cun,c(a(¢)a+(¢»)]km!m'! 
dk(m,m) = . 

k !(m - k)!(m' - k)! 

From Lemma 3.2 it follows that 

L ~cA m,m' = - (m + m')e;.,cA m,m', 

L~cBm,m' = - (m + m')e;.,cBm,m·, 

and the theorem follows. • 
This theorem makes clear that the spectrum of £ ~c is 

completely determined by the number e;.,c' This constant is 
called the energy gap. For all f3 < f3 c this constant is strictly 
larger than zero (see Lemma 3.1) but for f3>f3c (i.e., 
T < Tc ) ~ -+ 0 as T -+ Tc. This is the germ of the phenomenon 
of critical slowing down, which we discuss now. 
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Using Theorem 3.3 it is clear that the map L ~ is expo
nentiable in order to yield the dynamical semigroup evolu
tion 

• ,F - F rt = exp tL e' t;;;'O. 

The energy gap ~ for fixed g and F determines clearly the 
rate of convergence to equilibrium of any locally perturbed 
state, i.e., for any local observables A one has 

me (A "'y,A) - me (A "'A) <e - t~me (A "'A) 

and the lifetime r( T) of the locally perturbed state 

B-+me(A "'BA)lme(A "'A) 

is therefore given by (~) - 1. From the gap equation (5) and 
the definition of the critical temperature Te it readily follows 
that ~ tends to zero as T -+ Te like T - Tc' Therefore the 
lifetime 

r( T) z:<.l/( T - Terri with 7J = 1. 

Hence we obtained a mathematically rigorous proof of the 
phenomenon of critical slowing down with critical exponent 
equal to unity, in complete agreement with the result for 
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mean fields of classical lattice systems and the Glauber dy
namics. This result enhances our statement that our model 
(7) is the quantum mechanical version of the classical 
Glauber dynamics . 
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Erratum: Regular subalgebras of Lie superalgebras and extended Dynkin 
diagrams [J. Math. Phys. 28, 292 (1987)] 

J. Van der Jeugta) 

Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 281-S9, B9000 Gent, Belgium 

(Received 10 March 1987; accepted for publication 25 March 1987) 

We refer to the paper in the title as I. Our classification 
of regular subalgebras of simple classical Lie superalgebras 
was based on Kac's list of nonequivalent simple root sys
tems. I After the publication of I, it was pointed out to me 
that the results of Kac are not complete as far as the excep
tional Lie superalgebras G (3) and F( 4) are concerned.2 In 
view of this, our paper should be corrected as follows. 

At the end of Sec. VII one should add: Besides the sim
ple root systems (7.3) and (7.9) there exist two more non
equivalent systems, namely, 

11"1 = { - D - EI,D - E3,E3 - E2}, 

11"2 = {E3 - D,D - E2,E2}. 

These last two choices do not give rise to any new regular 
subalgebras of G( 3). 

At the end of Sec. VIII one should add: Besides the four 
root systems given by Kac, there are still two nonequivalent 
simple root systems for F( 4 ), namely, 

11" = { - D + ~(EI + E2 - E3 ),E3, 

D + ~( - EI + E2 - E3 ),EI - E2}, 

11"' = {20, - D +!( - EI + E2 + E3 ),E I - E2,E2 - E3}. 

The system 11" can be extended by r = - E I - E2, and the 
extended Cartan matrix and Dynkin diagram are given by 

2 -1 0 0 0 
2 0 -2 0 
0 -1 2 -1 0 , 1'= {1,3}, 
0 -2 0 2 
0 0 0 -1 2 

o 3 4 o-yO 
2 

Deleting node 2 gives rise to the Dynkin diagram and root 
system of the Lie superalgebra A (3,0). This regular subalge
bra of F( 4) was not found by means of any other simple root 
system. Note that 11"' does not lead to any regular subalgebras 
not obtained before. 

In conclusion, Table I of I should be extended by the 
regular subalgebra A (3,0) of F( 4 ). 

.) Senior research assistant N.F.W.O. (Belgium). 

IV. G. Kac, Adv. Math. 26, 8 (1977). 
2J. Van de Leur, Ph.D. dissertation, University of Utrecht, 1986 (unpub
lished). 

Erratum: Quantum motion on a half-line connected to a plane 
[J. Math. Phys. 28, 386 (1987)] 

P. Exner and P. Seba 
Laboratory o/Theoretical Physics, Joint Institute/or Nuclear Research, 141980 Dubna, USSR 

(Received 3 February 1987; accepted for publication 11 February 1987) 

The vectors ( 10) should have the same norm. Hence the 
first one of the relations (11) must be replaced 

fl(x): = 81
/
4 exp(E'x); 

then the additional multiplicative factor 81
/
4 will appear in 

(16c) and (30b), and 8- 1/
4 will appear in (16d), (17b)

(17d), and (30c). 
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